1
|
Szinyei AZ, Maus B, Schmid JQ, Klimek M, Segelcke D, Pogatzki-Zahn EM, Pradier B, Faber C. Systematic evaluation of adhesives for implant fixation in multimodal functional brain MRI. MAGMA (NEW YORK, N.Y.) 2025; 38:191-205. [PMID: 39812910 PMCID: PMC11913989 DOI: 10.1007/s10334-024-01220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
OBJECTIVE Invasive multimodal fMRI in rodents is often compromised by susceptibility artifacts from adhesives used to secure cranial implants. We hypothesized that adhesive type, shape, and field strength significantly affect susceptibility artifacts, and systematically evaluated various adhesives. MATERIALS AND METHODS Thirty-one adhesives were applied in constrained/unconstrained geometries and imaged with T2*-weighted EPI at 7.0 and 9.4 T to assess artifact depths. Spherical and flat patch shapes, both unconstrained geometries, were compared for artifact depth in vitro and in vivo. Adhesion strength was assessed on post-mortem mouse crania. Finally, an integrative scoring system rated adhesive properties, including artifact depth, handling, and adhesion strength. RESULTS Susceptibility artifacts were two times larger at 9.4 than at 7.0 T (p < 0.001), strongest at the patch edges, and deeper with spherical than flat patches (p < 0.05). Artifact size depended more on shape and volume after curing than adhesive type. Our integrative scoring system showed resins, bonding agents, and acrylics offered the best overall properties, while silicones and cements were less favorable. DISCUSSION Adhesive selection requires balancing handling, curing time, strength, and artifact depth. To minimize artifacts, adhesives should be applied in a spread-out, flat and thin layer. Our integrative scoring system supports classification of future classes of adhesives.
Collapse
Affiliation(s)
- Anna Zsófia Szinyei
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Albert-Schweitzer-Campus 1, building A16, 48149, Münster, Germany
| | - Bastian Maus
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Albert-Schweitzer-Campus 1, building A16, 48149, Münster, Germany
| | - Jonas Q Schmid
- Department of Orthodontics, University of Münster, Albert-Schweitzer-Campus 1, building W30, 48149, Münster, Germany
| | - Matthias Klimek
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Albert-Schweitzer-Campus 1, building W1, 48149, Münster, Germany
| | - Daniel Segelcke
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, building A1, 48149, Münster, Germany
| | - Esther M Pogatzki-Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, building A1, 48149, Münster, Germany
| | - Bruno Pradier
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Albert-Schweitzer-Campus 1, building A16, 48149, Münster, Germany
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, building A1, 48149, Münster, Germany
| | - Cornelius Faber
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Albert-Schweitzer-Campus 1, building A16, 48149, Münster, Germany.
| |
Collapse
|
2
|
Wu C, Wu H, Zhou C, Guan X, Guo T, Wu J, Chen J, Wen J, Qin J, Tan S, Duanmu X, Yuan W, Zheng Q, Zhang B, Xu X, Zhang M. Neurovascular coupling alteration in drug-naïve Parkinson's disease: The underlying molecular mechanisms and levodopa's restoration effects. Neurobiol Dis 2024; 191:106406. [PMID: 38199273 DOI: 10.1016/j.nbd.2024.106406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) patients exhibit an imbalance between neuronal activity and perfusion, referred to as abnormal neurovascular coupling (NVC). Nevertheless, the underlying molecular mechanism and how levodopa, the standard treatment in PD, regulates NVC is largely unknown. MATERIAL AND METHODS A total of 52 drug-naïve PD patients and 49 normal controls (NCs) were enrolled. NVC was characterized in vivo by relating cerebral blood flow (CBF) and amplitude of low-frequency fluctuations (ALFF). Motor assessments and MRI scanning were conducted on drug-naïve patients before and after levodopa therapy (OFF/ON state). Regional NVC differences between patients and NCs were identified, followed by an assessment of the associated receptors/transporters. The influence of levodopa on NVC, CBF, and ALFF within these abnormal regions was analyzed. RESULTS Compared to NCs, OFF-state patients showed NVC dysfunction in significantly lower NVC in left precentral, postcentral, superior parietal cortex, and precuneus, along with higher NVC in left anterior cingulate cortex, right olfactory cortex, thalamus, caudate, and putamen (P-value <0.0006). The distribution of NVC differences correlated with the density of dopaminergic, serotonin, MU-opioid, and cholinergic receptors/transporters. Additionally, levodopa ameliorated abnormal NVC in most of these regions, where there were primarily ALFF changes with limited CBF modifications. CONCLUSION Patients exhibited NVC dysfunction primarily in the striato-thalamo-cortical circuit and motor control regions, which could be driven by dopaminergic and nondopaminergic systems, and levodopa therapy mainly restored abnormal NVC by modulating neuronal activity.
