1
|
Saed B, Ramseier NT, Perera T, Anderson J, Burnett J, Gunasekara H, Burgess A, Jing H, Hu YS. Increased vesicular dynamics and nanoscale clustering of IL-2 after T cell activation. Biophys J 2024; 123:2343-2353. [PMID: 38532626 PMCID: PMC11331045 DOI: 10.1016/j.bpj.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/04/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
T cells coordinate intercellular communication through the meticulous regulation of cytokine secretion. Direct visualization of vesicular transport and intracellular distribution of cytokines provides valuable insights into the temporal and spatial mechanisms involved in regulation. Employing Jurkat E6-1 T cells and interleukin-2 (IL-2) as a model system, we investigated vesicular dynamics using single-particle tracking and the nanoscale distribution of intracellular IL-2 in fixed T cells using superresolution microscopy. Live-cell imaging revealed that in vitro activation resulted in increased vesicular dynamics. Direct stochastic optical reconstruction microscopy and 3D structured illumination microscopy revealed nanoscale clustering of IL-2. In vitro activation correlated with spatial accumulation of IL-2 nanoclusters into more pronounced and elongated clusters. These observations provide visual evidence that accelerated vesicular transport and spatial concatenation of IL-2 clusters at the nanoscale may constitute a potential mechanism for modulating cytokine release by Jurkat T cells.
Collapse
Affiliation(s)
- Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Neal T Ramseier
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Thilini Perera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Jesse Anderson
- Department of Chemical Engineering, College of Engineering, University of Illinois Chicago, Chicago, Illinois
| | | | - Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Alyssa Burgess
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Haoran Jing
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois.
| |
Collapse
|
2
|
Andronie-Cioară FL, Jurcău A, Jurcău MC, Nistor-Cseppentö DC, Simion A. Cholesterol Management in Neurology: Time for Revised Strategies? J Pers Med 2022; 12:jpm12121981. [PMID: 36556202 PMCID: PMC9784893 DOI: 10.3390/jpm12121981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Statin therapy has been extensively evaluated and shown to reduce the incidence of new or recurrent vascular events, ischemic stroke included. As a consequence, each published guideline pushes for lower low-density cholesterol levels in the population at large, recommending increased statin doses and/or adding new cholesterol-lowering molecules. Neurologists find it sometimes difficult to apply these guidelines, having to confront situations such as (1) ischemic strokes, mainly cardioembolic ones, in patients with already low LDL-cholesterol levels; (2) myasthenic patients, whose lifespan has been extended by available treatment, and whose age and cholesterol levels put them at risk for ischemic stroke; (3) patients with myotonic dystrophy, whose disease often associates diabetes mellitus and heart conduction defects, and in whom blood cholesterol management is also not settled. As such, further trials are needed to address these issues.
Collapse
Affiliation(s)
- Felicia Liana Andronie-Cioară
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Anamaria Jurcău
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Maria Carolina Jurcău
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (M.C.J.); (D.C.N.-C.); Tel.: +40-744-600-833 (M.C.J.)
| | - Delia Carmen Nistor-Cseppentö
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (M.C.J.); (D.C.N.-C.); Tel.: +40-744-600-833 (M.C.J.)
| | - Aurel Simion
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
3
|
Morissette M, Morin N, Rouillard C, Di Paolo T. Membrane cholesterol removal and replenishment affect rat and monkey brain monoamine transporters. Neuropharmacology 2018; 133:289-306. [PMID: 29407218 DOI: 10.1016/j.neuropharm.2018.01.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/10/2018] [Accepted: 01/25/2018] [Indexed: 12/16/2022]
Abstract
The dopamine transporter (DAT) is abundantly expressed in the striatum where it removes extracellular dopamine into the cytosol of presynaptic nerve terminals. It is the target of drugs of abuse and antidepressants. There is a loss of the DAT in Parkinson's disease affecting release of levodopa implicated in levodopa-induced dyskinesias. This study investigated the effect of cholesterol on DAT, serotonin transporter (SERT) and vesicular monoamine transporter 2 (VMAT2) in monkey and rat brains in vitro. DAT protein levels measured by Western blot remained unchanged with in vitro methyl-β-cyclodextrin (MCD) incubations to remove membrane cholesterol or with incubations to increase membrane cholesterol content. By contrast, striatal DAT specific binding labelled with [125I]RTI-121 or with [125I]RTI-55 decreased with increasing concentrations of MCD and increased with cholesterol loading. Moreover, [125I]RTI-121 specific binding of striatal membranes depleted of cholesterol with MCD was restored to initial DAT content with addition of cholesterol showing its rapid and reversible effect. By contrast, striatal VMAT2 and SERT specific binding showed no or limited changes by cholesterol manipulations. Similar results were obtained for monkey caudate nucleus, putamen and nucleus accumbens. Membrane microviscosity was assessed by fluorescence polarization spectroscopy, using the probe 1,6-diphenyl-1,3,5-hexatriene. DAT changes positively correlated with changes of membrane microviscosity in rat and monkey brain regions investigated and with membrane cholesterol contents. Similar findings were observed with desmosterol but to a lower extent than with cholesterol. These results show an important effect of cholesterol on the DAT associated with microviscosity changes that should be considered in drug therapies.
