1
|
Smethells JR, Burroughs D, Saykao A, LeSage MG. The relative reinforcing efficacy of nicotine in an adolescent rat model of attention-deficit hyperactivity disorder. Front Psychiatry 2023; 14:1154773. [PMID: 37255676 PMCID: PMC10225533 DOI: 10.3389/fpsyt.2023.1154773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction Attention-deficit/hyperactivity disorder (ADHD) is an independent risk factor for tobacco use disorder. Individuals with ADHD are more likely to begin smoking at a younger age, become a daily smoker sooner, smoke more cigarettes per day, and exhibit greater nicotine dependence than individuals without ADHD. It is unclear whether these findings are due to the reinforcing efficacy of nicotine per se being greater among individuals with ADHD. The purpose of the present study was to examine this issue using an animal model of ADHD, the spontaneously hypertensive rat (SHR) strain. Methods Adolescent SHR and Wistar (control) rats were given access to a typically reinforcing nicotine unit dose (30 μg/kg), a threshold reinforcing nicotine dose (4 μg/kg), or saline under an FR 1 (week 1) and FR 2 (week 2) schedule during 23 h sessions to examine acquisition of self-administration. Behavioral economic demand elasticity was then evaluated at the 30 μg/kg dose through an FR escalation procedure. Results At the 30 μg/kg dose, SHR rats exhibited a lower average response rate, lower mean active to inactive lever discrimination ratio, and lower proportion of rats acquiring self-administration compared to control rats. During demand assessment, SHR rats showed no significant difference from Wistars in demand intensity (Q0) or elasticity (α; i.e., reinforcing efficacy). In addition, no strain difference in acquisition measures were observed at the 4 μg/kg dose. Discussion These findings suggest that the increased risk of tobacco use disorder in adolescents with ADHD may not be attributable to a greater reinforcing efficacy of nicotine, and that other aspects of tobacco smoking (e.g., non-nicotine constituents, sensory factors) may play a more important role. A policy implication of these findings is that a nicotine standard to reduce initiation of tobacco use among adolescents in the general population may also be effective among those with ADHD.
Collapse
Affiliation(s)
- John R. Smethells
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | | | - Amy Saykao
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
| | - Mark G. LeSage
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
2
|
Poirier GL, Huang W, Tam K, DiFranza JR, King JA. Evidence of Altered Brain Responses to Nicotine in an Animal Model of Attention Deficit/Hyperactivity Disorder. Nicotine Tob Res 2017; 19:1016-1023. [PMID: 28444321 DOI: 10.1093/ntr/ntx088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 04/18/2017] [Indexed: 11/14/2022]
Abstract
Introduction Individuals with attention deficit/hyperactivity disorder (ADHD) are susceptible to earlier and more severe nicotine addiction. To shed light on the relationship between nicotine and ADHD, we examined nicotine's effects on functional brain networks in an animal model of ADHD. Methods Awake magnetic resonance imaging was used to compare functional connectivity in adolescent (post-natal day 44 ± 2) males of the spontaneously hypertensive rat (SHR) strain and two control strains, Wistar-Kyoto and Sprague-Dawley (n = 16 each). We analyzed functional connectivity immediately before and after nicotine exposure (0.4 mg/kg base) in naïve animals, using a region-of-interest approach focussing on 16 regions previously implicated in reward and addiction. Results Relative to the control groups, the SHR strain demonstrated increased functional connectivity between the ventral tegmental area (VTA) and retrosplenial cortex in response to nicotine, suggesting an aberrant response to nicotine. In contrast, increased VTA-substantia nigra connectivity in response to a saline injection in the SHR was absent following a nicotine injection, suggesting that nicotine normalized function in this circuit. Conclusions In the SHR, nicotine triggered an atypical response in one VTA circuit while normalizing activity in another. The VTA has been widely implicated in drug reward. Our data suggest that increased susceptibility to nicotine addiction in individuals with ADHD may involve altered responses to nicotine involving VTA circuits. Implications Nicotine addiction is more common among individuals with ADHD. We found that two circuits involving the VTA responded differently to nicotine in animals that model ADHD in comparison to two control strains. In one circuit, nicotine normalized activity that was abnormal in the ADHD animals, while in the other circuit nicotine caused an atypical brain response in the ADHD animals. The VTA has been implicated in drug reward. Our results would be consistent with an interpretation that nicotine may normalize abnormal brain activity in ADHD, and that nicotine may be more rewarding for individuals with ADHD.
