1
|
Yang Y, Zhang L, Guo D, Zhang L, Yu H, Liu Q, Su X, Shao M, Song M, Zhang Y, Ding M, Lu Y, Liu B, Li W, Yue W, Fan X, Yang G, Lv L. Association of DTNBP1 With Schizophrenia: Findings From Two Independent Samples of Han Chinese Population. Front Psychiatry 2020; 11:446. [PMID: 32581860 PMCID: PMC7286384 DOI: 10.3389/fpsyt.2020.00446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/04/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Schizophrenia (SZ) is a complex psychiatric disorder that has a strong genetic basis. Dystrobrevin-binding protein 1 (DTNBP1) is one of the genes thought to be pivotal in regulating the glutamatergic system. Studies have suggested that variations in DTNBP1 confer susceptibility to SZ and clinical symptoms. Here, we performed a two-stage independent verification study to identify polymorphisms of the DTNBP1 gene that might be associated with SZ in the Han Chinese population. METHODS In stage 1, 14 single nucleotide polymorphisms (SNPs) were genotyped in 528 paranoid SZ patients and 528 healthy controls (HCs) using the Illumina GoldenGate assays on a BeadStation 500G Genotyping System. In stage 2, ten SNPs were genotyped in an independent sample of 1,031 SZ patients and 621 HCs using the Illumina 660k Genotyping System. Clinical symptoms were assessed using the Positive and Negative Syndrome Scale. RESULTS There was a significant association related to allele frequency, and a trend association in relation to genotype between SZ patients and HCs at rs4712253 (p = 0.03 and 0.05, respectively). These associations were not evident following Bonferroni correction (p > 0.05 for both). Haplotype association analysis revealed that only two haplotypes (GAG and GAA; rs16876575-rs9464793-rs4712253) were significantly different between SZ patients and HCs (χ2 = 4.24, 6.37, p = 0.04 and 0.01, respectively). In addition, in SZ patients there was a significant association in the rs4964793 genotype for positive symptoms, and in the rs1011313 genotype for excitement/hostility symptoms (p = 0.01 and 0.002, respectively). We found a significant association in the baseline symbol digital modalities test (SDMT), forward-digital span (DS), backward-DS, and semantic fluency between SZ patients and HCs (p < 0.05 for all). Finally, the SNP rs1011313 genotypes were associated with SDMT in SZ patients (p = 0.04). CONCLUSION This study provides further evidence that SNP rs4712253 of DTNBP1 has a nominal association with SZ in the Han Chinese population. Such a genotype variation may play a role in psychopathology and cognitive function.
Collapse
Affiliation(s)
- Yongfeng Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Luwen Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Dong Guo
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Lin Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Hongyan Yu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China
| | - Qing Liu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Xi Su
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Minglong Shao
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Men Song
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Yan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Minli Ding
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China
| | - Yanli Lu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China
| | - Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenqiang Li
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Weihua Yue
- Institute of Mental Health, Peking University, Beijing, China.,Ministry of Health Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Xiaoduo Fan
- Psychiatry Department, University of Massachusetts Medical School and UMass Memorial Medical Center, Worcester, MA, United States
| | - Ge Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Luxian Lv
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Psychiatry Department, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China.,Psychiatry Department, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Tan GKN, Tee SF, Tang PY. Genetic association of single nucleotide polymorphisms in dystrobrevin binding protein 1 gene with schizophrenia in a Malaysian population. Genet Mol Biol 2015; 38:138-46. [PMID: 26273215 PMCID: PMC4530642 DOI: 10.1590/s1415-4757382220140142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 12/15/2014] [Indexed: 12/19/2022] Open
Abstract
Dystrobrevin binding protein 1 (DTNBP1) gene is pivotal in regulating the glutamatergic system. Genetic variants of the DTNBP1 affect cognition and thus may be particularly relevant to schizophrenia. We therefore evaluated the association of six single nucleotide polymorphisms (SNPs) with schizophrenia in a Malaysian population (171 cases; 171 controls). Associations between these six SNPs and schizophrenia were tested in two stages. Association signals with p < 0.05 and minor allele frequency > 0.05 in stage 1 were followed by genotyping the SNPs in a replication phase (stage 2). Genotyping was performed with sequenced specific primer (PCR-SSP) and restriction fragment length polymorphism (PCR-RFLP). In our sample, we found significant associations between rs2619522 (allele p = 0.002, OR = 1.902, 95%CI = 1.266 – 2.859; genotype p = 0.002) and rs2619528 (allele p = 0.008, OR = 1.606, 95%CI = 1.130 – 2.281; genotype p = 6.18 × 10−5) and schizophrenia. Given that these two SNPs may be associated with the pathophysiology of schizophrenia, further studies on the other DTNBP1 variants are warranted.