Collapse
Affiliation(s)
- Chenqing Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoting Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwen Chen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Wen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmei Qin
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sijia Tan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojie Duanmu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weijin Yuan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianshi Zheng
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Bidirectional role of acupuncture in the treatment of drug addiction. Neurosci Biobehav Rev 2021; 126:382-397. [PMID: 33839169 DOI: 10.1016/j.neubiorev.2021.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Drug addiction is a chronically relapsing disorder, affecting people from all walks of life. Studies of acupuncture effects on drug addiction are intriguing in light of the fact that acupuncture can be used as a convenient therapeutic intervention for treating drug addiction by direct activation of brain pathway. The current review aims to discuss the neurobiological mechanisms underlying acupuncture's effectiveness in the treatment of drug addiction, on the basis of two different theories (the incentive sensitization theory and the opponent process theory) that have seemingly opposite view on the role of the mesolimbic reward pathways in mediating compulsive drug-seeking behavior. This review provides evidence that acupuncture may reduce relapse to drug-seeking behavior by regulating neurotransmitters involved in drug craving modulation via somatosensory afferent mechanisms. Also, acupuncture normalizes hyper-reactivity or hypoactivity of the mesolimbic dopamine system in these opposed processes in drug addiction, suggesting bidirectional role of acupuncture in regulation of drug addiction. This proposes that acupuncture may reduce drug craving by correcting both dysfunctions of the mesolimbic dopamine pathway.
Collapse
|
4
|
Human subthalamic oscillatory dynamics following somatosensory stimulation. Clin Neurophysiol 2017; 129:79-88. [PMID: 29161621 DOI: 10.1016/j.clinph.2017.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 07/20/2017] [Accepted: 10/04/2017] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Electrical median nerve somatosensory stimulation leads to a distinct modulation of cortical oscillations. Initial high frequency and gamma augmentation, as well as modulation of beta and alpha oscillations have been reported. We aimed at investigating the involvement of the subthalamic nucleus in somatosensory processing by means of local field potential recordings, since recordings during passive movements and peripheral somatosensory stimulation have suggested a prominent role. METHODS Recordings of subthalamic neuronal activity following median nerve stimulation in 11 Parkinson's disease patients were performed. Time-frequency analysis from 1 to 500 Hz was averaged and analyzed. RESULTS Several oscillatory components in response to somatosensory stimulation were revealed in the time-frequency analysis: (I) prolonged increase in alpha band power, followed by attenuation; (II) initial suppression of power followed by a subsequent rebound in the beta band; (III) early broad-frequency increase in gamma band power; (IV) and sustained increase of 160 Hz frequency oscillations throughout the trial. CONCLUSIONS These results further corroborate the involvement of the subthalamic nucleus in somatosensory processing. SIGNIFICANCE The present results not only support the notion of somatosensory processing in the subthalamic nucleus. Moreover, an improvement of somatosensory processing during subthalamic deep brain stimulation in Parkinson's disease might be accounted for by enhancement of prevailing high frequency oscillations.
Collapse
|
5
|
Ip CW, Isaias IU, Kusche-Tekin BB, Klein D, Groh J, O’Leary A, Knorr S, Higuchi T, Koprich JB, Brotchie JM, Toyka KV, Reif A, Volkmann J. Tor1a+/- mice develop dystonia-like movements via a striatal dopaminergic dysregulation triggered by peripheral nerve injury. Acta Neuropathol Commun 2016; 4:108. [PMID: 27716431 PMCID: PMC5048687 DOI: 10.1186/s40478-016-0375-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/14/2016] [Indexed: 11/10/2022] Open
Abstract
Isolated generalized dystonia is a central motor network disorder characterized by twisted movements or postures. The most frequent genetic cause is a GAG deletion in the Tor1a (DYT1) gene encoding torsinA with a reduced penetrance of 30-40 % suggesting additional genetic or environmental modifiers. Development of dystonia-like movements after a standardized peripheral nerve crush lesion in wild type (wt) and Tor1a+/- mice, that express 50 % torsinA only, was assessed by scoring of hindlimb movements during tail suspension, by rotarod testing and by computer-assisted gait analysis. Western blot analysis was performed for dopamine transporter (DAT), D1 and D2 receptors from striatal and quantitative RT-PCR analysis for DAT from midbrain dissections. Autoradiography was used to assess the functional DAT binding in striatum. Striatal dopamine and its metabolites were analyzed by high performance liquid chromatography. After nerve crush injury, we found abnormal posturing in the lesioned hindlimb of both mutant and wt mice indicating the profound influence of the nerve lesion (15x vs. 12x relative to control) resembling human peripheral pseudodystonia. In mutant mice the phenotypic abnormalities were increased by about 40 % (p < 0.05). This was accompanied by complex alterations of striatal dopamine homeostasis. Pharmacological blockade of dopamine synthesis reduced severity of dystonia-like movements, whereas treatment with L-Dopa aggravated these but only in mutant mice suggesting a DYT1 related central component relevant to the development of abnormal involuntary movements. Our findings suggest that upon peripheral nerve injury reduced torsinA concentration and environmental stressors may act in concert in causing the central motor network dysfunction of DYT1 dystonia.