Collapse
Affiliation(s)
- Guillaume L Poirier
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School,Worcester, MA
| | - Wei Huang
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School,Worcester, MA
| | - Kelly Tam
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School,Worcester, MA
| | - Joseph R DiFranza
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA.,Department of Family Medicine and Community Health, University of Massachusetts Medical School, Worcester, MA
| | - Jean A King
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA.,Department of Radiology, University of Massachusetts Medical School, Worcester, MA.,Department of Neurology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
3
|
Paulo JA, Gygi SP. Nicotine-induced protein expression profiling reveals mutually altered proteins across four human cell lines. Proteomics 2016; 17. [PMID: 27862958 DOI: 10.1002/pmic.201600319] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/11/2016] [Accepted: 11/10/2016] [Indexed: 11/10/2022]
Abstract
Mass spectrometry-based proteomic strategies can profile the expression level of proteins in response to external stimuli. Nicotine affects diverse cellular pathways, however, the nicotine-induced alterations on the global proteome across human cell lines have not been fully elucidated. We measured perturbations in protein levels resulting from nicotine treatment in four cell lines-HEK, HeLa, PaSC, and SH-SY5Y-in a single experiment using tandem mass tags (TMT10-plex) and high-resolution mass spectrometry. We quantified 8590 proteins across all cell lines. Of these, nicotine increased the abundance of 31 proteins 1.5-fold or greater in all cell lines. Likewise, considering proteins with altered levels in at least three of the four cell lines, 64 were up-regulated, while one was down-regulated. Gene ontology analysis revealed that ∼40% of these proteins were membrane bound, and functioned in transmembrane signaling and receptor activity. We highlighted proteins, including APP, APLP2, LAPTM4B, and NCOA4, which were dysregulated by nicotine in all cell lines investigated and may have implications in downstream signaling pathways, particularly autophagy. Using the outlined methodology, studies in additional (including primary) cell lines will provide further evidence that alterations in the levels of these proteins are indeed a general response to nicotine and thereby merit further investigation.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Watterson E, Spitzer A, Watterson LR, Brackney RJ, Zavala AR, Olive MF, Sanabria F. Nicotine-induced behavioral sensitization in an adult rat model of attention deficit/hyperactivity disorder (ADHD). Behav Brain Res 2016; 312:333-40. [PMID: 27363925 DOI: 10.1016/j.bbr.2016.06.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 12/23/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is associated with increased risk of tobacco dependence. Nicotine, the main psychoactive component of tobacco, appears to be implicated in ADHD-related tobacco dependence. However, the behavioral responsiveness to nicotine of the prevalent animal model of ADHD, the spontaneously hypertensive rat (SHR), is currently underinvestigated. The present study examined the activational effects of acute and chronic nicotine on the behavior of adult male SHRs, relative to Wistar Kyoto (WKY) controls. Experiment 1 verified baseline strain differences in open-field locomotor activity. Experiment 2 tested for baseline strain differences in rotational behavior using a Rotorat apparatus. Adult SHR and WKY rats were then exposed to a 7-day regimen of 0.6mg/kg/d s.c. nicotine, or saline, prior to each assessment. A separate group of SHRs underwent similar training, but was pre-treated with mecamylamine, a cholinergic antagonist. Nicotine sensitization, context conditioning, and mecamylamine effects were then tested. Baseline strain differences were observed in open-field performance and in the number of full rotations in the Rotorat apparatus, but not in the number of 90° rotations or direction changes. In these latter measures, SHRs displayed weaker nicotine-induced rotational suppression than WKYs. Both strains expressed nicotine-induced sensitization of rotational activity, but evidence for strain differences in sensitization was ambiguous; context conditioning was not observed. Mecamylamine reversed the effects of nicotine on SHR performance. These findings are consistent with the hypothesis that a reduced aversion to nicotine (expressed in rats as robust locomotion) may facilitate smoking among adults with ADHD.
