1
|
Studnicki A, Seidler RD, Ferris DP. A table tennis serve versus rally hit elicits differential hemispheric electrocortical power fluctuations. J Neurophysiol 2023; 130:1444-1456. [PMID: 37964746 PMCID: PMC10994643 DOI: 10.1152/jn.00091.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
Human visuomotor control requires coordinated interhemispheric interactions to exploit the brain's functional lateralization. In right-handed individuals, the left hemisphere (right arm) is better for dynamic control and the right hemisphere (left arm) is better for impedance control. Table tennis is a game that requires precise movements of the paddle, whole body coordination, and cognitive engagement, providing an ecologically valid way to study visuomotor integration. The sport has many different types of strokes (e.g., serve, return, and rally shots), which should provide unique cortical dynamics given differences in the sensorimotor demands. The goal of this study was to determine the hemispheric specialization of table tennis serving - a sequential, self-paced, bimanual maneuver. We used time-frequency analysis, event-related potentials, and functional connectivity measures of source-localized electrocortical clusters and compared serves with other types of shots, which varied in the types of movement required, attentional focus, and other task demands. We found greater alpha (8-12 Hz) and beta (13-30 Hz) power in the right sensorimotor cortex than in the left sensorimotor cortex, and we found a greater magnitude of spectral power fluctuations in the right sensorimotor cortex for serve hits than return or rally hits, in all right-handed participants. Surprisingly, we did not find a difference in interhemispheric functional connectivity between a table tennis serve and return or rally hits, even though a serve could arguably be a more complex maneuver. Studying real-world brain dynamics of table tennis provides insight into bilateral sensorimotor integration.NEW & NOTEWORTHY We found different spectral power fluctuations in the left and right sensorimotor cortices during table tennis serves, returns, and rallies. Our findings contribute to the basic science understanding of hemispheric specialization in a real-world context.
Collapse
Affiliation(s)
- Amanda Studnicki
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States
| | - Rachael D Seidler
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
2
|
Kuo YL, Fisher BE. Relationship between interhemispheric inhibition and bimanual coordination: absence of instrument specificity on motor performance in professional musicians. Exp Brain Res 2020; 238:2921-2930. [PMID: 33057870 DOI: 10.1007/s00221-020-05951-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
Abstract
Functional reorganization in a musician's brain has long been considered strong evidence of experience-dependent neuroplasticity. Highly coordinated bimanual movements require abundant communication between bilateral hemispheres. Interhemispheric inhibition (IHI) is the communication between bilateral primary motor cortices, and there is beginning evidence to suggest that IHI is modified according to instrument type, possibly due to instrument-dependent motor training. However, it is unknown whether IHI adaptations are associated with non-musical bimanual tasks that resemble specific musical instruments. Therefore, we aimed to investigate the relationship between IHI and bimanual coordination in keyboard players compared with string players. Bimanual coordination was measured by a force tracking task, categorized as symmetric and asymmetric conditions. Ipsilateral silent period (iSP) was obtained using transcranial magnetic stimulation to index IHI in both left (L) and right (R) hemispheres. Canonical correlation analysis was performed to identify linear relationships between the IHI and bimanual coordination outcomes. There was no difference in bimanual coordination outcomes between keyboard and string players. Increased iSP from the L to R hemisphere was found in string players compared to keyboard players. There appeared to be different instrument-dependent relationships between IHI and bimanual coordination, regardless of symmetric or asymmetric task. Laboratory motor assessments resembling specific features of musical instruments (symmetric vs. asymmetric hand use) did not distinctly characterize bimanual motor skills between keyboard and string players. The relationships between IHI and bimanual coordination in these two instrument types were independent of task condition. Instrument-dependent neuroplasticity may be evident only within the context of musical instrument playing.
Collapse
Affiliation(s)
- Yi-Ling Kuo
- Department of Physical Therapy Education, SUNY Upstate Medical University, 750 East Adams Street, 3316 Academic Building, Syracuse, NY, 13210, USA. .,Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA.
