1
|
Mutant Allele-Specific CRISPR Disruption in DYT1 Dystonia Fibroblasts Restores Cell Function. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:1-12. [PMID: 32502938 PMCID: PMC7270506 DOI: 10.1016/j.omtn.2020.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/15/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
Most individuals affected with DYT1 dystonia have a heterozygous 3-bp deletion in the TOR1A gene (c.907_909delGAG). The mutation appears to act through a dominant-negative mechanism compromising normal torsinA function, and it is proposed that reducing mutant torsinA may normalize torsinA activity. In this study, we used an engineered Cas9 variant from Streptococcus pyogenes (SpCas9-VRQR) to target the mutation in the TOR1A gene in order to disrupt mutant torsinA in DYT1 patient fibroblasts. Selective targeting of the DYT1 allele was highly efficient with most common non-homologous end joining (NHEJ) edits, leading to a predicted premature stop codon with loss of the torsinA C terminus (delta 302–332 aa). Structural analysis predicted a functionally inactive status of this truncated torsinA due to the loss of residues associated with ATPase activity and binding to LULL1. Immunoblotting showed a reduction of the torsinA protein level in Cas9-edited DYT1 fibroblasts, and a functional assay using HSV infection indicated a phenotypic recovery toward that observed in control fibroblasts. These findings suggest that the selective disruption of the mutant TOR1A allele using CRISPR-Cas9 inactivates mutant torsinA, allowing the remaining wild-type torsinA to exert normal function.
Collapse
|
2
|
Harata NC. Current Gaps in the Understanding of the Subcellular Distribution of Exogenous and Endogenous Protein TorsinA. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2014; 4:260. [PMID: 25279252 PMCID: PMC4175402 DOI: 10.7916/d8js9nr2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/25/2014] [Indexed: 12/01/2022]
Abstract
Background An in-frame deletion leading to the loss of a single glutamic acid residue in the protein torsinA (ΔE-torsinA) results in an inherited movement disorder, DYT1 dystonia. This autosomal dominant disease affects the function of the brain without causing neurodegeneration, by a mechanism that remains unknown. Methods We evaluated the literature regarding the subcellular localization of torsinA. Results Efforts to elucidate the pathophysiological basis of DYT1 dystonia have relied partly on examining the subcellular distribution of the wild-type and mutated proteins. A typical approach is to introduce the human torsinA gene (TOR1A) into host cells and overexpress the protein therein. In both neurons and non-neuronal cells, exogenous wild-type torsinA introduced in this manner has been found to localize mainly to the endoplasmic reticulum, whereas exogenous ΔE-torsinA is predominantly in the nuclear envelope or cytoplasmic inclusions. Although these outcomes are relatively consistent, findings for the localization of endogenous torsinA have been variable, leaving its physiological distribution a matter of debate. Discussion As patients’ cells do not overexpress torsinA proteins, it is important to understand why the reported distributions of the endogenous proteins are inconsistent. We propose that careful optimization of experimental methods will be critical in addressing the causes of the differences among the distributions of endogenous (non-overexpressed) vs. exogenously introduced (overexpressed) proteins.
Collapse
Affiliation(s)
- N Charles Harata
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
3
|
Martin JN, Wolken N, Brown T, Dauer WT, Ehrlich ME, Gonzalez-Alegre P. Lethal toxicity caused by expression of shRNA in the mouse striatum: implications for therapeutic design. Gene Ther 2011; 18:666-73. [PMID: 21368900 PMCID: PMC3131434 DOI: 10.1038/gt.2011.10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 01/24/2011] [Accepted: 01/24/2011] [Indexed: 11/28/2022]
Abstract
Therapeutic RNA interference (RNAi) has emerged as a promising approach for the treatment of many incurable diseases, including cancer, infectious disease or neurodegenerative disorders. Demonstration of efficacy and safety in animal models is necessary before planning human application. Our group and others have previously shown the potential of this approach for the dominantly inherited neurological disease DYT1 dystonia by achieving potent short-hairpin RNA (shRNA)-mediated silencing of the disease protein, torsinA, in cultured cells. To establish the feasibility of this approach in vivo, we pursued viral delivery of shRNA in two different mouse models. Surprisingly, intrastriatal injections of adeno-associated virus serotype 2/1 (AAV2/1) vectors expressing different shRNAs, whether targeting torsinA expression or mismatched controls, resulted in significant toxicity with progressive weight loss, motor dysfunction and animal demise. Histological analysis showed shRNA-induced neurodegeneration. Toxicity was not observed in animals that received control AAV2/1 encoding no shRNA, and was independent of genotype, occurring in both DYT1 and wild-type animals. Interestingly, the different genetic background of both mouse models influenced toxicity, being earlier and more severe in 129/SvEv than in C57BL/6 mice. In conclusion, our studies demonstrate that expression of shRNA in the mammalian brain can lead to lethal toxicity. Furthermore, the genetic background of rodents modifies their sensitivity to this form of toxicity, a factor that should be taken into consideration in the design of preclinical therapeutic RNAi trials.
