1
|
Martin MD, Huard DJ, Guerrero-Ferreira RC, Desai IM, Barlow BM, Lieberman RL. Molecular architecture and modifications of full-length myocilin. Exp Eye Res 2021; 211:108729. [DOI: 10.1016/j.exer.2021.108729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 01/06/2023]
|
2
|
Patterson-Orazem AC, Qerqez AN, Azouz LR, Ma MT, Hill SE, Ku Y, Schildmeyer LA, Maynard JA, Lieberman RL. Recombinant antibodies recognize conformation-dependent epitopes of the leucine zipper of misfolding-prone myocilin. J Biol Chem 2021; 297:101067. [PMID: 34384785 PMCID: PMC8408531 DOI: 10.1016/j.jbc.2021.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/11/2022] Open
Abstract
Recombinant antibodies with well-characterized epitopes and known conformational specificities are critical reagents to support robust interpretation and reproducibility of immunoassays across biomedical research. For myocilin, a protein prone to misfolding that is associated with glaucoma and an emerging player in other human diseases, currently available antibodies are unable to differentiate among the numerous disease-associated protein states. This fundamentally constrains efforts to understand the connection between myocilin structure, function, and disease. To address this concern, we used protein engineering methods to develop new recombinant antibodies that detect the N-terminal leucine zipper structural domain of myocilin and that are cross-reactive for human and mouse myocilin. After harvesting spleens from immunized mice and in vitro library panning, we identified two antibodies, 2A4 and 1G12. 2A4 specifically recognizes a folded epitope while 1G12 recognizes a range of conformations. We matured antibody 2A4 for improved biophysical properties, resulting in variant 2H2. In a human IgG1 format, 2A4, 1G12, and 2H2 immunoprecipitate full-length folded myocilin present in the spent media of human trabecular meshwork (TM) cells, and 2H2 can visualize myocilin in fixed human TM cells using fluorescence microscopy. These new antibodies should find broad application in glaucoma and other research across multiple species platforms.
Collapse
Affiliation(s)
| | - Ahlam N Qerqez
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Laura R Azouz
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Minh Thu Ma
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Shannon E Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yemo Ku
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Lisa A Schildmeyer
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA.
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
3
|
Ferreira BK, Rodrigues MT, Streck EL, Ferreira GC, Schuck PF. White matter disturbances in phenylketonuria: Possible underlying mechanisms. J Neurosci Res 2020; 99:349-360. [PMID: 32141105 DOI: 10.1002/jnr.24598] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022]
Abstract
White matter pathologies, as well as intellectual disability, microcephaly, and other central nervous system injuries, are clinical traits commonly ascribed to classic phenylketonuria (PKU). PKU is an inherited metabolic disease elicited by the deficiency of phenylalanine hydroxylase. Accumulation of l-phenylalanine (Phe) and its metabolites is found in tissues and body fluids in phenylketonuric patients. In order to mitigate the clinical findings, rigorous dietary Phe restriction constitutes the core of therapeutic management in PKU. Myelination is the process whereby the oligodendrocytes wrap myelin sheaths around the axons, supporting the conduction of action potentials. White matter injuries are implicated in the brain damage related to PKU, especially in untreated or poorly treated patients. The present review summarizes evidence toward putative mechanisms driving the white matter pathology in PKU patients.
Collapse
Affiliation(s)
- Bruna Klippel Ferreira
- Laboratório de Neuroenergética e Erros Inatos do Metabolismo, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Porto Alegre, Brazil
| | - Melissa Torres Rodrigues
- Laboratório de Erros Inatos do Metabolismo, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Emilio Luiz Streck
- Laboratório de Neurologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Gustavo Costa Ferreira
- Laboratório de Neuroenergética e Erros Inatos do Metabolismo, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Porto Alegre, Brazil
| | - Patricia Fernanda Schuck
- Laboratório de Erros Inatos do Metabolismo, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
4
|
Dobrowolski SF, Lyons-Weiler J, Biery A, Spridik K, Vockley G, Kranik E, Skvorak K, Sultana T. Methylome repatterning in a mouse model of Maternal PKU Syndrome. Mol Genet Metab 2014; 113:194-9. [PMID: 25218179 DOI: 10.1016/j.ymgme.2014.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 12/29/2022]
Abstract
Maternal PKU Syndrome (MPKU) is an embryopathy resulting from in utero phenylalanine (PHE) toxicity secondary to maternal phenylalanine hydroxylase deficient phenylketonuria (PKU). Clinical phenotypes in MPKU include mental retardation, microcephaly, in utero growth restriction, and congenital heart defects. Numerous in utero toxic exposures alter DNA methylation in the fetus. The PAH(enu2) mouse is a model of classical PKU while offspring born of hyperphenylalaninemic dams model MPKU. We investigated offspring of PAH(enu2) dams to determine if altered patterns of DNA methylation occurred in response to in utero PHE exposure. As neurologic deficit is the most prominent MPKU phenotype, methylome patterns were assessed in brain tissue using methylated DNA immunoprecipitation and paired-end sequencing. Brain tissues were assessed in E18.5-19 fetuses of PHE unrestricted PAH(enu2) dams, PHE restricted PAH(enu2) dams, and heterozygous(wt/enu2) control dams. Extensive methylome repatterning was observed in offspring of hyperphenylalaninemic dams while the offspring of PHE restricted dams displayed attenuated methylome repatterning. Methylation within coding regions was dominated by noncoding RNA genes. Differential methylation of promoters targeted protein coding genes. To assess the impact of methylome repatterning on gene expression, brain tissue in experimental and control animals were queried with microarrays assessing expression of microRNAs and protein coding genes. Altered expression of methylome-modified microRNAs and protein coding genes was extensive in offspring of hyperphenylalaninemic dams while minimal changes were observed in offspring of PHE restricted dams. Several genes displaying significantly reduced expression have roles in neurological function or genetic disease with neurological phenotypes. These data indicate in utero PHE toxicity alters DNA methylation in the brain which has downstream impact upon gene expression. Altered gene expression may contribute to pathophysiology of neurologic presentation in MPKU.
Collapse
Affiliation(s)
- S F Dobrowolski
- Department of Pathology, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - J Lyons-Weiler
- Genomics and Proteomics Core Laboratories, Bioinformatics Core, University of Pittsburgh, 3343 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - A Biery
- Department of Pathology, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - K Spridik
- Department of Pathology, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - G Vockley
- Division of Medical Genetics, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - E Kranik
- Department of Pathology, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - K Skvorak
- Division of Medical Genetics, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - T Sultana
- Genomics and Proteomics Core Laboratories, Bioinformatics Core, University of Pittsburgh, 3343 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
5
|
High concentrations of phenylalanine stimulate peroxisome proliferator-activated receptor γ: Implications for the pathophysiology of phenylketonuria. Neurobiol Dis 2008; 32:385-90. [DOI: 10.1016/j.nbd.2008.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 07/25/2008] [Accepted: 07/29/2008] [Indexed: 11/17/2022] Open
|