| | - Beth E Fisher
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Gabitov E, Lungu O, Albouy G, Doyon J. Weaker Inter-hemispheric and Local Functional Connectivity of the Somatomotor Cortex During a Motor Skill Acquisition Is Associated With Better Learning. Front Neurol 2019; 10:1242. [PMID: 31827459 PMCID: PMC6890719 DOI: 10.3389/fneur.2019.01242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
Recently, an increasing interest in investigating interactions between brain regions using functional connectivity (FC) methods has shifted the initial focus of cognitive neuroimaging research from localizing functional circuits based on task activation to mapping brain networks based on intrinsic FC dynamics. Leveraging the advantages of the latter approach, it has been shown that despite primarily invariant intrinsic organization of the large-scale functional networks, interactions between and within these networks significantly differ between various behavioral and cognitive states. These differences presumably indicate transient reconfiguration of functional connections-an instantaneous process that flexibly mediates and calibrates human behavior according to momentary demands of the environment. Nevertheless, the specificity of these reconfigured FC patterns to the task at hand and their relevance to adaptive processes during learning remain elusive. To address this knowledge gap, we investigated (1) to what extent FC within the somatomotor network is reconfigured during motor skill practice, and (2) how these changes are related to learning. We applied a seed-driven FC approach to data collected during a continuous task-free condition, so-called resting state, and during a motor sequence learning task using functional magnetic resonance imaging. During the task, participants repeatedly performed a short five-element sequence with their non-dominant (left) hand. As predicted, such unimanual sequence production was associated with lateralized activation of the right somatomotor cortex (SMC). Using this "active" region as a seed, here we show that unimanual performance of the motor sequence relies on functional segregation between the two SMC and selective integration between the "active" SMC and supplementary motor area. Whereas, greater segregation between the two SMC was associated with gains in performance rate, greater segregation within the "active" SMC itself was associated with more consistent performance by the end of training. Nether the resting-state FC patterns within the somatomotor network nor their relative modulation by the task state predicted these behavioral benefits of learning. Our results suggest that task-induced FC changes reflect reconfiguration of the connectivity patterns within the somatomotor network rather than a simple amplification or silencing of its intrinsic dynamics. Such reconfiguration not only supports motor behavior but may also predict learning.
Collapse
Affiliation(s)
- Ella Gabitov
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Ovidiu Lungu
- Functional Neuroimaging Unit, Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montreal, QC, Canada.,Département de Psychiatrie et d'Addictologie, Université de Montréal, Montreal, QC, Canada
| | - Geneviève Albouy
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Julien Doyon
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| |
Collapse
|
4
|
Wang H, Wang X, Jin J, Zhang W, Li Y, Liu Z, Yin T. Simultaneous stimulation using rTMS and tDCS produces the most effective modulation of motor cortical excitability in healthy subjects: A pilot study. Neurosci Lett 2019; 694:46-50. [PMID: 30342993 DOI: 10.1016/j.neulet.2018.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) can be used to modulate the excitability of the cortex, but instances of the two technologies being used to stimulate two positions of the human brain simultaneously are rare. As an initial investigation into the efficacy, feasibility and safety of such an approach, we compared the effects of simultaneously applying rTMS and cathodal tDCS with that of four other stimulation regimens (cathodal tDCS alone, rTMS alone, rTMS after cathodal tDCS, and sham stimulation) on a single population of subjects consisting of five healthy volunteers. Additionally, we also conducted SimNibs simulations of the electric field patterns that combined rTMS and cathodal tDCS would produce in cerebral cortices of the subjects. Compared with baseline levels, motor evoked potentials (MEPs; used here as a surrogate measure of cortical excitability) were significantly increased with all four 'real' stimulation methods (p < 0.05). Compared with sham measurements, significant increases in MEPs were also observed with rTMS alone (p = 0.0021), rTMS after tDCS (p = 0.0004), simultaneous rTMS and tDCS (p < 0.0001), but not with tDCS alone (p = 0.4182). We also determined that simultaneous rTMS and cathodal tDCS induced a significant increase in MEPs compared with the baseline or sham at all-time points, and resulted in the largest significant increase in MEPs. Our simulations show that applying cathodal tDCS at the standard stimulation position would cause only a 5.8% increase in the strength of the electric field produced by rTMS when the two techniques are used in conjunction. Our findings in this study indicate that combining rTMS with cathodal tDCS is not only safe, but highly-effective as well.
Collapse
Affiliation(s)
- He Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science& Peking Union Medical College, Tianjin, 300192, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science& Peking Union Medical College, Tianjin, 300192, China
| | - Jingna Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science& Peking Union Medical College, Tianjin, 300192, China
| | - Wei Zhang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science& Peking Union Medical College, Tianjin, 300192, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Science& Peking Union Medical College, Tianjin, 300192, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science& Peking Union Medical College, Tianjin, 300192, China.
