1
|
Dalferth TF, Nunes ML, Furini CRG. Sleep deprivation in early life: Cellular and behavioral impacts. Neurosci Biobehav Rev 2024; 159:105597. [PMID: 38387838 DOI: 10.1016/j.neubiorev.2024.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Sleep deprivation has become increasingly prevalent in contemporary society, and the consequences of this reality such as cognitive impairment and metabolic disorders, are widely investigated in the scientific scenario. However, the impact of sleep deprivation on the health of future generations is a challenge, and researchers are focusing their attention on this issue. Thus, this review aims to describe the impact of sleep deprivation in early life in animal models, particularly rodents, discussing the molecular physiology impacted by prolonged wakefulness in early life, as well as the changes that interfere with neurodevelopmental processes. Additionally, it explores the changes impacting metabolic mechanisms and discusses both the short- and long-term consequences of these processes on endocrine, behavioral, and cognitive functions. Finally, we briefly address some strategies to mitigate the adverse effects of sleep deprivation.
Collapse
Affiliation(s)
- Thais F Dalferth
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre, RS 90619-900, Brazil; Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, Porto Alegre, RS 90610-000, Brazil
| | - Magda L Nunes
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre, RS 90619-900, Brazil; Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690, Porto Alegre, RS 90610-000, Brazil
| | - Cristiane R G Furini
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre, RS 90619-900, Brazil; Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, Porto Alegre, RS 90610-000, Brazil.
| |
Collapse
|
2
|
Parmar S, Tadavarty R, Sastry BR. G-protein coupled receptors and synaptic plasticity in sleep deprivation. World J Psychiatry 2021; 11:954-980. [PMID: 34888167 PMCID: PMC8613756 DOI: 10.5498/wjp.v11.i11.954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/05/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Insufficient sleep has been correlated to many physiological and psychoneurological disorders. Over the years, our understanding of the state of sleep has transcended from an inactive period of rest to a more active state involving important cellular and molecular processes. In addition, during sleep, electrophysiological changes also occur in pathways in specific regions of the mammalian central nervous system (CNS). Activity mediated synaptic plasticity in the CNS can lead to long-term and sometimes permanent strengthening and/or weakening synaptic strength affecting neuronal network behaviour. Memory consolidation and learning that take place during sleep cycles, can be affected by changes in synaptic plasticity during sleep disturbances. G-protein coupled receptors (GPCRs), with their versatile structural and functional attributes, can regulate synaptic plasticity in CNS and hence, may be potentially affected in sleep deprived conditions. In this review, we aim to discuss important functional changes that can take place in the CNS during sleep and sleep deprivation and how changes in GPCRs can lead to potential problems with therapeutics with pharmacological interventions.
Collapse
Affiliation(s)
- Shweta Parmar
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Ramakrishna Tadavarty
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Bhagavatula R Sastry
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| |
Collapse
|
3
|
Giri S, Ranjan A, Kumar A, Amar M, Mallick BN. Rapid eye movement sleep deprivation impairs neuronal plasticity and reduces hippocampal neuronal arborization in male albino rats: Noradrenaline is involved in the process. J Neurosci Res 2021; 99:1815-1834. [PMID: 33819353 DOI: 10.1002/jnr.24838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/22/2022]
Abstract
Rapid eye movement sleep (REMS) favors brain development and memory, while it is decreased in neurodegenerative diseases. REMS deprivation (REMSD) affects several physiological processes including memory consolidation; however, its detailed mechanism(s) of action was unknown. REMS reduces, while REMSD elevates noradrenaline (NA) level in the brain; the latter induces several deficiencies and disorders, including changes in neuronal cytomorphology and apoptosis. Therefore, we proposed that REMS- and REMSD-associated modulation of NA level might affect neuronal plasticity and affect brain functions. Male albino rats were REMS deprived by flower-pot method for 6 days, and its effects were compared with home cage and large platform controls as well as post-REMSD recovered and REMS-deprived prazosin (α1-adrenoceptor antagonist)-treated rats. We observed that REMSD reduced CA1 and CA3 neuronal dendritic length, branching, arborization, and spine density, while length of active zone and expressions of pre- as well as post-synaptic proteins were increased as compared to controls; interestingly, prazosin prevented most of the effects in vivo. Studies on primary culture of neurons from chick embryo brain confirmed that NA at lower concentration(s) induced neuronal branching and arborization, while higher doses were destructive. The findings support our contention that REMSD adversely affects neuronal plasticity, branching, and synaptic scaffold, which explain the underlying cytoarchitectural basis of REMSD-associated patho-physio-behavioral changes. Consolidation of findings of this study along with that of our previous reports suggest that the neuronal disintegration could be due to either withdrawal of direct protective and proliferative role of low dose of NA or indirect effect of high dose of NA or both.