Collapse
Affiliation(s)
- Grace Kang Ning Tan
- Department of Mechatronics and Biomedical Engineering, Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia
| | - Shiau Foon Tee
- Department of Chemical Engineering, Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia
| | - Pek Yee Tang
- Department of Mechatronics and Biomedical Engineering, Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Han MHJ, Hu Z, Chen CY, Chen Y, Gucek M, Li Z, Markey SP. Dysbindin-associated proteome in the p2 synaptosome fraction of mouse brain. J Proteome Res 2014; 13:4567-80. [PMID: 25198678 PMCID: PMC4227559 DOI: 10.1021/pr500656z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
The
gene DTNBP1 encodes the protein dysbindin and is among the
most promising and highly investigated schizophrenia-risk genes. Accumulating
evidence suggests that dysbindin plays an important role in the regulation
of neuroplasticity. Dysbindin was reported to be a stable component
of BLOC-1 complex in the cytosol. However, little is known about the
endogenous dysbindin-containing complex in the brain synaptosome.
In this study, we investigated the associated proteome of dysbindin
in the P2 synaptosome fraction of mouse brain. Our data suggest that
dysbindin has three isoforms associating with different complexes
in the P2 fraction of mouse brain. To facilitate immunopurification,
BAC transgenic mice expressing a tagged dysbindin were generated,
and 47 putative dysbindin-associated proteins, including all components
of BLOC-1, were identified by mass spectrometry in the dysbindin-containing
complex purified from P2. The interactions of several selected candidates,
including WDR11, FAM91A1, snapin, muted, pallidin, and two proteasome
subunits, PSMD9 and PSMA4, were verified by coimmunoprecipitation.
The specific proteasomal activity is significantly reduced in the
P2 fraction of the brains of the dysbindin-null mutant (sandy) mice.
Our data suggest that dysbindin is functionally interrelated to the
ubiquitin-proteasome system and offer a molecular repertoire for future
study of dysbindin functional networks in brain.
Collapse
Affiliation(s)
- Meng-Hsuan J Han
- National Institute of Mental Health , Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | |
Collapse
|
4
|
Alizadeh F, Tabatabaiefar MA, Ghadiri M, Yekaninejad MS, Jalilian N, Noori-Daloii MR. Association of P1635 and P1655 polymorphisms in dysbindin (DTNBP1) gene with schizophrenia. Acta Neuropsychiatr 2012; 24:155-159. [PMID: 26953008 DOI: 10.1111/j.1601-5215.2011.00598.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Schizophrenia (SCZ) is a severe psychiatric disorder with a lifetime prevalence of approximately 1% in most of the populations studied. SCZ is multifactorial with the contribution of multiple susceptibility genes that could act in conjunction with epigenetic processes and environmental factors. There is some evidence supporting the association between genetic variants in dysbindin (DTNBP1) gene and SCZ in populations. In this study, we investigated the association between polymorphisms P1635 and P1655 in dysbindin gene with SCZ. METHODS Totally, 115 unrelated patients with SCZ and 117 unrelated healthy volunteers were studied. Genomic DNA was extracted from blood. Genotyping was done with the PCR-RFLP method. The allele and genotype associations were analysed with X 2 test. The Benjamini-Hochberg procedure was used to correct p values for multiple comparisons. RESULTS The results showed no significant difference between patients and controls in allelic frequencies or genotypic distributions of SNP P1635 (p = 0.809), but a significant difference between the case and control groups for SNP P1655 (p = 0.009) was found. We could also find a significant positive association between A-C haplotype and SCZ (OR = 1.7, 95% CI 1.18-2.42; p = 0.004, p c = 0.02) and a protective effect for A-G haplotype (p = 0.003, OR = 0.57, 95% CI 1.18-2.42; p = 0.003, p c = 0.02). CONCLUSION This study may provide further support for the association between SNP polymorphisms in DTNBP1 and SCZ in the Iranian population. Studies with more markers and subjects for various populations will be necessary to understand the genetic contribution of the gene to the development of SCZ.
Collapse
Affiliation(s)
- Fatemeh Alizadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Ghadiri
- Department of Psychiatrics, Tehran Psychiatric Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Biostatics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Jalilian
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
5
|
Strohmaier J, Frank J, Wendland JR, Schumacher J, Jamra RA, Treutlein J, Nieratschker V, Breuer R, Mattheisen M, Herms S, Mühleisen TW, Maier W, Nöthen MM, Cichon S, Rietschel M, Schulze TG. A reappraisal of the association between Dysbindin (DTNBP1) and schizophrenia in a large combined case-control and family-based sample of German ancestry. Schizophr Res 2010; 118:98-105. [PMID: 20083391 PMCID: PMC2856768 DOI: 10.1016/j.schres.2009.12.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 12/08/2009] [Accepted: 12/20/2009] [Indexed: 01/14/2023]
Abstract
BACKGROUND Dysbindin (DTNBP1) is a widely studied candidate gene for schizophrenia (SCZ); however, inconsistent results across studies triggered skepticism towards the validity of the findings. In this HapMap-based study, we reappraised the association between Dysbindin and SCZ in a large sample of German ethnicity. METHOD Six hundred thirty-four cases with DSM-IV SCZ, 776 controls, and 180 parent-offspring trios were genotyped for 38 Dysbindin SNPs. We also studied two phenotypically-defined subsamples: 147 patients with a positive family history of SCZ (FH-SCZ+) and SCZ patients characterized for cognitive performance with Trail-Making Tests A and B (TMT-A: n=219; TMT-B: n=247). Given previous evidence of gene-gene interactions in SCZ involving the COMT gene, we also assessed epistatic interactions between Dysbindin markers and 14 SNPs in COMT. RESULTS No association was detected between Dysbindin markers and SCZ, or in the FH-SCZ+ subgroup. Only one marker (rs1047631, previously reported to be part of a risk haplotype), showed a nominally significant association with performance on TMT-A and TMT-B; these findings did not remain significant after correction for multiple comparisons. Similarly, no pair-wise epistatic interactions between Dysbindin and COMT markers remained significant after correction for 504 pair-wise comparisons. CONCLUSIONS Our results, based on one of the largest samples of European Caucasians and using narrowly-defined criteria for SCZ, do not support the etiological involvement of Dysbindin markers in SCZ. Larger samples may be needed in order to unravel Dysbindin's possible role in the genetic basis of proposed intermediate phenotypes of SCZ or to detect epistatic interactions.