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science& Peking Union Medical College, Tianjin, 300192, China; Neuroscience Center, Chinese Academy of Medical Science& Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
5
|
Individual differences in processing resources modulate bimanual interference in pointing. PSYCHOLOGICAL RESEARCH 2018; 84:440-453. [PMID: 30019268 PMCID: PMC7040058 DOI: 10.1007/s00426-018-1050-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
Coordinating both hands during bimanual reaching is a complex task that can generate interference during action preparation as often indicated by prolonged reaction times for movements that require moving the two hands at different amplitudes. Individual processing constraints are thought to contribute to this interference effect. Most importantly, however, the amount of interference seems to depend considerably on overall task demands suggesting that interference increases as the available processing resources decrease. Here, we further investigated this idea by comparing performance in a simple direct cueing and a more difficult symbolic cueing task between three groups of participants that supposedly vary in their processing resources, i.e., musicians, young adults and older adults. We found that the size of interference effects during symbolic cueing varied in the tested groups: musicians showed the smallest and older adults the largest interference effects. More importantly, a regression model, using processing speed and processing capacity as predictor variables, revealed a clear link between the available processing resources and the size of the interference effect during symbolic cueing. In the easier direct cueing task, no reliable interference was observed on a group level. We propose that the susceptibility to bimanual interference is modulated by the task-specific processing requirements in relation with the available processing resources of an individual.
Collapse
|
6
|
Babikian S, Kanso E, Kutch JJ. Cortical activity predicts good variation in human motor output. Exp Brain Res 2017; 235:1139-1147. [PMID: 28161821 DOI: 10.1007/s00221-017-4876-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
Human movement patterns have been shown to be particularly variable if many combinations of activity in different muscles all achieve the same task goal (i.e., are goal-equivalent). The nervous system appears to automatically vary its output among goal-equivalent combinations of muscle activity to minimize muscle fatigue or distribute tissue loading, but the neural mechanism of this "good" variation is unknown. Here we use a bimanual finger task, electroencephalography (EEG), and machine learning to determine if cortical signals can predict goal-equivalent variation in finger force output. 18 healthy participants applied left and right index finger forces to repeatedly perform a task that involved matching a total (sum of right and left) finger force. As in previous studies, we observed significantly more variability in goal-equivalent muscle activity across task repetitions compared to variability in muscle activity that would not achieve the goal: participants achieved the task in some repetitions with more right finger force and less left finger force (right > left) and in other repetitions with less right finger force and more left finger force (left > right). We found that EEG signals from the 500 milliseconds (ms) prior to each task repetition could make a significant prediction of which repetitions would have right > left and which would have left > right. We also found that cortical maps of sites contributing to the prediction contain both motor and pre-motor representation in the appropriate hemisphere. Thus, goal-equivalent variation in motor output may be implemented at a cortical level.
Collapse
Affiliation(s)
- Sarine Babikian
- Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Eva Kanso
- Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jason J Kutch
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 E. Alcazar Street, CHP 155, Los Angeles, CA, 90033, USA.
| |
Collapse
|
7
|
Corticospinal and transcallosal modulation of unilateral and bilateral contractions of lower limbs. Eur J Appl Physiol 2016; 116:2197-2214. [DOI: 10.1007/s00421-016-3475-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/11/2016] [Indexed: 10/21/2022]
|
8
|
Gabitov E, Manor D, Karni A. Learning from the other limb's experience: sharing the 'trained' M1 representation of the motor sequence knowledge. J Physiol 2015; 594:169-88. [PMID: 26442464 PMCID: PMC4704505 DOI: 10.1113/jp270184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 10/01/2015] [Indexed: 11/08/2022] Open
Abstract
Key points Participants were scanned during the untrained‐hand performance of a motor sequence, intensively trained a day earlier, and also a similarly constructed but novel, untrained sequence. The superior performance levels for the trained, compared to the untrained sequence, were associated with a greater magnitude of activity within the primary motor cortex (M1), bilaterally, for the trained sequence. The differential responses in the ‘trained’ M1, ipsilateral to the untrained hand, were positively correlated with experience‐related differences in the functional connectivity between the ‘trained’ M1 and (1) its homologue and (2) the dorsal premotor cortex (PMd) within the contralateral hemisphere. No significant correlation was evident between experience‐related differences in M1 – M1 and M1 – PMd connectivity measures. These results suggest that the transfer of sequence‐specific information between the two primary motor cortices is predominantly mediated by excitatory mechanisms driven by the ‘trained’ M1 via two independent neural pathways.