Collapse
Affiliation(s)
- Shatrunjai Giri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amit Ranjan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Awanish Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Megha Amar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | |
Collapse
|
4
|
Abstract
Sleep is a highly conserved phenomenon in endotherms, and therefore it must serve at least one basic function across this wide range of species. What that function is remains one of the biggest mysteries in neurobiology. By using the word neurobiology, we do not mean to exclude possible non-neural functions of sleep, but it is difficult to imagine why the brain must be taken offline if the basic function of sleep did not involve the nervous system. In this chapter we discuss several current hypotheses about sleep function. We divide these hypotheses into two categories: ones that propose higher-order cognitive functions and ones that focus on housekeeping or restorative processes. We also pose four aspects of sleep that any successful functional hypothesis has to account for: why do the properties of sleep change across the life span? Why and how is sleep homeostatically regulated? Why must the brain be taken offline to accomplish the proposed function? And, why are there two radically different stages of sleep?The higher-order cognitive function hypotheses we discuss are essential mechanisms of learning and memory and synaptic plasticity. These are not mutually exclusive hypotheses. Each focuses on specific mechanistic aspects of sleep, and higher-order cognitive processes are likely to involve components of all of these mechanisms. The restorative hypotheses are maintenance of brain energy metabolism, macromolecular biosynthesis, and removal of metabolic waste. Although these three hypotheses seem more different than those related to higher cognitive function, they may each contribute important components to a basic sleep function. Any sleep function will involve specific gene expression and macromolecular biosynthesis, and as we explain there may be important connections between brain energy metabolism and the need to remove metabolic wastes.A deeper understanding of sleep functions in endotherms will enable us to answer whether or not rest behaviors in species other than endotherms are homologous with mammalian and avian sleep. Currently comparisons across the animal kingdom depend on superficial and phenomenological features of rest states and sleep, but investigations of sleep functions would provide more insight into the evolutionary relationships between EEG-defined sleep in endotherms and rest states in ectotherms.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, USA
| | - H Craig Heller
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Mohlenhoff BS, O'Donovan A, Weiner MW, Neylan TC. Dementia Risk in Posttraumatic Stress Disorder: the Relevance of Sleep-Related Abnormalities in Brain Structure, Amyloid, and Inflammation. Curr Psychiatry Rep 2017; 19:89. [PMID: 29035423 PMCID: PMC5797832 DOI: 10.1007/s11920-017-0835-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Posttraumatic stress disorder (PTSD) is associated with increased risk for dementia, yet mechanisms are poorly understood. RECENT FINDINGS Recent literature suggests several potential mechanisms by which sleep impairments might contribute to the increased risk of dementia observed in PTSD. First, molecular, animal, and imaging studies indicate that sleep problems lead to cellular damage in brain structures crucial to learning and memory. Second, recent studies have shown that lack of sleep might precipitate the accumulation of harmful amyloid proteins. Finally, sleep and PTSD are associated with elevated inflammation, which, in turn, is associated with dementia, possibly via cytokine-mediated neural toxicity and reduced neurogenesis. A better understanding of these mechanisms may yield novel treatment approaches to reduce neurodegeneration in PTSD. The authors emphasize the importance of including sleep data in studies of PTSD and cognition and identify next steps.
Collapse
Affiliation(s)
- Brian S Mohlenhoff
- Departments of Psychiatry, University of California, San Francisco, CA, USA.
- Center for Imaging of Neurodegenerative Disease, Veterans Administration Medical Center, 4150 Clement Street (116P), San Francisco, CA, 94121, USA.