Collapse
Affiliation(s)
- Jana Strohmaier
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Josef Frank
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Jens R. Wendland
- Unit on the Genetic Basis of Mood and Anxiety Disorders, NIMH, NIH, Bethesda, MD, USA
| | - Johannes Schumacher
- Unit on the Genetic Basis of Mood and Anxiety Disorders, NIMH, NIH, Bethesda, MD, USA
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Jens Treutlein
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Vanessa Nieratschker
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - René Breuer
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Manuel Mattheisen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Stefan Herms
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Thomas W. Mühleisen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Markus M. Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Sven Cichon
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Marcella Rietschel
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Thomas G. Schulze
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
- Unit on the Genetic Basis of Mood and Anxiety Disorders, NIMH, NIH, Bethesda, MD, USA
| |
Collapse
|
6
|
Dick DM, Riley B, Kendler KS. Nature and nurture in neuropsychiatric genetics: where do we stand? DIALOGUES IN CLINICAL NEUROSCIENCE 2010. [PMID: 20373663 PMCID: PMC3181950 DOI: 10.31887/dcns.2010.12.1/ddick] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Both genetic and nongenetic risk factors, as well as interactions and correlations between them, are thought to contribute to the etiology of psychiatric and behavioral phenotypes. Genetic epidemiology consistently supports the involvement of genes in liability. Molecular genetic studies have been less successful in identifying liability genes, but recent progress suggests that a number of specific genes contributing to risk have been identified. Collectively, the results are complex and inconsistent, with a single common DNA variant in any gene influencing risk across human populations. Few specific genetic variants influencing risk have been unambiguously identified. Contemporary approaches, however, hold great promise to further elucidate liability genes and variants, as well as their potential inter-relationships with each other and with the environment. We will review the fields of genetic epidemiology and molecular genetics, providing examples from the literature to illustrate the key concepts emerging from this work.
Collapse
Affiliation(s)
- Danielle M Dick
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Richmond 23298, USA
| | | | | |
Collapse
|
7
|
Dwyer S, Carroll L, Mantripragada KK, Owen MJ, O'Donovan MC, Williams NM. Mutation screening of the DTNBP1 exonic sequence in 669 schizophrenics and 710 controls using high-resolution melting analysis. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:766-74. [PMID: 19859905 DOI: 10.1002/ajmg.b.31045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A large number of independent studies have reported evidence for association between the dysbindin gene (DTNBP1) and schizophrenia; however, specific risk alleles have been not been implicated as causal. In this study we set out to perform a comprehensive assessment of DNA variation within the exonic sequence of DTNBP1. To achieve this we optimized a high-resolution melting analysis (HRMA) protocol and applied it to screen all 11 DTNBP1 exons for DNA variants in a sample of 669 cases and 710 controls from the UK. Despite identifying seven exonic variants with a minor allele frequency (MAF) >0.01, none was significantly associated with schizophrenia (minimum P = 0.054), showing that the strong association we previously reported in this sample is not the result of association to a common functional variant located within the exonic sequence of any of the three major DTNBP1 transcripts. We also sought additional support for DTNBP1 as a susceptibility gene for schizophrenia by testing the hypothesis that rare exonic highly penetrant variants exist at the DTNBP1 locus. Our analysis failed to identify an enrichment of rare functional variants in the patients compared to the controls. Taken as a whole, this data demonstrate that if DTNBP1 is a risk gene for schizophrenia then risk is not conferred by mutations that affect the structure of the dysbindin protein.