Collapse
Affiliation(s)
- Janine N Martin
- Graduate Program in Genetics, University of Iowa, Iowa City, IA
| | - Nicolle Wolken
- Department of Neurology, University of Iowa, Iowa City, IA
| | - Timothy Brown
- Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - William T Dauer
- Departments of Neurology and Cell and Development Biology, University of Michigan, Ann Arbor, MI
| | - Michelle E Ehrlich
- Department of Neurology, Mt. Sinai School of Medicine, New York City, NY
| | - Pedro Gonzalez-Alegre
- Graduate Program in Genetics, University of Iowa, Iowa City, IA
- Department of Neurology, University of Iowa, Iowa City, IA
| |
Collapse
|
4
|
Co-transfection and tandem transfection of HEK293A cells for overexpression and RNAi experiments. Cell Biol Int 2011; 35:187-92. [PMID: 21087213 DOI: 10.1042/cbi20100470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
pIRES2-EGFP was employed and a non-target shRNA expressing plasmid was constructed to simulate overexpression and RNAi (RNA interference) experiments. Transfection of pIRES2-EGFP into HEK293A cells by cationic lipids VigoFect demonstrated that transfection efficiency increased in a dose-dependent manner with amount of DNA plasmid used, and optimal transfection time and cell density should be identified to reach a compromise of higher transfection efficiency and lower toxicity. Co-transfection experiments indicated that the two co-transfected plasmids were equivalently delivered into the same cells, and the co-transfection efficiency was rarely affected by cell density and proportion of the two plasmids. However, plasmid-receipted cells seemed indisposed to accept plasmid again during the second transfection, and very low co-transfection efficiency was observed in tandem transfection.
Collapse
|
5
|
Lentiviral Vector-Mediated Gene Transfer and RNA Silencing Technology in Neuronal Dysfunctions. Mol Biotechnol 2010; 47:169-87. [DOI: 10.1007/s12033-010-9334-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
6
|
Chen XP, Hu XH, Wu SH, Zhang YW, Xiao B, Shang HF. RNA interference-mediated inhibition of wild-type Torsin A expression increases apoptosis caused by oxidative stress in cultured cells. Neurochem Res 2010; 35:1214-23. [PMID: 20455020 DOI: 10.1007/s11064-010-0177-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2010] [Indexed: 02/05/2023]
Abstract
To assess RNAi mediated inhibition of the expression of wt-DYT1 on H(2)O(2)-induced toxicity in NIH 3T3 cells and primary cortical neurons. To detect the function of wild-type Torsin A and the effect of SiRNA on the wt-DYT1 gene. The shRNA expression vector was constructed by ligating annealed complementary shRNA oligonucleotides into the down-stream of the human U6 promoter (PU6) of the RNAi-ready pSIREN-Shuttle vector. Then, the pSIREN-Shuttle-DYT1-shRNA cassette was ligated to Adeno-X Viral DNA to construct the recombinant adenoviral vector pAd-DYT1-shRNA. Cultured cerebral cortical neurons and NIH 3T3 cells were transfected with pAd-DYT1-shRNA and pSIREN-Shuttle-DYT1-shRNA. We evaluated NIH 3T3 cells and neurons in the presence of oxidative stress using a TUNEL assay under different conditions. The knockdown efficacy of the DYT1 was confirmed by real-time RT-PCR and Western Blot analysis. After exposure to H(2)O(2,) the quantity of NIH 3T3 cells transfected with pSIREN-Shuttle-DYT1-shRNA, which stained positively in the TUNEL assay, was significantly higher than the cells transfected with pSIREN-Shuttle-negative control-shRNA. (44.85 +/- 1.81% vs. 8.98 +/- 2.73%, t = 26.168). There were significantly more apoptotic neurons infected with pAd-DYT1-shRNA (45.63 +/- 7.53%) than neurons infected with pAd-X-negative control-shRNA (17.33 +/- 2.43%) (t = 9.816). The observed silencing of wild-type Torsin A expression by DYT1-shRNA was sequence-specific. RNAi-mediated inhibition of the expression of wild-type Torsin A increases apoptosis caused by oxidative stress. It is reasonable to consider that wild-type Torsin A has the capacity to protect cortical neurons against oxidative stress, and in the development of DYT1-delta GAG-dystonia the neuroprotective function of wild-type Torsin A may be compromised.