- Mental Health Service, Department of Veterans Affairs Medical Center, San Francisco, CA, USA.
| | - Aoife O'Donovan
- Departments of Psychiatry, University of California, San Francisco, CA, USA
- Mental Health Service, Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Michael W Weiner
- Departments of Psychiatry, University of California, San Francisco, CA, USA
- Center for Imaging of Neurodegenerative Disease, Veterans Administration Medical Center, 4150 Clement Street (116P), San Francisco, CA, 94121, USA
- Departments of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Thomas C Neylan
- Departments of Psychiatry, University of California, San Francisco, CA, USA
- Center for Imaging of Neurodegenerative Disease, Veterans Administration Medical Center, 4150 Clement Street (116P), San Francisco, CA, 94121, USA
| |
Collapse
|
6
|
Frank MG, Benington JH. The Role of Sleep in Memory Consolidation and Brain Plasticity: Dream or Reality? Neuroscientist 2016; 12:477-88. [PMID: 17079514 DOI: 10.1177/1073858406293552] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The notion that a good night of sleep improves memory is widely accepted by the general public. Among sleep scientists, however, the idea has been hotly debated for decades. In this review, the authors consider current evidence for and against the hypothesis that sleep facilitates memory consolidation and promotes plastic changes in the brain. They find that despite a steady accumulation of positive findings over the past decade, the precise role of sleep in memory and brain plasticity remains elusive. This impasse may be resolved by more integrated approaches that combine behavioral and neurophysiological measurements in well-described in vivo models of synaptic plasticity.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia 19104-6074, USA.
| | | |
Collapse
|
7
|
Maiti P, Manna J, Ilavazhagan G, Rossignol J, Dunbar GL. Molecular regulation of dendritic spine dynamics and their potential impact on synaptic plasticity and neurological diseases. Neurosci Biobehav Rev 2015; 59:208-37. [PMID: 26562682 DOI: 10.1016/j.neubiorev.2015.09.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/20/2015] [Accepted: 09/07/2015] [Indexed: 12/12/2022]
Abstract
The structure and dynamics of dendritic spines reflect the strength of synapses, which are severely affected in different brain diseases. Therefore, understanding the ultra-structure, molecular signaling mechanism(s) regulating dendritic spine dynamics is crucial. Although, since last century, dynamics of spine have been explored by several investigators in different neurological diseases, but despite countless efforts, a comprehensive understanding of the fundamental etiology and molecular signaling pathways involved in spine pathology is lacking. The purpose of this review is to provide a contextual framework of our current understanding of the molecular mechanisms of dendritic spine signaling, as well as their potential impact on different neurodegenerative and psychiatric diseases, as a format for highlighting some commonalities in function, as well as providing a format for new insights and perspectives into this critical area of research. Additionally, the potential strategies to restore spine structure-function in different diseases are also pointed out. Overall, these informations should help researchers to design new drugs to restore the structure-function of dendritic spine, a "hot site" of synaptic plasticity.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA.
| | - Jayeeta Manna
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - G Ilavazhagan
- Hindustan University, Rajiv Gandhi Salai (OMR), Padur, Kelambakam, Chennai, TN, India.
| | - Julien Rossignol
- Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA; College of Medicine, Central Michigan University, Mt. Pleasant, MI, USA.
| | - Gary L Dunbar
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA.
| |
Collapse
|
8
|
Hippocampal Cortactin Levels are Reduced Following Spatial Working Memory Formation, an Effect Blocked by Chronic Calpain Inhibition. Brain Sci 2015; 5:241-57. [PMID: 26103422 PMCID: PMC4493467 DOI: 10.3390/brainsci5020241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/12/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022] Open
Abstract
The mechanism by which the hippocampus facilitates declarative memory formation appears to involve, among other things, restructuring of the actin cytoskeleton within neuronal dendrites. One protein involved in this process is cortactin, which is an important link between extracellular signaling and cytoskeletal reorganization. In this paper, we demonstrate that total hippocampal cortactin, as well as Y421-phosphorylated cortactin are transiently reduced following spatial working memory formation in the radial arm maze (RAM). Because cortactin is a substrate of the cysteine protease calpain, we also assessed the effect of chronic calpain inhibition on RAM performance and cortactin expression. Calpain inhibition impaired spatial working memory and blocked the reduction in hippocampal cortactin levels following RAM training. These findings add to a growing body of research implicating cortactin and calpain in hippocampus-dependent memory formation.