Collapse
Affiliation(s)
- S Dwyer
- MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, Cardiff University, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
8
|
A genetic variation in the dysbindin gene(DTNBP1)is associated with memory performance in healthy controls. World J Biol Psychiatry 2010. [DOI: 10.3109/15622970902736503] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Bergen SE, Fanous AH, Kuo PH, Wormley BK, O’Neill FA, Walsh D, Riley BP, Kendler KS. No association of dysbindin with symptom factors of schizophrenia in an Irish case-control sample. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:700-705. [PMID: 19760674 PMCID: PMC2859300 DOI: 10.1002/ajmg.b.31029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Robust associations between the dysbindin gene (DTNBP1) and schizophrenia have been demonstrated in many but not all samples, and evidence that this gene particularly predisposes to negative symptoms in this illness has been presented. The current study sought to replicate the previously reported negative symptom associations in an Irish case-control sample. Association between dysbindin and schizophrenia has been established in this cohort, and a factor analysis of the assessed symptoms yielded three factors, Positive, Negative, and Schneiderian. The sequential addition method was applied using UNPHASED to assess the relationship between these symptom factors and the high-risk haplotype. No associations were detected for any of the symptom factors indicating that the dysbindin risk haplotype does not predispose to a particular group of symptoms in this sample. Several possibilities, such as differing risk haplotypes, may explain this finding.
Collapse
Affiliation(s)
- Sarah E. Bergen
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia,Correspondence to: Sarah E. Bergen, Department of Human Genetics, Medical College of Virginia, Virginia Commonwealth University, Box 980126, Richmond, VA 23219.
| | - Ayman H. Fanous
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia,Washington VA Medical Center, Washington, District of Columbia,Department of Psychiatry, Georgetown University Medical Center, Washington, District of Columbia
| | - Po-Hsiu Kuo
- Department of Public Health, National Taiwan University, Taipei, Taiwan
| | - Brandon K. Wormley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | | | | | - Brien P. Riley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - Kenneth S. Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
10
|
Riley B, Kuo PH, Maher BS, Fanous AH, Sun J, Wormley B, O’Neill FA, Walsh D, Zhao Z, Kendler KS. The dystrobrevin binding protein 1 (DTNBP1) gene is associated with schizophrenia in the Irish Case Control Study of Schizophrenia (ICCSS) sample. Schizophr Res 2009; 115:245-53. [PMID: 19800201 PMCID: PMC2783814 DOI: 10.1016/j.schres.2009.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 09/01/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND DTNBP1 is associated with schizophrenia in many studies, but the associated alleles and haplotypes vary between samples. METHOD We assessed nine single nucleotide polymorphisms (SNPs) in this gene for association with schizophrenia in a new sample of 1021 cases and 626 controls from Ireland. RESULTS Four SNPs give evidence of association (0.000018<p<0.045), most strongly with the common allele at rs760761. A haplotype of the common alleles of five markers (including rs760761) and the minor allele of rs2619538 overlapping the 5' end of the DTNBP1 gene also gives evidence for association (p=0.0002). Secondary analyses showed no difference in the association signal based on sex or family history. These results are in agreement with the most consistently observed association with common alleles and common-allele haplotypes, reported in a previous study of Irish cases and controls but not in an Irish high-density family sample. Our results do not support the prior report from a Swedish sample of increased association in cases with a family history of psychotic illness. Comparison of human, chimpanzee and rhesus sequence suggest that rs760761 is a particularly variable position in the primate lineage. CONCLUSION This study provides further evidence from a large case/control sample for association of common DTNBP1 alleles and haplotypes with schizophrenia.
Collapse
Affiliation(s)
- Brien Riley
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA.
| | - Po-Hsiu Kuo
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Brion S. Maher
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA, Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Ayman H. Fanous
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA, Department of Psychiatry, Georgetown University School of Medicine, Washington DC, USA, Mental Health Service Line, Washington VA Medical Center, Washington DC, USA
| | - Jingchun Sun
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Brandon Wormley
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Zhongming Zhao
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Kenneth S. Kendler
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA, Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
11
|
Lin SH, Liu CM, Liu YL, Fann CSJ, Hsiao PC, Wu JY, Hung SI, Chen CH, Wu HM, Jou YS, Liu SK, Hwang TJ, Hsieh MH, Chang CC, Yang WC, Lin JJ, Chou FHC, Faraone SV, Tsuang MT, Hwu HG, Chen WJ. Clustering by neurocognition for fine mapping of the schizophrenia susceptibility loci on chromosome 6p. GENES, BRAIN, AND BEHAVIOR 2009; 8:785-94. [PMID: 19694819 PMCID: PMC4286260 DOI: 10.1111/j.1601-183x.2009.00523.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chromosome 6p is one of the most commonly implicated regions in the genome-wide linkage scans of schizophrenia, whereas further association studies for markers in this region were inconsistent likely due to heterogeneity. This study aimed to identify more homogeneous subgroups of families for fine mapping on regions around markers D6S296 and D6S309 (both in 6p24.3) as well as D6S274 (in 6p22.3) by means of similarity in neurocognitive functioning. A total of 160 families of patients with schizophrenia comprising at least two affected siblings who had data for eight neurocognitive test variables of the continuous performance test (CPT) and the Wisconsin card sorting test (WCST) were subjected to cluster analysis with data visualization using the test scores of both affected siblings. Family clusters derived were then used separately in family-based association tests for 64 single nucleotide polymorphisms (SNPs) covering the region of 6p24.3 and 6p22.3. Three clusters were derived from the family-based clustering, with deficit cluster 1 representing deficit on the CPT, deficit cluster 2 representing deficit on both the CPT and the WCST, and a third cluster of nondeficit. After adjustment using false discovery rate for multiple testing, SNP rs13873 and haplotype rs1225934-rs13873 on BMP6-TXNDC5 genes were significantly associated with schizophrenia for the deficit cluster 1 but not for the deficit cluster 2 or nondeficit cluster. Our results provide further evidence that the BMP6-TXNDC5 locus on 6p24.3 may play a role in the selective impairments on sustained attention of schizophrenia.