Abstract Following unimanual training on a novel sequence of movements, sequence‐specific performance may improve overnight not only in the trained hand, but also in the hand afforded no actual physical experience. It is not clear, however, how transfer to the untrained hand is achieved. In the present study, we examined whether and how interaction between the two primary motor cortices contributes to the performance of a sequence of movements, extensively trained the day before, by the untrained hand. Acordingly, we studied participants during the untrained‐hand performance of a finger‐to‐thumb opposition sequence (FOS), intensively trained a day earlier (T‐FOS), and a similarly constructed, but novel, untrained FOS (U‐FOS). Changes in neural signals driven by task performance were assessed using functional magnetic resonance imaging. To minimize potential differences as a result of the rate of sequence execution per se, participants performed both sequences at an identical paced rate. The analyses showed that the superior fluency in executing the T‐FOS compared to the U‐FOS was associated with higher activity within the primary motor cortex (M1), bilaterally, for the T‐FOS. The differential responses in the ‘trained’ M1 were positively correlated with experience‐related differences in the functional connectivity between the ‘trained’ M1 and (1) its left homologue and (2) the left dorsal premotor cortex. However, no significant correlation was evident between the changes in connectivity in these two routes. These results suggest that the transfer of sequence‐specific information between the two primary motor cortices is predominantly mediated by excitatory mechanisms driven by the ‘trained’ M1 via at least two independent neural pathways. Participants were scanned during the untrained‐hand performance of a motor sequence, intensively trained a day earlier, and also a similarly constructed but novel, untrained sequence. The superior performance levels for the trained, compared to the untrained sequence, were associated with a greater magnitude of activity within the primary motor cortex (M1), bilaterally, for the trained sequence. The differential responses in the ‘trained’ M1, ipsilateral to the untrained hand, were positively correlated with experience‐related differences in the functional connectivity between the ‘trained’ M1 and (1) its homologue and (2) the dorsal premotor cortex (PMd) within the contralateral hemisphere. No significant correlation was evident between experience‐related differences in M1 – M1 and M1 – PMd connectivity measures. These results suggest that the transfer of sequence‐specific information between the two primary motor cortices is predominantly mediated by excitatory mechanisms driven by the ‘trained’ M1 via two independent neural pathways.
Collapse
Affiliation(s)
- Ella Gabitov
- The EJ Safra Brain Research Centre for Learning Disabilities, University of Haifa, Haifa, Israel.,The Laboratory of Human Brain and Learning, The Sagol Department of Neurobiology and the Department of Human Biology, University of Haifa, Haifa, Israel
| | - David Manor
- The Laboratory of Human Brain and Learning, The Sagol Department of Neurobiology and the Department of Human Biology, University of Haifa, Haifa, Israel.,FMRI Unit, Department of Medical Imaging, C. Sheba Medical Centre, Ramat Gan, Israel
| | - Avi Karni
- The EJ Safra Brain Research Centre for Learning Disabilities, University of Haifa, Haifa, Israel.,The Laboratory of Human Brain and Learning, The Sagol Department of Neurobiology and the Department of Human Biology, University of Haifa, Haifa, Israel.,FMRI Unit, Department of Medical Imaging, C. Sheba Medical Centre, Ramat Gan, Israel
| |
Collapse
|
9
|
Vollmann H, Ragert P, Conde V, Villringer A, Classen J, Witte OW, Steele CJ. Instrument specific use-dependent plasticity shapes the anatomical properties of the corpus callosum: a comparison between musicians and non-musicians. Front Behav Neurosci 2014; 8:245. [PMID: 25076879 PMCID: PMC4100438 DOI: 10.3389/fnbeh.2014.00245] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/26/2014] [Indexed: 11/17/2022] Open
Abstract
Long-term musical expertise has been shown to be associated with a number of functional and structural brain changes, making it an attractive model for investigating use-dependent plasticity in humans. Physiological interhemispheric inhibition (IHI) as examined by transcranial magnetic stimulation has been shown to be correlated with anatomical properties of the corpus callosum as indexed by fractional anisotropy (FA). However, whether or not IHI or the relationship between IHI and FA in the corpus callosum can be modified by different musical training regimes remains largely unknown. We investigated this question in musicians with different requirements for bimanual finger movements (piano and string players) and non-expert controls. IHI values were generally higher in musicians, but differed significantly from non-musicians only in string players. IHI was correlated with FA in the posterior midbody of the corpus callosum across all participants. Interestingly, subsequent analyses revealed that this relationship may indeed be modulated by different musical training regimes. Crucially, while string players had greater IHI than non-musicians and showed a positive structure-function relationship, the amount of IHI in pianists was comparable to that of non-musicians and there was no significant structure-function relationship. Our findings indicate instrument specific use-dependent plasticity in both functional (IHI) and structural (FA) connectivity of motor related brain regions in musicians.