Collapse
|
9
|
Mohlenhoff BS, Chao LL, Buckley ST, Weiner MW, Neylan TC. Are hippocampal size differences in posttraumatic stress disorder mediated by sleep pathology? Alzheimers Dement 2015; 10:S146-54. [PMID: 24924666 DOI: 10.1016/j.jalz.2014.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Posttraumatic stress disorder (PTSD) is associated with smaller volumes of the hippocampus, as has been demonstrated by meta-analyses. Proposed mechanistic relationships are reviewed briefly, including the hypothesis that sleep disturbances mediate the effects of PTSD on hippocampal volume. Evidence for this includes findings that insomnia and restricted sleep are associated with changes in hippocampal cell regulation and impairments in cognition. We present results of a new study of 187 subjects in whom neither PTSD nor poor sleep was associated with lower hippocampal volume. We outline a broad research agenda centered on the hypothesis that sleep changes mediate the relationship between PTSD and hippocampal volume.
Collapse
Affiliation(s)
- Brian S Mohlenhoff
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Center for Imaging of Neurodegenerative Diseases, Department of Veterans Affairs Medical Center, San Francisco, CA, USA; Mental Health Service, Department of Veterans Affairs Medical Center, San Francisco, CA, USA.
| | - Linda L Chao
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA; Center for Imaging of Neurodegenerative Diseases, Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Shannon T Buckley
- Center for Imaging of Neurodegenerative Diseases, Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Michael W Weiner
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA; Center for Imaging of Neurodegenerative Diseases, Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Thomas C Neylan
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Mental Health Service, Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| |
Collapse
|
10
|
Abstract
Sleep is hypothesized to play an integral role in brain plasticity. This has traditionally been investigated using behavioral assays. In the last 10-15 years, studies combining sleep measurements with in vitro and in vivo models of synaptic plasticity have provided exciting new insights into how sleep alters synaptic strength. In addition, new theories have been proposed that integrate older ideas about sleep function and recent discoveries in the field of synaptic plasticity. There remain, however, important challenges and unanswered questions. For example, sleep does not appear to have a single effect on synaptic strength. An unbiased review of the literature indicates that the effects of sleep vary widely depending on ontogenetic stage, the type of waking experience (or stimulation protocols) that precede sleep and the type of neuronal synapse under examination. In this review, I discuss these key findings in the context of current theories that posit different roles for sleep in synaptic plasticity.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Neuroscience, School of Medicine, University of Pennsylvania, 215 Stemmler Hall, 35th and Hamilton Walk, Philadelphia, PA, 19104-6074, USA,
| |
Collapse
|
11
|
Abstract
Sleep deprivation (SD) is a common condition that afflicts many people in modern life. Deficits in daytime performance due to SD are experienced universally. Recent evidence indicates that SD causes impairments in cognitive functions. However, the mechanisms that SD impairs cognitive functions are not clear. This review will focus on the behavioral and neural effects of SD with the aim to elucidate the possible mechanisms of SD-induced deterioration in cognitive functions and to identify directions for future research.
Collapse
Affiliation(s)
- Na Zhang
- Institute of Health and Environmental Medicine, Academy of Military medical sciences, Tianjin 300050, China.
| | | |
Collapse
|
12
|
Acosta-Peña E, Camacho-Abrego I, Melgarejo-Gutiérrez M, Flores G, Drucker-Colín R, García-García F. Sleep deprivation induces differential morphological changes in the hippocampus and prefrontal cortex in young and old rats. Synapse 2014; 69:15-25. [PMID: 25179486 DOI: 10.1002/syn.21779] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/17/2014] [Accepted: 08/18/2014] [Indexed: 11/11/2022]
Abstract
Sleep is a fundamental state necessary for maintenance of physical and neurological homeostasis throughout life. Several studies regarding the functions of sleep have been focused on effects of sleep deprivation on synaptic plasticity at a molecular and electrophysiological level, and only a few studies have studied sleep function from a structural perspective. Moreover, during normal aging, sleep architecture displays some changes that could affect normal development in the elderly. In this study, using a Golgi-Cox staining followed by Sholl analysis, we evaluate the effects of 24 h of total sleep deprivation on neuronal morphology of pyramidal neurons from Layer III of the prefrontal cortex (PFC) and the dorsal hippocampal CA1 region from male Wistar rats at two different ages (3 and 22 months). We found no differences in total dendritic length and branching length in both analyzed regions after sleep deprivation. Spine density was reduced in the CA1 of young-adults, and interestingly, sleep deprivation increased spine density in PFC of aged animals. Taken together, our results show that 24 h of total sleep deprivation have different effects on synaptic plasticity and could play a beneficial role in cognition during aging.