Collapse
Affiliation(s)
- Sheng-Hsiang Lin
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
- Genetic Epidemiology Core Laboratory, Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Li Liu
- Division of Mental Health and Substance Abuse Research, National Health Research Institutes, Zhunan, Taiwan
| | | | - Po-Chang Hsiao
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
- Genetic Epidemiology Core Laboratory, Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei, Taiwan
| | - Jer-Yuarn Wu
- National Genotyping Center, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shuen-Iu Hung
- National Genotyping Center, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Houh Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Han-Ming Wu
- Department of Mathematics, Tamkang University, Taipei, Taiwan
| | - Yuh-Shan Jou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shi K. Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Tzung J. Hwang
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming H. Hsieh
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Wei-Chih Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Molecular Medicine Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Jin-Jia Lin
- Department of Psychiatry, Chimei Medical Center, Tainan, Taiwan
| | | | - Stephen V. Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ming T. Tsuang
- Harvard Institute of Psychiatric Epidemiology and Genetics, and Departments of Epidemiology and Psychiatry, Harvard University, Boston, Massachusetts, USA
- Center for Behavioral Genomics, Department of Psychiatry, University of California, San Diego, California, USA
| | - Hai-Gwo Hwu
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Wei J. Chen
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
- Genetic Epidemiology Core Laboratory, Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
12
|
Dutt A, McDonald C, Dempster E, Prata D, Shaikh M, Williams I, Schulze K, Marshall N, Walshe M, Allin M, Collier D, Murray R, Bramon E. The effect of COMT, BDNF, 5-HTT, NRG1 and DTNBP1 genes on hippocampal and lateral ventricular volume in psychosis. Psychol Med 2009; 39:1783-97. [PMID: 19573260 DOI: 10.1017/s0033291709990316] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Morphometric endophenotypes which have been proposed for psychotic disorders include lateral ventricular enlargement and hippocampal volume reductions. Genetic epidemiological studies support an overlap between schizophrenia and bipolar disorder, and COMT, BDNF, 5-HTT, NRG1 and DTNBP1 genes have been implicated in the aetiology of both these disorders. This study examined associations between these candidate genes and morphometric endophenotypes for psychosis. METHOD A total of 383 subjects (128 patients with psychosis, 194 of their unaffected relatives and 61 healthy controls) from the Maudsley Family Psychosis Study underwent structural magnetic resonance imaging and genotyping. The effect of candidate genes on brain morphometry was examined using linear regression models adjusting for clinical group, age, sex and correlations between members of the same family. RESULTS The results showed no evidence of association between variation in COMT genotype and lateral ventricular, and left or right hippocampal volumes. Neither was there any effect of the BDNF, 5-HTTLPR, NRG1 and DTNBP1 genotypes on these regional brain volumes. CONCLUSIONS Abnormal hippocampal and lateral ventricular volumes are among the most replicated endophenotypes for psychosis; however, the influences of COMT, BDNF, 5-HTT, NRG1 and DTNBP1 genes on these key brain regions must be very subtle if at all present.
Collapse
Affiliation(s)
- A Dutt
- NIHR Biomedical Research Centre, Institute of Psychiatry (King's College London)/South London and Maudsley NHS Foundation Trust, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Whole genome association study in a homogenous population in Shandong peninsula of China reveals JARID2 as a susceptibility gene for schizophrenia. J Biomed Biotechnol 2009; 2009:536918. [PMID: 19884986 PMCID: PMC2768871 DOI: 10.1155/2009/536918] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/21/2009] [Accepted: 07/29/2009] [Indexed: 02/04/2023] Open
Abstract
DNA pooling can provide an economic and efficient way to detect susceptibility loci to complex diseases. We carried out a genome screen with 400 microsatellite markers spaced at approximately 10 cm in two DNA pools consisting of 119 schizophrenia (SZ) patients and 119 controls recruited from a homogenous population in the Chang Le area of the Shandong peninsula of China. Association of D6S289, a dinucleotide repeat polymorphism in the JARID2 gene with SZ, was found and confirmed by individual genotyping (X2 = 17.89; P = .047). In order to refine the signal, we genotyped 14 single nucleotide polymorphisms (SNPs) covering JARID2 and the neighboring gene, DNTBP1, in an extended sample of 309 cases and 309 controls from Shandong peninsula (including the samples from the pools). However, rs2235258 and rs9654600 in JARID2 showed association in allelic, genotypic and haplotypic tests with SZ patients from Chang Le area. This was not replicates in the extended sample, we conclude that JARID2 could be a susceptibility gene for SZ.