Collapse
Affiliation(s)
- Xue-Ping Chen
- Department of Neurology, West China Hospital, SiChuan University, Chengdu, Sichuan, China
| | | | | | | | | | | |
Collapse
|
7
|
Dreyer JL. Lentiviral vector-mediated gene transfer and RNA silencing technology in neuronal dysfunctions. Methods Mol Biol 2010; 614:3-35. [PMID: 20225033 DOI: 10.1007/978-1-60761-533-0_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Lentiviral-mediated gene transfer in vivo or in cultured mammalian neurons can be used to address a wide variety of biological questions, to design animal models for specific neurodegenerative pathologies, or to test potential therapeutic approaches in a variety of brain disorders. Lentiviruses can infect nondividing cells, thereby allowing stable gene transfer in postmitotic cells such as mature neurons. An important contribution has been the use of inducible vectors: the same animal can thus be used repeatedly in the doxycycline-on or -off state, providing a powerful mean for assessing the function of a gene candidate in a disorder within a specific neuronal circuit. Furthermore, lentivirus vectors provide a unique tool to integrate siRNA expression constructs with the aim to locally knockdown expression of a specific gene, enabling to assess the function of a gene in a very specific neuronal pathway. Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in the brain. Therefore, the use of lentiviruses for stable expression of siRNA in brain is a powerful aid to probe gene functions in vivo and for gene therapy of diseases of the central nervous system. In this chapter, I review the applications of lentivirus-mediated gene transfer in the investigation of specific gene candidates involved in major brain disorders and neurodegenerative processes. Major applications have been in polyglutamine disorders, such as synucleinopathies and Parkinson's disease, or in investigating gene function in Huntington's disease, dystonia, or muscular dystrophy. Recently, lentivirus gene transfer has been an invaluable tool for evaluation of gene function in behavioral disorders such as drug addiction and attention-deficit hyperactivity disorder or in learning and cognition.
Collapse
Affiliation(s)
- Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
8
|
Hewett JW, Nery FC, Niland B, Ge P, Tan P, Hadwiger P, Tannous BA, Sah DW, Breakefield XO. siRNA knock-down of mutant torsinA restores processing through secretory pathway in DYT1 dystonia cells. Hum Mol Genet 2008; 17:1436-45. [PMID: 18258738 PMCID: PMC2861568 DOI: 10.1093/hmg/ddn032] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 01/29/2008] [Indexed: 01/12/2023] Open
Abstract
Most cases of the dominantly inherited movement disorder, early onset torsion dystonia (DYT1) are caused by a mutant form of torsinA lacking a glutamic acid residue in the C-terminal region (torsinADeltaE). TorsinA is an AAA+ protein located predominantly in the lumen of the endoplasmic reticulum (ER) and nuclear envelope apparently involved in membrane structure/movement and processing of proteins through the secretory pathway. A reporter protein Gaussia luciferase (Gluc) shows a reduced rate of secretion in primary fibroblasts from DYT1 patients expressing endogenous levels of torsinA and torsinADeltaE when compared with control fibroblasts expressing only torsinA. In this study, small interfering RNA (siRNA) oligonucleotides were identified, which downregulate the levels of torsinA or torsinADeltaE mRNA and protein by over 65% following transfection. Transfection of siRNA for torsinA message in control fibroblasts expressing Gluc reduced levels of luciferase secretion compared with the same cells non-transfected or transfected with a non-specific siRNA. Transfection of siRNA selectively inhibiting torsinADeltaE message in DYT fibroblasts increased luciferase secretion when compared with cells non-transfected or transfected with a non-specific siRNA. Further, transduction of DYT1 cells with a lentivirus vector expressing torsinA, but not torsinB, also increased secretion. These studies are consistent with a role for torsinA as an ER chaperone affecting processing of proteins through the secretory pathway and indicate that torsinADeltaE acts to inhibit this torsinA activity. The ability of allele-specific siRNA for torsinADeltaE to normalize secretory function in DYT1 patient cells supports its potential role as a therapeutic agent in early onset torsion dystonia.