Collapse
Affiliation(s)
- Eva Acosta-Peña
- Department of Biomedicine, Health Sciences Institute, Veracruzana University, Luis Castelazo-Ayala s/n, Industrial-Animas, Xalapa, Veracruz, 91190, México
| | | | | | | | | | | |
Collapse
|
13
|
Smith CB, Walker K, Badawi N, Waters KA, MacLean JE. Impact of sleep and breathing in infancy on outcomes at three years of age for children with cleft lip and/or palate. Sleep 2014; 37:919-25. [PMID: 24790270 DOI: 10.5665/sleep.3660] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
STUDY OBJECTIVES To evaluate the relationship between sleep disordered breathing (SDB) in early infancy and outcomes at 3 years of age in children with cleft lip and/or palate (CL/P). DESIGN Observational follow-up study. SETTING Multidisciplinary CL/P clinic, tertiary centre. PARTICIPANTS Children with CL/P who participated in a study of sleep and breathing in infancy. MEASUREMENTS AND RESULTS The families of 52 children were approached for this follow-up study. The children underwent neurocognitive (Bayley Scales of Infant and Toddler Development, Third Edition; BSID-III), quality of life (Infant/Toddler Quality of Life Questionnaire; ITQOL), and growth assessments at 3 years. The families of 33 children (66%) completed follow-up at 36.7 ± 1.4 months. The apnea-hypopnea index (AHI) in infancy was 23.9 ± 18.0 events/h. Mean group BSID-III scores fell within the standardized normal range (10 ± 3) for all domains; however, language scores were lower than control children. Quality of life scores and growth parameter z-scores were similar to published control data. PSG variables in infancy showed significant relationships with outcomes at 3 years of age; lower percentage of AS/REM sleep was associated with lower cognition score; more obstructive events were associated with lower global behavior ITQOL score; and higher number of respiratory events in infancy was associated with lower weight z-score. CONCLUSION Neurocognition, quality of life, and growth measures from children with CL/P fall within a normal range; however, scores in the language domain are lower than controls. Sleep and respiratory elements of SDB in infancy appear to modify these outcomes at 3 years of age.
Collapse
Affiliation(s)
- Courtney B Smith
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Westmead, NSW, Australia ; Medical Program, University of New South, Sydney, NSW, Australia
| | - Karen Walker
- Discipline of Paediatrics & Child Health, University of Sydney, Sydney, NSW, Australia ; Neonatal Intensive Care Unit, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Nadia Badawi
- Discipline of Paediatrics & Child Health, University of Sydney, Sydney, NSW, Australia ; Neonatal Intensive Care Unit, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Karen A Waters
- Discipline of Paediatrics & Child Health, University of Sydney, Sydney, NSW, Australia ; Department of Respiratory Medicine, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Joanna E MacLean
- Department of Pediatrics & The Women & Children's Research Institute, University of Alberta, Edmonton, AB, Canada ; Discipline of Paediatrics & Child Health, University of Sydney, Sydney, NSW, Australia ; Department of Respiratory Medicine, The Children's Hospital at Westmead, Westmead, NSW, Australia
| |
Collapse
|
14
|
Alger SE, Chambers AM, Cunningham T, Payne JD. The role of sleep in human declarative memory consolidation. Curr Top Behav Neurosci 2014; 25:269-306. [PMID: 25227928 DOI: 10.1007/7854_2014_341] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Through a variety of methods, researchers have begun unraveling the mystery of why humans spend one-third of their lives asleep. Though sleep likely serves multiple functions, it has become clear that the sleeping brain offers an ideal environment for solidifying newly learned information in the brain. Sleep , which comprises a complex collection of brain states, supports the consolidation of many different types of information. It not only promotes learning and memory stabilization, but also memory reorganization that can lead to various forms of insightful behavior. As this chapter will describe, research provides ample support for these crucial cognitive functions of sleep . Focusing on the declarative memory system in humans, we review the literature regarding the benefits of sleep for both neutral and emotionally salient declarative memory. Finally, we discuss the literature regarding the impact of sleep on emotion regulation.