Collapse
|
14
|
Hashimoto R, Noguchi H, Hori H, Ohi K, Yasuda Y, Takeda M, Kunugi H. Association between the dysbindin gene (DTNBP1) and cognitive functions in Japanese subjects. Psychiatry Clin Neurosci 2009; 63:550-6. [PMID: 19496996 DOI: 10.1111/j.1440-1819.2009.01985.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AIM The dysbindin gene (dystrobrevin binding protein 1: DTNBP1) is a susceptibility gene for schizophrenia. Susceptibility genes for schizophrenia have been hypothesized to mediate liability for the disorder at least partly by influencing cognitive performance. This report investigated the relationship between cognitive function and the dysbindin gene. METHODS The possible association between a single nucleotide polymorphism (SNP) of DTNBP1 (rs2619539: P1655), which is a risk-independent SNP for schizophrenia in Japanese populations, and memory and IQ was investigated in 70 schizophrenia patients and 165 healthy volunteers in a Japanese population. RESULTS This SNP was associated with two memory scales, verbal memory and general memory, on the Wechsler Memory Scale-Revised (WMS-R), and three subcategories of the Wechsler Adult Intelligence Scale-Revised (WAIS-R), vocabulary, similarities and picture completion in healthy subjects. The SNP, however, did not influence either the indices of WMS-R, IQ or subcategories of WAIS-R in schizophrenia patients. CONCLUSION A risk-independent SNP in DTNBP1 may have an impact on cognitive functions such as memory and IQ in healthy subjects.
Collapse
Affiliation(s)
- Ryota Hashimoto
- Osaka-Hamamatsu Joint Research Center for Child Mental Development, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Pae CU, Mandelli L, De Ronchi D, Kim JJ, Jun TY, Patkar AA, Serretti A. Dysbindin gene (DTNBP1) and schizophrenia in Korean population. Eur Arch Psychiatry Clin Neurosci 2009; 259:137-42. [PMID: 19252939 DOI: 10.1007/s00406-008-0830-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 04/30/2008] [Indexed: 12/18/2022]
Abstract
Dysbindin gene (DTNBP1) has been consistently reported to be associated with schizophrenia. However data from East Asian population has been sparse and inconsistent till today. This study tried to replicate the genetic association of DTNBP1 with schizophrenia in a large Korean sample, as well as analyzing the association of DTNBP1 with clinical variables. Nine hundred and eight (908) patients with schizophrenia and 601 controls were investigated. The high-throughput genotyping method using pyrosequencer (Biotage AB, Sweden) was used for genotyping 4 SNPs (rs3213207, rs1011313, rs760761, and rs2619522). Haplotype analyses revealed a significant association with schizophrenia (P < 0.0001) with the haplotypes A-C-C-C and A-C-T-A having an eminent protective effect toward schizophrenia. The major contribution to the difference in the haplotype distribution between patients and the controls was the rs760761 (C/T) and rs2619522 (A/C) haplotypes (P < 0.0001). No association of DTNBP1 with other clinical variables was found. In conclusion, the present study suggests a possible protective effect of rare DTNBP1 variants in schizophrenia, although subsequent studies in different ethnic groups are warranted.
Collapse
Affiliation(s)
- Chi-Un Pae
- Department of Psychiatry, The Catholic University of Korea College of Medicine, 505 Banpo-Dong, Seocho-Gu, Seoul 137-701, South Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Sodhi M, Wood KH, Meador-Woodruff J. Role of glutamate in schizophrenia: integrating excitatory avenues of research. Expert Rev Neurother 2008; 8:1389-406. [PMID: 18759551 DOI: 10.1586/14737175.8.9.1389] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Schizophrenia is a debilitating lifelong disorder affecting up to 1% of the population worldwide, producing significant financial and emotional hardship for patients and their families. As yet, the causes of schizophrenia and the mechanism of action of antipsychotic drugs are unknown, and many patients do not respond well to currently available medications. Attempts to find risk factors for the disorder using epidemiological methods have shown that schizophrenia is highly heritable, and path analyses predict that the disorder is caused by several genes in combination with nongenetic factors. Therefore, intensive research efforts have been made to identify genes creating vulnerability to schizophrenia and also genes predicting response to treatment. Interactions of the glutamatergic system with dopaminergic and serotonergic circuitry are crucial for normal brain function, and their disruption may be a mechanism by which the pathophysiology of schizophrenia is manifest. Genes within the glutamatergic system are therefore strong candidates for investigation, and these include the glutamate receptor genes in addition to genes encoding neuregulin, dysbindin, D-amino acid oxidase and G72/G30. These genetic studies could eventually reveal new targets for antipsychotic drug treatment, which currently focuses on inhibition of the dopaminergic system. However, a recent breakthrough indicates clinical efficacy of a drug stimulating the metabotropic glutamate receptor II, LY2140023, which has improved efficacy for negative and cognitive symptoms of schizophrenia. Studies of larger patient samples are required to consolidate these data. Further investigation of glutamatergic targets is likely to reinvigorate antipsychotic drug development.