Collapse
Affiliation(s)
- Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City G1V 4G2, Canada
| | - Nicolas Morin
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Quebec City G1K 7P4, Canada
| | - Claude Rouillard
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City G1V 4G2, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City G1K 7P4, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Quebec City G1K 7P4, Canada.
| |
Collapse
|
4
|
Mahadeo M, Furber KL, Lam S, Coorssen JR, Prenner EJ. Secretory vesicle cholesterol: Correlating lipid domain organization and Ca2+ triggered fusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1165-74. [DOI: 10.1016/j.bbamem.2015.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/02/2015] [Accepted: 02/07/2015] [Indexed: 12/13/2022]
|
5
|
Ma MT, Zhang J, Farooqui AA, Chen P, Ong WY. Effects of cholesterol oxidation products on exocytosis. Neurosci Lett 2010; 476:36-41. [DOI: 10.1016/j.neulet.2010.03.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 12/13/2022]
|
6
|
Cholesterol Depletion from the Plasma Membrane Impairs Proton and Glutamate Storage in Synaptic Vesicles of Nerve Terminals. J Mol Neurosci 2010; 41:358-67. [DOI: 10.1007/s12031-010-9351-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 03/12/2010] [Indexed: 12/14/2022]
|
7
|
Alekseenko AV, Kolos VA, Waseem TV, Fedorovich SV. Glutamate induces formation of free radicals in rat brain synaptosomes. Biophysics (Nagoya-shi) 2009. [DOI: 10.1134/s000635090905011x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Alekseenko AV, Waseem TV, Fedorovich SV. Ferritin, a protein containing iron nanoparticles, induces reactive oxygen species formation and inhibits glutamate uptake in rat brain synaptosomes. Brain Res 2008; 1241:193-200. [PMID: 18835382 DOI: 10.1016/j.brainres.2008.09.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/01/2008] [Accepted: 09/03/2008] [Indexed: 12/28/2022]
Abstract
Nanoparticles are currently used in medicine as agents for targeted drug delivery and imaging. However it has been demonstrated that nanoparticles induce neurodegeneration in vivo and kill neurons in vitro. The cellular and molecular bases of this phenomenon are still unclear. We have used the protein ferritin as a nanoparticle model. Ferritin contains iron particles (Fe(3+)) with size 7 nm and a protein shell. We investigated how ferritin influences uptake and release of [(14)C]glutamate and free radical formation as monitored by fluorescent dye DCFDA in rat brain synaptosomes. We found that even a high concentration of ferritin (800 microg/ml) did not induce spontaneous [(14)C]glutamate release. In contrast the same concentration of this protein inhibited [(14)C]glutamate uptake two fold. Furthermore ferritin induced intrasynaptosomal ROS (reactive oxygen species) formation in a dose-dependent manner. This process was insensitive to 30 microM DPI, an inhibitor of NADPH oxidase and to 10 microM CCCP, a mitochondrial uncoupler. These results indicate that iron-based nanoparticles can cause ROS and decreased glutamate uptake, potentially leading to neurodegeneration.
Collapse
Affiliation(s)
- Alexandra V Alekseenko
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Akademicheskaya Street, 27, Minsk 220072, Belarus
| | | | | |
Collapse
|
9
|
Robin E, Cognié J, Foulon-Gauze F, Fontaine J, Cayla X. Disruption of lipid rafts induces gonadotropin release in ovine pituitary and LbetaT2 gonadotroph cells. Biol Reprod 2008; 79:17-25. [PMID: 18322272 DOI: 10.1095/biolreprod.107.064881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In order to better understand the cellular mechanisms underlying LH and FSH secretion, we have addressed the contribution of lipid rafts to the secretion of gonadotropins. We used methyl-beta-cyclodextrin (MbetaCD), a cholesterol-sequestering agent, on an LbetaT2 murine gonadotroph cell line and on primary cultures of ovine pituitary cells. We found that in both systems, cholesterol depletion by MbetaCD induced a fast and substantial release of LH in the absence of natural stimulation by GnRH. In ovine pituitary cells, MbetaCD-mediated LH release was shown to be independent of protein synthesis. Twenty-four hours after MbetaCD treatment, there was no loss of cell viability and full recovery of LH secretory capabilities, as determined by GnRH or MbetaCD treatment. In addition, our data suggest the existence of a pool of LH that is not released by GnRH treatment but that is released by MbetaCD treatment. Finally, in ovine pituitary cells, MbetaCD treatment induced FSH secretion. Importantly, these in vitro data are supported by in vivo studies, because MbetaCD injected into the pituitary glands of anaesthetized sheep reproducibly induced a peak of LH release.