Collapse
Affiliation(s)
- Jeffrey W. Hewett
- Molecular Neurogenetics Unit, Department of Neurology
- Center for Molecular Imaging Research
- Department of Radiology, Massachusetts General Hospital
- Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | - Flávia C. Nery
- Molecular Neurogenetics Unit, Department of Neurology
- Center for Molecular Imaging Research
- Department of Radiology, Massachusetts General Hospital
- Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | - Brian Niland
- Molecular Neurogenetics Unit, Department of Neurology
- Center for Molecular Imaging Research
- Department of Radiology, Massachusetts General Hospital
- Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | - Pei Ge
- Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | - Pamela Tan
- Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | | | - Bakhos A. Tannous
- Molecular Neurogenetics Unit, Department of Neurology
- Center for Molecular Imaging Research
- Department of Radiology, Massachusetts General Hospital
- Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | | | - Xandra O. Breakefield
- Molecular Neurogenetics Unit, Department of Neurology
- Center for Molecular Imaging Research
- Department of Radiology, Massachusetts General Hospital
- Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
9
|
Down-regulation of beta1-adrenoceptors gene expression by short interfering RNA impairs the memory retrieval in the basolateral amygdala of rats. Neurosci Lett 2007; 428:77-81. [PMID: 17961922 DOI: 10.1016/j.neulet.2007.09.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 09/01/2007] [Accepted: 09/19/2007] [Indexed: 11/20/2022]
Abstract
The influence of basolateral amygdala (BLA) on memory is known to depend critically on adrenergic neurotransmission. However, the roles of noradrenergic receptors on memory retrieval have been elusive and controversial. Here, we investigated the effect of beta(1)-adrenoceptor (beta(1)-AR) on auditory fear memory in the rat BLA. We attenuated the expression of beta(1)-AR by RNA interference, a popular means to specific suppress gene expression. Bilaterally microinjection of beta(1)-AR short interfering RNA (siRNA) could reach a satisfying transfection in the BLA: beta(1)-AR protein expression was reduced transiently by siRNA in vivo at day 3. The behavioral tests indicated that memory retrieval was impaired as beta(1)-AR protein expression was prevented, and the memory was restored when the beta(1)-AR protein got back to normal level. The results suggested that beta(1)-AR might be critical for the retrieval of auditory fear memory.
Collapse
|
10
|
Hewett JW, Tannous B, Niland BP, Nery FC, Zeng J, Li Y, Breakefield XO. Mutant torsinA interferes with protein processing through the secretory pathway in DYT1 dystonia cells. Proc Natl Acad Sci U S A 2007; 104:7271-6. [PMID: 17428918 PMCID: PMC1855419 DOI: 10.1073/pnas.0701185104] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Indexed: 01/06/2023] Open
Abstract
TorsinA is an AAA(+) protein located predominantly in the lumen of the endoplasmic reticulum (ER) and nuclear envelope responsible for early onset torsion dystonia (DYT1). Most cases of this dominantly inherited movement disorder are caused by deletion of a glutamic acid in the carboxyl terminal region of torsinA. We used a sensitive reporter, Gaussia luciferase (Gluc) to evaluate the role of torsinA in processing proteins through the ER. In primary fibroblasts from controls and DYT1 patients most Gluc activity (95%) was released into the media and processed through the secretory pathway, as confirmed by inhibition with brefeldinA and nocodazole. Fusion of Gluc to a fluorescent protein revealed coalignment and fractionation with ER proteins and association of Gluc with torsinA. Notably, fibroblasts from DYT1 patients were found to secrete markedly less Gluc activity as compared with control fibroblasts. This decrease in processing of Gluc in DYT1 cells appear to arise, at least in part, from a loss of torsinA activity, because mouse embryonic fibroblasts lacking torsinA also had reduced secretion as compared with control cells. These studies demonstrate the exquisite sensitivity of this reporter system for quantitation of processing through the secretory pathway and support a role for torsinA as an ER chaperone protein.