Collapse
Affiliation(s)
- Monsheel Sodhi
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, 1720 7th Avenue Sth, Rm 590C CIRC, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
17
|
Bhardwaj SK, Baharnoori M, Sharif-Askari B, Kamath A, Williams S, Srivastava LK. Behavioral characterization of dysbindin-1 deficient sandy mice. Behav Brain Res 2008; 197:435-41. [PMID: 18984010 DOI: 10.1016/j.bbr.2008.10.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/09/2008] [Accepted: 10/07/2008] [Indexed: 12/15/2022]
Abstract
Dysbindin-1 (dystrobrevin binding protein-1) has been reported as a candidate gene associated with schizophrenia. Dysbindin-1 mRNA and protein levels are significantly reduced in the prefrontal cortex and hippocampus of schizophrenia subjects. To understand the in-vivo functions of dysbindin-1, we studied schizophrenia relevant behaviors in adult male Sandy homozygous (sdy/sdy) and heterozygous (sdy/+) mice that have a natural mutation in dysbindin-1 gene (on a DBA/2J background) resulting in loss of protein expression. Spontaneous locomotor activity of sdy/sdy and sdy/+ mice in novel environment was not significantly different from DBA/2J controls. However, on repeated testing in the same environment for 7 days, sdy/sdy mice, in contrast to DBA/2J controls showed a lack of locomotor habituation. Locomotor activating effect of a low dose of d-amphetamine (2.5 mg/kg i.p.), a behavioral measure of mesolimbic dopamine activity, was significantly reduced in the mutant mice. Interestingly, sdy/sdy mice showed enhanced locomotor sensitization to repeated five daily injection of amphetamine. Possible cognitive impairment in Sandy mutants was revealed in novel object recognition test as sdy/sdy and sdy/+ mice spent significantly less time exploring novel objects compared to DBA/2J. Sdy/sdy mice also showed deficits in emotionally motivated learning and memory showing greater freezing response to auditory conditioned stimulus (CS) in fear conditioning paradigm. In thermal nociceptive test, the latency of paw withdrawal in sdy/sdy and sdy/+ animals was significantly higher compared to DBA/2J indicating hypoalgesia in the mutants. Taken together, these data suggest that dysbindin-1 gene deficiency leads to significant changes in cognition and altered responses to psychostimulants.
Collapse
Affiliation(s)
- Sanjeev K Bhardwaj
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 LaSalle Boul, Montreal H4H 1R3, QC, Canada
| | | | | | | | | | | |
Collapse
|
18
|
DTNBP1 haplotype influences baseline assessment scores of schizophrenic in-patients. Neurosci Lett 2008; 440:150-4. [DOI: 10.1016/j.neulet.2008.05.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/30/2008] [Accepted: 05/14/2008] [Indexed: 02/06/2023]
|
19
|
Liu CM, Liu YL, Fann CSJ, Yang WC, Wu JY, Hung SI, Chen WJ, Chueh CM, Liu WM, Liu CC, Hsieh MH, Hwang TJ, Faraone SV, Tsuang MT, Hwu HG. No association evidence between schizophrenia and dystrobrevin-binding protein 1 (DTNBP1) in Taiwanese families. Schizophr Res 2007; 93:391-8. [PMID: 17407805 DOI: 10.1016/j.schres.2007.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 02/06/2007] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
Several linkage studies have shown significant linkage of schizophrenia to chromosome 6p region, which includes the positional candidate genes, Dystrobrevin-binding protein 1 (DTNBP1). The aim was to examine the association evidence of the candidate gene in 693 Taiwanese families with at least two affected siblings of schizophrenia. We genotyped nine SNPs of this gene with average intermarker distance of 17 kb. Intermarker linkage disequilibrium was calculated with GOLD. Single locus and haplotype association analyses were performed with TRANSMIT program. We found no significant association between schizophrenia and DTNBP1 either through single locus or haplotype analyses. We failed to replicate the association evidence between DTNBP1 and schizophrenia and this gene may not play a major role in the etiology of schizophrenia in this Taiwanese family sample.