Collapse
Affiliation(s)
- Henning Vollmann
- Department of Neurology and Clinic for Cognitive Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, University Hospital Leipzig Leipzig, Germany ; Department of Neurology, University of Leipzig Leipzig, Germany
| | - Patrick Ragert
- Department of Neurology and Clinic for Cognitive Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, University Hospital Leipzig Leipzig, Germany
| | - Virginia Conde
- Department of Neurology and Clinic for Cognitive Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, University Hospital Leipzig Leipzig, Germany ; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre Copenhagen, Denmark
| | - Arno Villringer
- Department of Neurology and Clinic for Cognitive Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, University Hospital Leipzig Leipzig, Germany ; Berlin School of Mind and Brain, Humboldt University Berlin, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig Leipzig, Germany
| | - Otto W Witte
- Department of Neurology, Friedrich Schiller University Jena Jena, Germany
| | - Christopher J Steele
- Department of Neurology and Clinic for Cognitive Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, University Hospital Leipzig Leipzig, Germany
| |
Collapse
|
10
|
Davidson T, Tremblay F. Age and hemispheric differences in transcallosal inhibition between motor cortices: an ispsilateral silent period study. BMC Neurosci 2013; 14:62. [PMID: 23800346 PMCID: PMC3695846 DOI: 10.1186/1471-2202-14-62] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 06/20/2013] [Indexed: 11/10/2022] Open
Abstract
Background In this study, we investigated age and hemispheric differences in transcallosal inhibition (TCI) in the context of active contraction using the ipsilateral silent period (iSP). We also examined whether age-related changes in TCI would be related to corresponding changes in manual performance with age. Participants consisted of right-handed individuals from two age groups (young adults, n=13; seniors, n=17). The iSP was measured for each hemisphere using suprathreshold TMS pulses delivered over the primary motor cortex ipsilateral to the maximally contracting hand while the homologue muscles of the opposite hand were lightly contracting (~15% of the maximum). Manual performance was assessed bilaterally for both grip strength and fine dexterity. Results Our results yielded two main findings. First, TCI measures derived from iSP were strongly influenced by age, whereas differences between hemispheres were only minor. Second, correlation analyses revealed that age-related variations in TCI measures were related to changes in manual performance, so that left-to-right TCI correlated with right hand performance and vice-versa for the opposite hand/hemisphere. Conclusion Overall, these results concur with other recent reports indicating that mutual inhibition between motor cortices tends to decline with age. In this respect, our observations are in line with the notion that the balance of normally predominantly inhibitory interactions between motor cortices is shifted toward excitatory processes with age.
Collapse
Affiliation(s)
- Travis Davidson
- School of Human Kinetics, University of Ottawa, Montpetit Hall, 125 University Private, Ottawa, ON K1N 6N5, Canada
| | | |
Collapse
|
11
|
Abstract
This brief review addresses two major aspects of the neural control of multi-element systems. First, the principle of abundance suggests that the central nervous system unites elements into synergies (co-variation of elemental variables across trials quantified within the framework of the uncontrolled manifold hypothesis) that stabilize important performance variables. Second, a novel method, analytical inverse optimization, has been introduced to compute cost functions that define averaged across trials involvement of individual elements over a range of values of task-specific performance variables. The two aspects reflect two features of motor coordination: (1) using variable solutions that allow performing secondary tasks and stabilizing performance variables; and (2) selecting combinations of elemental variables that follow an optimization principle. We suggest that the conflict between the two approaches (a single solution vs. families of solutions) is apparent, not real. Natural motor variability may be due to using the same cost function across slightly different initial states; on the other hand, there may be variability in the cost function itself leading to variable solutions that are all optimal with respect to slightly different cost functions. The analysis of motor synergies has revealed specific changes associated with atypical development, healthy aging, neurological disorders, and practice. These have allowed formulating hypotheses on the neurophysiological mechanisms involved in the synergic control of actions.
Collapse
|
12
|
Bologna M, Caronni A, Berardelli A, Rothwell JC. Practice-related reduction of electromyographic mirroring activity depends on basal levels of interhemispheric inhibition. Eur J Neurosci 2012; 36:3749-57. [DOI: 10.1111/ejn.12009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/06/2012] [Accepted: 08/30/2012] [Indexed: 12/01/2022]
Affiliation(s)
| | | | | | - John C. Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders; UCL Institute of Neurology; London; UK
| |
Collapse
|
13
|
Fling BW, Seidler RD. Fundamental differences in callosal structure, neurophysiologic function, and bimanual control in young and older adults. Cereb Cortex 2011; 22:2643-52. [PMID: 22166764 DOI: 10.1093/cercor/bhr349] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bimanual actions involve coordinated motion but often rely on the movements performed with each hand to be different. Older adults exhibit differentially greater variability for bimanual actions in which each hand has an independent movement goal. Such actions rely on interhemispheric communication via the corpus callosum, including both facilitatory and inhibitory interactions. Here, we investigated whether age differences in callosal structure and interhemispheric function contribute to this selective movement difficulty. Participants performed 3 force production tasks: 1) unimanual, 2) bimanual simultaneous, and 3) bimanual independent. Older adults had significantly greater interhemispheric facilitation during voluntary muscle activation. We also report a fundamental shift with age in the relationship between callosal tract microstructural integrity and interhemispheric inhibition (IHI). Specifically, older adults with relatively greater callosal tract microstructural integrity have less IHI. Furthermore, greater IHI was related to poorer bimanual performance (assessed by dominant hand force variability) in older adults on all tasks, whereas this relationship was only observed in young adults for the bimanual independent condition. These findings indicate changes in interhemispheric communication with advancing age such that older adults may rely on bilateral cortical cooperation to a greater extent than young adults for manual actions.