Collapse
Affiliation(s)
- Elizabeth Watterson
- Arizona State University, Department of Psychology, P.O. Box 871104, Tempe, AZ 85287, United States
| | - Alexander Spitzer
- Arizona State University, Department of Psychology, P.O. Box 871104, Tempe, AZ 85287, United States
| | - Lucas R Watterson
- Arizona State University, Department of Psychology, P.O. Box 871104, Tempe, AZ 85287, United States; Center for Substance Abuse Research Temple University School of Medicine, 3500N. Broad St., Medical Education and Research Bldg., 8th Floor, Philadelphia, PA 19140, United States
| | - Ryan J Brackney
- Arizona State University, Department of Psychology, P.O. Box 871104, Tempe, AZ 85287, United States
| | - Arturo R Zavala
- California State University, Long Beach, CA 90840, United States
| | - M Foster Olive
- Arizona State University, Department of Psychology, P.O. Box 871104, Tempe, AZ 85287, United States
| | - Federico Sanabria
- Arizona State University, Department of Psychology, P.O. Box 871104, Tempe, AZ 85287, United States.
| |
Collapse
|
5
|
Sterley TL, Howells FM, Russell VA. Nicotine-stimulated release of [3H]norepinephrine is reduced in the hippocampus of an animal model of attention-deficit/hyperactivity disorder, the spontaneously hypertensive rat. Brain Res 2014; 1572:1-10. [DOI: 10.1016/j.brainres.2014.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/04/2014] [Indexed: 11/30/2022]
|
6
|
Lewis AS, Picciotto MR. High-affinity nicotinic acetylcholine receptor expression and trafficking abnormalities in psychiatric illness. Psychopharmacology (Berl) 2013; 229:477-85. [PMID: 23624811 PMCID: PMC3766461 DOI: 10.1007/s00213-013-3126-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/15/2013] [Indexed: 12/22/2022]
Abstract
RATIONALE Nicotinic acetylcholine receptors (nAChRs) are a critical component of the cholinergic system of neurotransmission in the brain that modulates important physiological processes such as reward, cognition, and mood. Abnormalities in this system are accordingly implicated in multiple psychiatric illnesses, including addiction, schizophrenia, and mood disorders. There is significantly increased tobacco use, and therefore nicotine intake, in patient populations, and pharmacological agents that act on various nicotinic receptor subtypes ameliorate clinical features of these disorders. Better understanding of the molecular mechanisms underlying cholinergic dysfunction in psychiatric disease will permit more targeted design of novel therapeutic agents. RESULTS The objective of this review is to describe the multiple cellular pathways through which chronic nicotine exposure regulates nAChR expression, and to juxtapose these mechanisms with evidence for altered expression of high-affinity nAChRs in human psychiatric illness. Here, we summarize multiple studies from pre-clinical animal models to human in vivo imaging and post-mortem experiments demonstrating changes in nAChR regulation and expression in psychiatric illness. CONCLUSIONS We conclude that a mechanistic explanation of nAChR abnormalities in psychiatric illness will arise from a fuller understanding of normal nAChR trafficking, along with the detailed study of human tissue, perhaps using novel biotechnological advances, such as induced pluripotent stem cells.
Collapse
Affiliation(s)
| | - Marina R. Picciotto
- Correspondence Dr. Marina R. Picciotto, Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA, , Phone: (203) 737-2041
| |
Collapse
|
7
|
Mallipeddi PL, Pedersen SE, Briggs JM. Interactions of acetylcholine binding site residues contributing to nicotinic acetylcholine receptor gating: role of residues Y93, Y190, K145 and D200. J Mol Graph Model 2013; 44:145-54. [PMID: 23831994 DOI: 10.1016/j.jmgm.2013.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
Abstract
The nicotinic acetylcholine receptor exhibits multiple conformational states, resting (channel closed), active (channel open) and desensitized (channel closed). The resting state may be distinguished from the active and desensitized states by the orientation of loop C in the extracellular ligand binding domain (LBD). Homology modeling was used to generate structures of the Torpedo californica α2βδγ nAChR that initially represent the resting state (loop C open) and the desensitized state (loop C closed). Molecular dynamics (MD) simulations were performed on the extracellular LBD on each nAChR conformational state, with and without the agonist anabaseine present in each binding site (the αγ and the αδ sites). Three MD simulations of 10ns each were performed for each of the four conditions. Comparison of dynamics revealed that in the presence of agonist, loop C was drawn inward and attains a more stable conformation. Examination of side-chain interactions revealed that residue αY190 exhibited hydrogen-bonding interactions either with residue αY93 in the ligand binding site or with residue αK145 proximal to the binding site. αK145 also exhibited side chain (salt bridge) interactions with αD200 and main chain interactions with αY93. Residues αW149, αY198, γY116/δT119, γL118/δL121 and γL108/δL111 appear to play the role of stabilizing ligand in the binding site. In MD simulations for the desensitized state, the effect of ligand upon the interactions among αK145, αY190, and αY93 as well as ligand-hydrogen-bonding to αW149 were more pronounced at the αγ interface than at the αδ interface. Differences in affinity for the desensitized state were determined experimentally to be 10-fold. The changes in side chain interactions observed for the two conformations and induced by ligand support a model wherein hydrogen bond interactions between αD200 and αY93 are broken and rearrange to form a salt-bridge between αK145 and αD200 and hydrogen bond interactions between αY93 and αY190 and between αK145 and αY190.