Collapse
Affiliation(s)
- Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Duan J, Martinez M, Sanders AR, Hou C, Burrell GJ, Krasner AJ, Schwartz DB, Gejman PV. DTNBP1 (Dystrobrevin binding protein 1) and schizophrenia: association evidence in the 3' end of the gene. Hum Hered 2007; 64:97-106. [PMID: 17476109 PMCID: PMC2861529 DOI: 10.1159/000101961] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Accepted: 01/29/2007] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES Dysbindin (DTNBP1) has been identified as a susceptibility gene for schizophrenia (SZ) through a positional approach. However, a variety of single nucleotide polymorphisms (SNPs) and haplotypes, in different parts of the gene, have been reported to be associated in different samples, and a precise molecular mechanism of disease remains to be defined. We have performed an association study with two well-characterized family samples not previously investigated at the DTNBP1 locus. METHODS We examined 646 subjects in 136 families with SZ, largely of European ancestry (EA), genotyping 26 SNPs in DTNBP1. RESULTS Three correlated markers (rs875462, rs760666, and rs7758659) at the 3' region of DTNBP1 showed evidence for association to SZ (p = 0.004), observed in both the EA (p = 0.031) and the African American (AA) subset (p = 0.045) with the same over-transmitted allele. The most significant haplotype in our study was rs7758659-rs3213207 (global p = 0.0015), with rs3213207 being the most frequently reported associated marker in previous studies. A non-conservative missense variant (Pro272Ser) in the 3' region of DTNBP1 that may impair DTNBP1 function was more common in SZ probands (8.2%) than in founders (5%) and in dbSNP (2.1%), but did not reach statistical significance. CONCLUSION Our results provide evidence for an association of SZ with SNPs at the 3' end of DTNBP1 in the samples studied.
Collapse
Affiliation(s)
- Jubao Duan
- Center for Psychiatric Genetics, Department of Psychiatry and Behavioral Sciences, Evanston Northwestern Healthcare & Feinberg School of Medicine, Northwestern University, Evanston, Ill, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Joo EJ, Lee KY, Jeong SH, Chang JS, Ahn YM, Koo YJ, Kim YS. Dysbindin gene variants are associated with bipolar I disorder in a Korean population. Neurosci Lett 2007; 418:272-5. [PMID: 17433541 DOI: 10.1016/j.neulet.2007.03.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/14/2007] [Accepted: 03/16/2007] [Indexed: 10/23/2022]
Abstract
The dysbindin gene (DTNBP1) has been associated with schizophrenia in several populations. Because the clinical characteristics of schizophrenia and bipolar disorder overlap in many respects and findings from genetic studies have suggested common genes between them, we conducted a case control association study of bipolar disorder in Korea to investigate the genetic association between DTNBP1 and bipolar disorder. In total, 163 patients with bipolar disorder and 350 controls were evaluated. We genotyped three single nucleotide polymorphisms of DTNBP1 (SNP A, P1763, and P1320) and analyzed the allele, genotype, and haplotype associations with bipolar disorder. We found significant genotypic associations with P1763 and P1320, but no association with SNP A in the bipolar I group. When we included bipolar II and schizoaffective disorder in the affected phenotype, the significance decreased. A positive association was observed between the SNP A-P1763 haplotype and the bipolar I phenotype. This haplotype association was lost when we either broadened our phenotype or included P1320 in a haplotype. The positive results of the present study lost significance after a Bonferroni correction for multiple testing. These findings are consistent with previous findings that showed a positive association of DTNBP1 with bipolar disorders. Moreover, our results suggest that DTNBP1 may contribute more to bipolar I disorder than bipolar II disorder or schizoaffective disorder. Further comprehensive studies will be required to clarify these association, however, it seems likely that DTNBP1 is a susceptibility gene for bipolar disorder.
Collapse
Affiliation(s)
- E J Joo
- Department of Neuropsychiatry, Eulji University School of Medicine, Eulji General Hospital, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Rees MLJ, Lien CF, Górecki DC. Dystrobrevins in muscle and non-muscle tissues. Neuromuscul Disord 2007; 17:123-34. [PMID: 17251025 DOI: 10.1016/j.nmd.2006.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/26/2006] [Accepted: 11/20/2006] [Indexed: 01/23/2023]
Abstract
The alpha- and beta-dystrobrevins belong to the family of dystrophin-related and dystrophin-associated proteins. As constituents of the dystrophin-associated protein complex, alpha-dystrobrevin was believed to have a role predominantly in muscles and beta-dystrobrevin in non-muscle tissues. Recent reports described novel localisations and molecular characteristics of alpha-dystrobrevin isoforms in non-muscle tissues (developing and adult). While single and double knockout studies have revealed distinct functions of dystrobrevin in some tissues, these also suggested a strong compensatory mechanism, where dystrobrevins displaying overlapping tissue expression pattern and structure/function similarity can substitute each other. No human disease has been unequivocally associated within mutations of dystrobrevin genes. However, some significant exceptions to these overlapping expression patterns, mainly in the brain, suggest that dystrobrevin mutations might underlie some specific motor, behavioural or cognitive defects. Dystrobrevin binding partner DTNBP1 (dysbindin) is a probable susceptibility gene for schizophrenia and bipolar affective disorder in some populations. As dysbindin abnormality is linked to Hermansky-Pudlak syndrome, dystrobrevins and/or their binding partners may also be required for proper function of other non-muscle tissues.
Collapse
Affiliation(s)
- Melissa L J Rees
- Department of Molecular Medicine, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | | | | |
Collapse
|