Collapse
Affiliation(s)
- B W Fling
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48109-2214, USA.
| | | |
Collapse
|
14
|
Fling BW, Seidler RD. Task-dependent effects of interhemispheric inhibition on motor control. Behav Brain Res 2011; 226:211-7. [PMID: 21944939 DOI: 10.1016/j.bbr.2011.09.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/08/2011] [Accepted: 09/10/2011] [Indexed: 11/17/2022]
Abstract
Interhemispheric communication consists of a complex balance of facilitation and inhibition that is modulated in a task-dependent manner. However, it remains unclear how individual differences in interhemispheric interactions relate to motor performance. To assess interhemispheric inhibition, we utilized the ipsilateral silent period technique (iSP; evoked by suprathreshold transcranial magnetic stimulation), which elicits inhibition of volitional motor activity. Participants performed three force production tasks: (1) unimanual (right hand) constant force, (2) bimanual constant force, (bimanual simultaneous) and (3) bimanual with right hand constant force and left hand sine wave tracking (bimanual independent). We found that individuals with greater IHI capacity demonstrated reduced mirror EMG activity in the left hand during unimanual right hand contraction. However, these same individuals demonstrated the poorest performance during the bimanual independent force production task. We suggest that a high capacity for IHI from one motor cortex to another can effectively prevent "motor overflow" during unimanual tasks, but it can also limit interhemispheric cooperation during independently controlled bimanual tasks.
Collapse
Affiliation(s)
- Brett W Fling
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
15
|
Fling BW, Peltier SJ, Bo J, Welsh RC, Seidler RD. Age differences in interhemispheric interactions: callosal structure, physiological function, and behavior. Front Neurosci 2011; 5:38. [PMID: 21519384 PMCID: PMC3077973 DOI: 10.3389/fnins.2011.00038] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 03/10/2011] [Indexed: 12/13/2022] Open
Abstract
There is a fundamental gap in understanding how brain structural and functional network connectivity are interrelated, how they change with age, and how such changes contribute to older adults’ sensorimotor deficits. Recent neuroimaging approaches including resting state functional connectivity MRI (fcMRI) and diffusion tensor imaging (DTI) have been used to assess brain functional (fcMRI) and structural (DTI) network connectivity, allowing for more integrative assessments of distributed neural systems than in the past. Declines in corpus callosum size and microstructure with advancing age have been well documented, but their contributions to age deficits in unimanual and bimanual function are not well defined. Our recent work implicates age-related declines in callosal size and integrity as a key contributor to unimanual and bimanual control deficits. Moreover, our data provide evidence for a fundamental shift in the balance of excitatory and inhibitory interhemispheric processes that occurs with age, resulting in age differences in the relationship between functional and structural network connectivity. Training studies suggest that the balance of interhemispheric interactions can be shifted with experience, making this a viable target for future interventions.
Collapse
Affiliation(s)
- Brett W Fling
- School of Kinesiology, University of Michigan Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
16
|
Fling BW, Walsh CM, Bangert AS, Reuter-Lorenz PA, Welsh RC, Seidler RD. Differential callosal contributions to bimanual control in young and older adults. J Cogn Neurosci 2010; 23:2171-85. [PMID: 20954936 DOI: 10.1162/jocn.2010.21600] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Our recent work has shown that older adults are disproportionately impaired at bimanual tasks when the two hands are moving out of phase with each other [Bangert, A. S., Reuter-Lorenz, P. A., Walsh, C. M., Schachter, A. B., & Seidler, R. D. Bimanual coordination and aging: Neurobehavioral implications. Neuropsychologia, 48, 1165-1170, 2010]. Interhemispheric interactions play a key role during such bimanual movements to prevent interference from the opposite hemisphere. Declines in corpus callosum (CC) size and microstructure with advancing age have been well documented, but their contributions to age deficits in bimanual function have not been identified. In the current study, we used structural magnetic resonance and diffusion tensor imaging to investigate age-related changes in the relationships between callosal macrostructure, microstructure, and motor performance on tapping tasks requiring differing degrees of interhemispheric interaction. We found that older adults demonstrated disproportionately poorer performance on out-of-phase bimanual control, replicating our previous results. In addition, older adults had smaller anterior CC size and poorer white matter integrity in the callosal midbody than their younger counterparts. Surprisingly, larger CC size and better integrity of callosal microstructure in regions connecting sensorimotor cortices were associated with poorer motor performance on tasks requiring high levels of interhemispheric interaction in young adults. Conversely, in older adults, better performance on these tasks was associated with larger size and better CC microstructure integrity within the same callosal regions. These findings implicate age-related declines in callosal size and integrity as a key contributor to bimanual control deficits. Further, the differential age-related involvement of transcallosal pathways reported here raises new questions about the role of the CC in bimanual control.