Collapse
Affiliation(s)
- Sara E Alger
- Department of Psychology, University of Notre Dame, Notre Dame, USA,
| | | | | | | |
Collapse
|
15
|
Abstract
Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.
Collapse
Affiliation(s)
- Björn Rasch
- Division of Biopsychology, Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
16
|
Rodríguez-Vázquez J, Camacho-Arroyo I, Velázquez-Moctezuma J. Differential impact of REM sleep deprivation on cytoskeletal proteins of brain regions involved in sleep regulation. Neuropsychobiology 2012; 65:161-7. [PMID: 22456537 DOI: 10.1159/000330010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 06/09/2011] [Indexed: 12/16/2022]
Abstract
Rapid eye movement (REM) sleep is involved in memory consolidation, which implies synaptic plasticity. This process requires protein synthesis and the reorganization of the neural cytoskeleton. REM sleep deprivation (REMSD) has an impact on some neuronal proteins involved in synaptic plasticity, such as glutamate receptors and postsynaptic density protein 95, but its effects on cytoskeletal proteins is unknown. In this study, the effects of REMSD on the content of the cytoskeletal proteins MAP2 and TAU were analyzed. Adult female rats were submitted to selective REMSD by using the multiple platform technique. After 24, 48 or 72 h of REMSD, rats were decapitated and the following brain areas were dissected: pons, preoptic area, hippocampus and frontal cortex. Protein extraction and Western blot were performed. Results showed an increase in TAU content in the pons, preoptic area and hippocampus after 24 h of REMSD, while in the frontal cortex a significant increase in TAU content was observed after 72 h of REMSD. A TAU content decrease was observed in the hippocampus after 48 h of REMSD. Interestingly, a marked increase in TAU content was observed after 72 h of REMSD. MAP2 content only increased in the preoptic area at 24 h, and in the frontal cortex after 24 and 72 h of REMSD, without significant changes in the pons and hippocampus. These results support the idea that REM sleep plays an important role in the organization of neural cytoskeleton, and that this effect is tissue-specific.
Collapse
Affiliation(s)
- Jennifer Rodríguez-Vázquez
- Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México.
| | | | | |
Collapse
|
17
|
Winters BD, Huang YH, Dong Y, Krueger JM. Sleep loss alters synaptic and intrinsic neuronal properties in mouse prefrontal cortex. Brain Res 2011; 1420:1-7. [PMID: 21962531 DOI: 10.1016/j.brainres.2011.08.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/18/2011] [Accepted: 08/31/2011] [Indexed: 01/21/2023]
Abstract
Despite sleep-loss-induced cognitive deficits, little is known about the cellular adaptations that occur with sleep loss. We used brain slices obtained from mice that were sleep deprived for 8h to examine the electrophysiological effects of sleep deprivation (SD). We employed a modified pedestal (flowerpot) over water method for SD that eliminated rapid eye movement sleep and greatly reduced non-rapid eye movement sleep. In layer V/VI pyramidal cells of the medial prefrontal cortex, miniature excitatory post synaptic current amplitude was slightly reduced, miniature inhibitory post synaptic currents were unaffected, and intrinsic membrane excitability was increased after SD.
Collapse
Affiliation(s)
- Bradley D Winters
- Program in Neuroscience, Washington State University, Pullman, WA 99164-6520, USA.