Collapse
Affiliation(s)
- Jeffrey W. Hewett
- *Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114; and
| | - Bakhos Tannous
- *Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114; and
| | - Brian P. Niland
- *Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114; and
| | - Flavia C. Nery
- *Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114; and
| | - Juan Zeng
- *Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114; and
| | - Yuqing Li
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xandra O. Breakefield
- *Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114; and
| |
Collapse
|
11
|
Federici T, Boulis NM. Ribonucleic acid interference for neurological disorders: candidate diseases, potential targets, and current approaches. Neurosurgery 2007; 60:3-15; discussion 15-6. [PMID: 17228249 DOI: 10.1227/01.neu.0000249214.42461.a5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Ribonucleic acid (RNA) interference (RNAi) is a conserved evolutionary defense mechanism that is gaining utility for therapeutic application by modulating gene expression or silencing disease-causing genes. METHODS This strategy has recently achieved success in mammalian cells via synthetic small interfering RNA or short hairpin RNA expressed in vectors for gene delivery. The vector-based RNAi strategy has particular potential because of the possibility of targeted gene delivery, long-term gene expression, and the potential means of penetrating the blood-brain barrier. RESULTS RNAi-based approaches have been proposed for a variety of neurological disorders, including dominant genetic diseases, neurodegenerative diseases, malignant brain tumors, pain, and viral-induced encephalopathies. CONCLUSION This review summarizes the current approaches of the RNAi strategy for neurological disorders, focusing on potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Thais Federici
- Department of Neuroscience The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
12
|
Harper SQ, Staber PD, Beck CR, Fineberg SK, Stein C, Ochoa D, Davidson BL. Optimization of feline immunodeficiency virus vectors for RNA interference. J Virol 2006; 80:9371-80. [PMID: 16973543 PMCID: PMC1617215 DOI: 10.1128/jvi.00958-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA interference (RNAi) occurs naturally in plant and animal cells as a means for modulating gene expression. This process has been experimentally manipulated to achieve targeted gene silencing in cells, tissues, and animals, using a variety of vector systems. Here, we tested the hypothesis that vectors based on feline immunodeficiency virus (FIV) could be used for coexpression of reporter constructs and RNAi expression cassettes. We found, unexpectedly, in our initial constructs that placement of RNAi expression cassettes downstream from a polymerase II (pol II)-expressed reporter gene inhibited reporter expression but not vector titer. Through a series of intermediate vector constructs, we found that placement of the RNAi expression cassette relative to the Rev response element and the pol II expression cassette was critical for efficient RNAi and reporter gene expression. These results suggested that steric factors, including RNA structure and recruitment of competing transcriptional machinery, may affect gene expression from FIV vectors. In a second series of studies, we show that target sequence silencing can be achieved in cells transduced by FIV vectors coexpressing reporter genes and 3' untranslated region resident microRNAs. The optimized FIV-based RNAi expression vectors will find broad use given the extensive tropism of pseudotyped FIV vectors for many cell types in vitro and in vivo.
Collapse
Affiliation(s)
- Scott Q Harper
- Program in Gene Therapy, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Dystonia may be a sign or symptom, that is comprised of complex abnormal and dynamic movements of different etiologies. A specific cause is identified in approximately 28% of patients, which only occasionally results in specific treatment. In most cases, treatment is symptomatic and designed to relieve involuntary movements, improve posture and function and reduce associated pain. Therapeutic options are dictated by clinical assessment of the topography of dystonia, severity of abnormal movements, functional impairment and progression of disease and consists of pharmacological, surgical and supportive approaches. Several advances have been made in treatment with newer medications, availability of different forms of botulinum toxin and globus pallidus deep brain stimulation (DBS). For patients with childhood-onset dystonia, the majority of whom later develop generalized dystonia, oral medication is the mainstay of therapy. Recently, DBS has emerged as an effective alternative therapy. Botulinum toxin is usually the treatment of choice for those with adult-onset primary dystonia in which dystonia usually remains focal. In patients with secondary dystonia, treatment is challenging and efficacy is typically incomplete and partially limited by side effects. Despite these treatment options, many patients with dystonia experience only partial benefit and continue to suffer significant disability. Therefore, more research is needed to better understand the underlying cause and pathophysiology of dystonia and to explore newer medications and surgical techniques for its treatment.
Collapse
Affiliation(s)
- Roongroj Bhidayasiri
- Chulalongkorn University Hospital, Chulalongkorn Comprehensive Movement Disorders Center, Division of Neurology, 1873 Rama 4 Road Bangkok 10330, Thailand.
| | | |
Collapse
|