Collapse
Affiliation(s)
- Prema L Mallipeddi
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | | | | |
Collapse
|
8
|
Wigestrand MB, Mineur YS, Heath CJ, Fonnum F, Picciotto MR, Walaas SI. Decreased α4β2 nicotinic receptor number in the absence of mRNA changes suggests post-transcriptional regulation in the spontaneously hypertensive rat model of ADHD. J Neurochem 2011; 119:240-50. [PMID: 21824140 DOI: 10.1111/j.1471-4159.2011.07415.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spontaneously hypertensive rat (SHR) is widely used as a model of attention-deficit/hyperactivity disorder (ADHD). Deficits in central nicotinic receptors (nAChRs) have been previously observed in SHRs, which is interesting since epidemiological studies have identified an association between smoking and ADHD symptoms in humans. Here, we examine whether nAChR deficits in SHRs compared with Wistar Kyoto rat (WKY) controls are nAChR subtype-specific and whether these deficits correlate with changes at the level of mRNA transcription in specific brain regions. Levels of binding sites (B(max) ) and dissociation constants (K(d)) for nAChRs were determined from saturation curves of high-affinity [³H]epibatidine- and [³H] Methyllycaconitine (MLA) binding to membranes from cortex, striatum, hippocampus and cerebellum. In additional brain regions, nAChRs were examined by autoradiography with [¹²⁵I]A-85380 and [¹²⁵I]α-bungarotoxin. Levels of mRNA encoding nAChR subunits were measured using quantitative real-time PCR (qPCR). We showed that the number of α4β2 nAChR binding sites is lower globally in the SHR brain compared with WKY in the absence of significant differences in mRNA levels, with the exception of lower α4 mRNA in cerebellum of SHR compared with WKY. Furthermore, nAChR deficits were subtype- specific because no strain difference was found in α7 nAChR binding or α7 mRNA levels. Our results suggest that the lower α4β2 nAChR number in SHR compared with WKY may be a consequence of dysfunctional post-transcriptional regulation of nAChRs.
Collapse
Affiliation(s)
- Mattis B Wigestrand
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
9
|
Levin ED, Bushnell PJ, Rezvani AH. Attention-modulating effects of cognitive enhancers. Pharmacol Biochem Behav 2011; 99:146-54. [PMID: 21334367 PMCID: PMC3114188 DOI: 10.1016/j.pbb.2011.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/30/2011] [Accepted: 02/09/2011] [Indexed: 12/13/2022]
Abstract
Attention can be readily measured in experimental animal models. Animal models of attention have been used to better understand the neural systems involved in attention, how attention is impaired, and how therapeutic treatments can ameliorate attentional deficits. This review focuses on the ways in which animal models are used to better understand the neuronal mechanism of attention and how to develop new therapeutic treatments for attentional impairment. Several behavioral test methods have been developed for experimental animal studies of attention, including a 5-choice serial reaction time task (5-CSRTT), a signal detection task (SDT), and a novel object recognition (NOR) test. These tasks can be used together with genetic, lesion, pharmacological and behavioral models of attentional impairment to test the efficacy of novel therapeutic treatments. The most prominent genetic model is the spontaneously hypertensive rat (SHR). Well-characterized lesion models include frontal cortical or hippocampal lesions. Pharmacological models include challenge with the NMDA glutamate antagonist dizocilpine (MK-801), the nicotinic cholinergic antagonist mecamylamine and the muscarinic cholinergic antagonist scopolamine. Behavioral models include distracting stimuli and attenuated target stimuli. Important validation of these behavioral tests and models of attentional impairments for developing effective treatments for attentional dysfunction is the fact that stimulant treatments effective for attention deficit hyperactivity disorder (ADHD), such as methylphenidate (Ritalin®), are effective in the experimental animal models. Newer lines of treatment including nicotinic agonists, α4β2 nicotinic receptor desensitizers, and histamine H₃ antagonists, have also been found to be effective in improving attention in these animal models. Good carryover has also been seen for the attentional improvement caused by nicotine in experimental animal models and in human populations. Animal models of attention can be effectively used for the development of new treatments of attentional impairment in ADHD and other syndromes in which have attentional impairments occur, such as Alzheimer's disease and schizophrenia.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, NC 27710, USA.