Collapse
Affiliation(s)
- Brett W Fling
- University of Michigan, 401 Washtenaw Ave., Ann Arbor, MI 48109-2214, USA
| | | | | | | | | | | |
Collapse
|
17
|
Camus M, Ragert P, Vandermeeren Y, Cohen LG. Mechanisms controlling motor output to a transfer hand after learning a sequential pinch force skill with the opposite hand. Clin Neurophysiol 2009; 120:1859-65. [PMID: 19766535 DOI: 10.1016/j.clinph.2009.08.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 08/13/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Training to perform a serial reaction-time task (procedural motor learning) with one hand results in performance improvements in the untrained as well as in the trained hand, a phenomenon referred to as intermanual transfer. The aim of this study was to investigate the neurophysiological changes associated with intermanual transfer associated with learning to perform an eminently different task involving fine force control within the primary motor cortex (M1). We hypothesized that intermanual transfer of learning such a task would reveal intracortical changes within M1. METHODS Speed (time to complete each sequence) and accuracy (% of accuracy errors) of motor performance were measured in both hands before and after right (dominant) hand practice. Transcranial magnetic stimulation (TMS) was used to characterize recruitment curves (RC), short intracortical inhibition (SICI), intracortical facilitation (ICF) and interhemispheric inhibition (IHI) from the left to the right M1. RESULTS Practice resulted in significant improvements in both speed and accuracy in the right trained hand and in the left untrained hand. RC increased in the left M1, SICI decreased in both M1s, and IHI from the left to the right M1 decreased. No changes were identified in ICF nor in RC in the right M1. CONCLUSIONS Our results suggest that some neurophysiological mechanisms operating in the M1 controlling performance of an untrained hand may contribute to optimize the procedure for selecting and implementing correct pinch force levels. SIGNIFICANCE These results raise the hypothesis of a contribution of modulation of SICI and IHI, or an interaction between both to intermanual transfer after learning a sequential pinch force task.
Collapse
Affiliation(s)
- Mickael Camus
- Human Cortical Physiology and Stroke Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20817, USA
| | | | | | | |
Collapse
|
18
|
Kim CK, Lee DY, Kim YS, Huang J, Park J, Shim JK. Finger force enslaving and surplus in spinal cord injury patients. Exp Brain Res 2009; 195:627-33. [PMID: 19452144 DOI: 10.1007/s00221-009-1837-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/28/2009] [Indexed: 11/24/2022]
Abstract
This study investigated the phenomena of finger enslaving, involuntary finger actions by non-intended fingers, and force deficit, smaller maximum force by all four fingers than the sum of individual finger maximum forces in individuals with cervical spinal cord injuries (SCI). A total of 16 subjects participated in this study: 8 with a cervical spinal cord injury and 8 controls. Each of the injured subjects had one paralyzed finger. The results showed that the efforts to produce force using any individual finger induced force production in all other fingers, suggesting finger force enslaving. The maximum force during the four-finger task was greater than the sum of the individual finger forces during single-finger tasks in the SCI group, which was reflected by positive force deficit, "force surplus". One may utilize these findings for rehabilitation of paralyzed fingers caused by cervical spinal injuries.