Collapse
Affiliation(s)
- E Robin
- UMR Physiologie de la Reproduction et des Comportements, INRA/CNRS/Université Tours/Haras Nationaux, 37380 Nouzilly, France
| | | | | | | | | |
Collapse
|
10
|
Influence of Integrin-blocking Peptide on Gadolinium- and Hypertonic Shrinking-induced Neurotransmitter Release in Rat Brain Synaptosomes. Neurochem Res 2008; 33:1316-24. [DOI: 10.1007/s11064-007-9585-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 12/27/2007] [Indexed: 11/26/2022]
|
11
|
Liver X receptor beta (LXRbeta): a link between beta-sitosterol and amyotrophic lateral sclerosis-Parkinson's dementia. Proc Natl Acad Sci U S A 2008; 105:2094-9. [PMID: 18238900 DOI: 10.1073/pnas.0711599105] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Administration of beta-sitosterol (42 mg/kg per day) for 3 weeks to 8-month-old male LXRbeta-/- mice resulted in the death of motor neurons in the lumbar region of the spinal cord and loss of tyrosine hydroxylase-positive dopaminergic neurons in the substantia nigra. In mice at 5 months of age, beta-sitosterol had no observed toxicity but at 16 months of age, it caused severe paralysis and symptoms typical of dopaminergic dysfunction in LXRbeta-/- mice. WT mice were not affected by these doses of beta-sitosterol. In 5-month-old mice, levels of the intestinal transporters, ABCG5/8 and Niemann-Pick C1 Like 1, were not affected by loss of liver X receptor (LXR) beta and/or treatment with beta-sitosterol nor were there changes in plasma levels of cholesterol or beta-sitosterol. In 8-month-old LXRbeta-/- mice there was activation of microglia in the substantia nigra pars reticulata and aggregates of ubiquitin and TDP-43 in the cytoplasm of large motor neurons in the lumbar spinal cord. Brain cholesterol concentrations were higher in LXRbeta-/- than in their WT counterparts, and treatment with beta-sitosterol reduced brain cholesterol in both WT and LXRbeta-/- mice. In LXRbeta-/- mice but not in WT mice levels of 24-hydrocholesterol were increased upon beta-sitosterol treatment. These data indicate that multiple mechanisms are involved in the sensitivity of LXRbeta-/- mice to beta-sitosterol. These include activation of microglia, accumulation of protein aggregates in the cytoplasm of large motor neurons, and depletion of brain cholesterol.
Collapse
|
12
|
Waseem TV, Kolos VA, Lapatsina LP, Fedorovich SV. Hypertonic shrinking but not hypotonic swelling increases sodium concentration in rat brain synaptosomes. Brain Res Bull 2007; 73:135-42. [PMID: 17499647 DOI: 10.1016/j.brainresbull.2007.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 11/20/2022]
Abstract
Neurotransmitter release is dependent on both calcium and sodium influx. Hypotonic swelling and hypertonic shrinking of neurons evokes calcium-independent exocytosis of neurotransmitters into the synaptic cleft. To date, there are not too much data available on relationship between extracellular osmolarity and sodium concentration in presynaptic endings. In the present study we investigated the effects of hypotonic swelling and hypertonic shrinking on sodium levels, as measured using fluorescent dyes SBFI-AM and Sodium Green in rat brain synaptosomes. Reduction of incubation medium osmolarity from 310 to 230 mOsm did not raise the intrasynaptosomal sodium concentration. An increase of osmolarity from 310 to 810 mOsm is accompanied by a dose-dependent elevation of sodium concentration from 8.1+/-0.5 to 46.5+/-2.8mM, respectively. This effect was insensitive to several channel inhibitors such as: tetrodotoxin, an inhibitor of voltage-gated sodium channels, bumetanide, an inhibitor of Na(+)/K(+)/2Cl(-) cotransport, gadolinium, an inhibitor of nonselective mechanosensitive channels, ruthenium red, an inhibitor of transient receptor potential channel and amiloride, an inhibitor of epithelial sodium channel/degenerin. Additionally, using the fluorescent dye BCECF-AM, we have shown that hypertonic shrinking caused a dose-dependent acidification of intrasynaptosomal cytosol, which suggests that the Na(+)/H(+) exchanger is not involved in the effect of increased osmolarity on cytosolic sodium levels. The increase in intrasynaptosomal sodium concentrations following increases in osmolarity is probably due to sodium influx through another sodium channels.
Collapse
Affiliation(s)
- Tatyana V Waseem
- Institute of Biophysics and Cell Engineering, Akademicheskaya Street, 27, Minsk 220072, Belarus
| | | | | | | |
Collapse
|