| | | | | | | |
Collapse
|
18
|
Arrigoni E, Lu J, Vetrivelan R, Saper CB. Long-term synaptic plasticity is impaired in rats with lesions of the ventrolateral preoptic nucleus. Eur J Neurosci 2009; 30:2112-20. [PMID: 20128848 DOI: 10.1111/j.1460-9568.2009.07001.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Impairment of memory functions has been frequently reported in models of sleep deprivation. Similarly, hippocampal long-term synaptic plasticity has been shown to be sensitive to sleep loss caused by acute sleep restriction. However, such approaches are limited by the stressful nature of sleep deprivation, and because it is difficult to study long-term sleep restriction in animals. Here, we report the effects of chronic sleep loss on hippocampal long-term potentiation (LTP) in a rodent model of chronic partial sleep deprivation. We studied LTP of the Schaffer collateral-CA1 synapses in hippocampal slices prepared from rats with lesions of the ventrolateral preoptic nucleus (VLPO), which suffered reductions in total sleep time for several weeks after lesions. In slices prepared from VLPO-lesioned rats, LTP was impaired proportionally to the amount of sleep loss, and the decline in LTP followed a single exponential function over the amount of accumulated sleep debt. As compared with sham-lesioned controls, hippocampal slices from VLPO-lesioned rats showed a greater response to adenosine antagonists and greater paired-pulse facilitation (PPF). However, exogenous adenosine depressed evoked synaptic transmission and increased PPF in VLPO-lesioned and sham-lesioned rats by equal amounts, suggesting that the greater endogenous adenosine inhibitory tone in the VLPO-lesioned rats is associated with greater ligand accumulation rather than a change in adenosine receptor sensitivity or adenosine-mediated neurotransmitter release probability. LTP in VLPO-lesioned animals was partially restored by adenosine antagonists, suggesting that adenosine accumulation in VLPO-lesioned animals could account for some of the observed synaptic plasticity deficits.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
19
|
The effects of rapid eye movement sleep deprivation and recovery on spatial reference memory of young rats. Learn Behav 2009; 37:246-53. [DOI: 10.3758/lb.37.3.246] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Pontrello CG, Ethell IM. Accelerators, Brakes, and Gears of Actin Dynamics in Dendritic Spines. THE OPEN NEUROSCIENCE JOURNAL 2009; 3:67-86. [PMID: 20463852 PMCID: PMC2867483 DOI: 10.2174/1874082000903020067] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic spines are actin-rich structures that accommodate the postsynaptic sites of most excitatory synapses in the brain. Although dendritic spines form and mature as synaptic connections develop, they remain plastic even in the adult brain, where they can rapidly grow, change, or collapse in response to normal physiological changes in synaptic activity that underlie learning and memory. Pathological stimuli can adversely affect dendritic spine shape and number, and this is seen in neurodegenerative disorders and some forms of mental retardation and autism as well. Many of the molecular signals that control these changes in dendritic spines act through the regulation of filamentous actin (F-actin), some through direct interaction with actin, and others via downstream effectors. For example, cortactin, cofilin, and gelsolin are actin-binding proteins that directly regulate actin dynamics in dendritic spines. Activities of these proteins are precisely regulated by intracellular signaling events that control their phosphorylation state and localization. In this review, we discuss how actin-regulating proteins maintain the balance between F-actin assembly and disassembly that is needed to stabilize mature dendritic spines, and how changes in their activities may lead to rapid remodeling of dendritic spines.
Collapse
Affiliation(s)
- Crystal G. Pontrello
- Biomedical Sciences Division and Neuroscience program, University of California Riverside, USA
| | - Iryna M. Ethell
- Biomedical Sciences Division and Neuroscience program, University of California Riverside, USA
| |
Collapse
|
21
|
Vazquez J, Hall SC, Witkowska HE, Greco MA. Rapid alterations in cortical protein profiles underlie spontaneous sleep and wake bouts. J Cell Biochem 2008; 105:1472-84. [DOI: 10.1002/jcb.21970] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Silvestri AJ, Root DH. Effects of REM deprivation and an NMDA agonist on the extinction of conditioned fear. Physiol Behav 2007; 93:274-81. [PMID: 17920644 DOI: 10.1016/j.physbeh.2007.08.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 08/22/2007] [Accepted: 08/29/2007] [Indexed: 12/23/2022]
Abstract
Rapid eye movement sleep (REM) has been implicated in a number of learning and memory tasks. Previous research has demonstrated that REM deprivation impairs the development of extinction of conditioned fear responses. However, the neurobiological mechanisms of this effect remain unclear. The present study investigated the effects of systemic administration of d-cycloserine (DCS), an NMDA agonist, on the extinction of a conditioned fear response following 6 h of REM deprivation. In experiment 1, rats were administered DCS between fear training and REM deprivation. In experiment 2, rats were administered DCS prior to extinction training. The results of experiment 1 indicated that both DCS alone and REM deprivation alone impaired extinction learning. Administration of DCS to REM deprived animals partially, but not completely, reversed the deficit in extinction. The results of experiment 2 indicated that regardless of prior REM deprivation history, DCS facilitated extinction learning. The results provide further evidence for a role of REM in the extinction of cued fear learning and indicate that this effect appears to be partially mediated by NMDA-dependent mechanisms.