Collapse
Affiliation(s)
- Chang Kook Kim
- Department of Sport and Leisure Studies, Korea University, Jochiwon, Korea
| | | | | | | | | | | |
Collapse
|
19
|
Latash ML. Learning motor synergies by persons with Down syndrome. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2007; 51:962-971. [PMID: 17991003 DOI: 10.1111/j.1365-2788.2007.01008.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Persons with Down syndrome are frequently described as 'clumsy'. The recent progress in the development of quantitative approaches to motor synergies has allowed researchers to move towards an understanding of 'clumsiness' at the level of underlying control mechanisms. This progress has also offered an opportunity to quantify changes in motor synergies that accompany improvement in the performance of motor tasks. Previous studies of our group have shown, in particular, that persons both with and without Down syndrome are able to show improvements in indices of their multi-finger synergies in tasks that require accurate production of finger forces. In particular, 3 days of practice has been shown to lead to significant improvements in indices of multi-finger synergies that stabilize the time patterns of the total force produced by the fingers of a hand. Persons with Down syndrome showed a qualitative change in their synergies that failed to stabilize the total force altogether prior to practice and became able to do so after practice. In addition, the studies have also shown that variable practice is more beneficial for the improvement of motor synergies than blocked practice. I would like to draw an optimistic conclusion that persons with Down syndrome are not inherently 'clumsy', but have a vast potential for an improvement of their motor performance. The current state of the area of motor control allows researchers and practitioners to tap into these reserves, and to use quantitative indices of changes in motor synergies with practice to optimize motor performance of these individuals.
Collapse
Affiliation(s)
- M L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
20
|
Reis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M, Perez MA, Ragert P, Rothwell JC, Cohen LG. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol 2007; 586:325-51. [PMID: 17974592 DOI: 10.1113/jphysiol.2007.144824] [Citation(s) in RCA: 447] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) was initially used to evaluate the integrity of the corticospinal tract in humans non-invasively. Since these early studies, the development of paired-pulse and repetitive TMS protocols allowed investigators to explore inhibitory and excitatory interactions of various motor and non-motor cortical regions within and across cerebral hemispheres. These applications have provided insight into the intracortical physiological processes underlying the functional role of different brain regions in various cognitive processes, motor control in health and disease and neuroplastic changes during recovery of function after brain lesions. Used in combination with neuroimaging tools, TMS provides valuable information on functional connectivity between different brain regions, and on the relationship between physiological processes and the anatomical configuration of specific brain areas and connected pathways. More recently, there has been increasing interest in the extent to which these physiological processes are modulated depending on the behavioural setting. The purpose of this paper is (a) to present an up-to-date review of the available electrophysiological data and the impact on our understanding of human motor behaviour and (b) to discuss some of the gaps in our present knowledge as well as future directions of research in a format accessible to new students and/or investigators. Finally, areas of uncertainty and limitations in the interpretation of TMS studies are discussed in some detail.
Collapse
Affiliation(s)
- Janine Reis
- Human Cortical Physiology Section, National Institute of Health, National Institute of Neurological Disorders and Stroke, 10 Center Drive, Bldg 10, Rm 5 N226, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Perez MA, Wise SP, Willingham DT, Cohen LG. Neurophysiological mechanisms involved in transfer of procedural knowledge. J Neurosci 2007; 27:1045-53. [PMID: 17267558 PMCID: PMC6673204 DOI: 10.1523/jneurosci.4128-06.2007] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Learning to perform a motor task with one hand results in performance improvements in the other hand, a process called intermanual transfer. To gain information on its neural mechanisms, we studied this phenomenon using the serial reaction-time task (SRTT). Sixteen, right-handed volunteers trained a 12-item sequence of key presses repeated without the subjects' knowledge. Blocks with no repeating sequence, called random blocks, were interspersed with sequence-training blocks. Response times improved in random and training blocks in both hands. The former result reflects nonspecific improvement in performance, and the latter represents a sequence-specific improvement. To evaluate changes in the primary motor cortex (M1), we tested resting motor thresholds (RMT), recruitments curves to transcranial magnetic stimulation (RC), short intracortical inhibition (SICI), and interhemispheric inhibition (IHI) from the dominant left (learning) to the nondominant right (transfer) hemisphere, before and after SRTT training. Training resulted in (1) increased RC and decreased SICI but no changes in RMT in the learning hemisphere, (2) decreased SICI and no changes in RC or RMT in the transfer hemisphere, and (3) decreased IHI. The amount in IHI after training correlated with nonspecific performance improvements in the transfer hand but not with sequence-specific performance improvements. Our results indicate that modulation of interhemispheric inhibition between the M1 areas may, as a result of the learning that has occurred in one hemisphere after practice with one hand, contribute to faster, more skilled performance of the opposite hand.
Collapse
Affiliation(s)
- Monica A. Perez
- Human Cortical Physiology Section, National Institute of Neurological Disorders and Stroke and
| | - Steven P. Wise
- Laboratory of Systems Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Daniel T. Willingham
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904
| | - Leonardo G. Cohen
- Human Cortical Physiology Section, National Institute of Neurological Disorders and Stroke and
| |
Collapse
|