| | | | | |
Collapse
|
10
|
Moura E, Pinto CE, Caló A, Serrão MP, Afonso J, Vieira-Coelho MA. α2-Adrenoceptor-Mediated Inhibition of Catecholamine Release from the Adrenal Medulla of Spontaneously Hypertensive Rats is Preserved in the Early Stages of Hypertension. Basic Clin Pharmacol Toxicol 2011; 109:253-60. [DOI: 10.1111/j.1742-7843.2011.00712.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Neuroprotective effect of treatment with galantamine and choline alphoscerate on brain microanatomy in spontaneously hypertensive rats. J Neurol Sci 2009; 283:187-94. [DOI: 10.1016/j.jns.2009.02.349] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Hernandez CM, Gearhart DA, Parikh V, Hohnadel EJ, Davis LW, Middlemore ML, Warsi SP, Waller JL, Terry AV. Comparison of galantamine and donepezil for effects on nerve growth factor, cholinergic markers, and memory performance in aged rats. J Pharmacol Exp Ther 2006; 316:679-94. [PMID: 16214877 DOI: 10.1124/jpet.105.093047] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was designed to determine 1) whether repeated exposures to the acetylcholinesterase inhibitors (AChEIs) galantamine (GAL) or donepezil (DON) resulted in positive effects on nerve growth factor (NGF) and its receptors, cholinergic proteins, and cognitive function in the aged rat, and 2) whether GAL had any advantages over DON given its allosteric potentiating ligand (APL) activity at nicotinic acetylcholine receptors. Behavioral tests (i.e., water maze and light/dark box) were conducted in aged Fisher 344 rats during 15 days of repeated (subcutaneous) exposure to either GAL (3.0 or 6.0 mg/kg/day) or DON (0.375 or 0.75 mg/kg/day). Forty-eight hours after the last drug injection, cholinergic receptors were measured by [(125)I]-(+/-)-exo-2-(2-iodo-5-pyridyl)-7-azabicyclo[2.2.1]heptane ([(125)I]IPH; epibatidine analog), (125)I-alpha-bungarotoxin ((125)I-BTX), [(3)H]pirenzepine ([(3)H]PRZ), and [(3)H]-5,11-dihydro-11-[((2-(2-((dipropylamino)methyl)-1-piperidinyl)ethyl)amino)carbonyl]-6H-pyrido(2,3-b)(1,4)-benzodiazepin-6-one methanesulfonate ([(3)H]AFDX-384, or [(3)H]AFX) autoradiography. Immunochemical methods were used to measure NGF, high (TrkA and phospho-TrkA)- and low (p75 neurotrophin receptor)-affinity NGF receptors, choline acetyltransferase (ChAT), and the vesicular acetylcholine transporter (VAChT) in memory-related brain regions. Depending on dose, both GAL and DON enhanced spatial learning (without affecting anxiety levels) and increased [(125)I]IPH, [(3)H]PRZ, and [(3)H]AFX (but decreased (125)I-BTX) binding in some cortical and hippocampal brain regions. Neither AChEI was associated with marked changes in NGF, NGF receptors, or VAChT, although DON did moderately increase ChAT in the basal forebrain and hippocampus. The results suggest that repeated exposures to either GAL or DON results in positive (and sustained) behavioral and cholinergic effects in the aged mammalian brain but that the APL activity of GAL may not afford any advantage over acetylcholinesterase inhibition alone.
Collapse
Affiliation(s)
- C M Hernandez
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Medical College of Georgia, Augusta, 30912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|