Collapse
Affiliation(s)
- Amy J Silvestri
- Department of Psychology, Seton Hall University, South Orange, NJ 07079, USA.
| | | |
Collapse
|
23
|
Davis CJ, Bohnet SG, Meyerson JM, Krueger JM. Sleep loss changes microRNA levels in the brain: a possible mechanism for state-dependent translational regulation. Neurosci Lett 2007; 422:68-73. [PMID: 17597302 PMCID: PMC2041960 DOI: 10.1016/j.neulet.2007.06.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 05/30/2007] [Accepted: 06/03/2007] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are small ( approximately 22 nucleotides) non-coding RNA strands that base pair with mRNA to degrade it or inhibit its translation. Because sleep and sleep loss induce changes in many mRNA species, we hypothesized that sleep loss would also affect miRNA levels in the brain. Rats were sleep-deprived for 8h then decapitated; hippocampus, prefrontal and somatosensory cortices and hypothalamus tissues were harvested and frozen in liquid nitrogen. miRNA was extracted and then characterized using microarrays. Several let-7 miRNA microarray results using hippocampus and prefrontal cortex samples were verified by PCR. From the array data it was determined that about 50 miRNA species were affected by sleep loss. For example, in the hippocampus of sleep-deprived rats, miRNA expression increased compared to cage control samples. In contrast, the majority of miRNA species in the somatosensory and prefrontal cortices decreased, while in the hypothalamus miRNA species were both up- and down-regulated after sleep deprivation. The number of miRNA species affected by sleep loss, their differential expression in separate brain structures and their predicted targets suggest that they have a role in site-specific sleep mechanisms. Current results are, to our knowledge, the first demonstration of the homeostatic process, sleep, altering brain miRNA levels.
Collapse
Affiliation(s)
- Christopher J Davis
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology and Program in Neuroscience, Washington State University, Pullman, WA 99164-6520, United States.
| | | | | | | |
Collapse
|
24
|
Hamlat A, Pasqualini E. Stem cells adaptive network: mechanism and implications for evolution and disease development. Med Hypotheses 2007; 69:610-7. [PMID: 17336463 DOI: 10.1016/j.mehy.2006.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
Abstract
During development, different cells and tissues acquire different programmes of gene expression, so that cells are related to each other through a somatic cells tree or cluster and adult pluripotential stem cells (PSC) may be defined as progenitors that we distinguish in four types according to their biological behaviour. This clustering may segregate specific pathways establishing spatial patterns of cell-cell communications. Thus, we suggest that normal somatic cells renewal is tributary of multipotential stem cells (MSC), while renewal of cells undergoing stress or abnormal death is tributary of PSC through specific pathway(s) from cluster, thus, defining the cell repertoire that will be produced. We also assume that PSC play a pivotal role in evolutionary and propose the theory of "internal clusters competition". According to the functional duality of stem cells (SC) we define a stem cells adaptive network (SCAN) which we believe is linked to the central clock and display two pathways. The diurnal pathway includes SC-somatic cells communications, while the nocturnal pathway includes inter-SC network. These alternate pathways could be activated or repressed as a consequence of change in the biological chirality. This new approach of SC may contribute to our understanding on how some diseases may develop including cancer which could be linked to "cluster illness", while demyelinating and systemic diseases could be related to "PSC locus illness" or "focalised SCAN disturbances" and it explains how any environment stress may act on organism evolution.
Collapse
Affiliation(s)
- Abderrahmane Hamlat
- Department of Neurosurgery, CHRU Pontchaillou, Rue Henry Le Guilloux, 35000 Rennes, Cedex 2, France.
| | | |
Collapse
|
25
|
Abstract
Cortactin, an actin filament-binding protein and target of multiple kinases, has emerged as a central element connecting signaling pathways with cytoskeleton restructuring. It is involved in a perplexingly diverse array of cellular processes, including cell motility, invasiveness, synaptogenesis, endocytosis, intercellular contact assembly, and host-pathogen interactions, where the common denominator appears to be a role in the coordination of membrane dynamics with cytoskeletal remodeling. Although in recent years our knowledge about cortactin has increased exponentially, the exact mechanisms underlying its fundamental roles remain to be defined.
Collapse
Affiliation(s)
- Laura I Cosen-Binker
- Saint Michael's Hospital Research Institute, Department of Surgery, University of Toronto, Ontario, Canada
| | | |
Collapse
|