Collapse
|
6
|
Differences Between Cerebrovascular and Anti-Ischemic Effects of Dopamine, Docosahexaenoyldopamine, and GABA–Docosahexaenoyldopamine Conjugate. Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1348-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Naijil G, Anju T, Jayanarayanan S, Paulose C. Curcumin pretreatment mediates antidiabetogenesis via functional regulation of adrenergic receptor subtypes in the pancreas of multiple low-dose streptozotocin-induced diabetic rats. Nutr Res 2015; 35:823-33. [DOI: 10.1016/j.nutres.2015.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 06/15/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023]
|
8
|
Chen S, Wang S, Rong P, Liu J, Zhang H, Zhang J. Acupuncture for refractory epilepsy: role of thalamus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:950631. [PMID: 25548594 PMCID: PMC4273587 DOI: 10.1155/2014/950631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 12/29/2022]
Abstract
Neurostimulation procedures like vagus nerve stimulation (VNS) and deep brain stimulation have been used to treat refractory epilepsy and other neurological disorders. While holding promise, they are invasive interventions with serious complications and adverse effects. Moreover, their efficacies are modest with less seizure free. Acupuncture is a simple, safe, and effective traditional healing modality for a wide range of diseases including pain and epilepsy. Thalamus takes critical role in sensory transmission and is highly involved in epilepsy genesis particularly the absence epilepsy. Considering thalamus serves as a convergent structure for both acupuncture and VNS and the thalamic neuronal activities can be modulated by acupuncture, we propose that acupuncture could be a promising therapy or at least a screening tool to select suitable candidates for those invasive modalities in the management of refractory epilepsy.
Collapse
Affiliation(s)
- Shuping Chen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shubin Wang
- China General Meitan Hospital, Beijing 100028, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junling Liu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongqi Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Jianliang Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
9
|
Zhang Y, Liu J, Yao J, Ji G, Qian L, Wang J, Zhang G, Tian J, Nie Y, Zhang YE, Gold MS, Liu Y. Obesity: pathophysiology and intervention. Nutrients 2014; 6:5153-83. [PMID: 25412152 PMCID: PMC4245585 DOI: 10.3390/nu6115153] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/21/2014] [Accepted: 10/29/2014] [Indexed: 01/09/2023] Open
Abstract
Obesity presents a major health hazard of the 21st century. It promotes co-morbid diseases such as heart disease, type 2 diabetes, obstructive sleep apnea, certain types of cancer, and osteoarthritis. Excessive energy intake, physical inactivity, and genetic susceptibility are main causal factors for obesity, while gene mutations, endocrine disorders, medication, or psychiatric illnesses may be underlying causes in some cases. The development and maintenance of obesity may involve central pathophysiological mechanisms such as impaired brain circuit regulation and neuroendocrine hormone dysfunction. Dieting and physical exercise offer the mainstays of obesity treatment, and anti-obesity drugs may be taken in conjunction to reduce appetite or fat absorption. Bariatric surgeries may be performed in overtly obese patients to lessen stomach volume and nutrient absorption, and induce faster satiety. This review provides a summary of literature on the pathophysiological studies of obesity and discusses relevant therapeutic strategies for managing obesity.
Collapse
Affiliation(s)
- Yi Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| | - Ju Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| | - Jianliang Yao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| | - Gang Ji
- Xijing Gastrointestinal Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Long Qian
- Department of Biomedical Engineering, Peking University, Beijing 100871, China.
| | - Jing Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| | - Guansheng Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| | - Jie Tian
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| | - Yongzhan Nie
- Xijing Gastrointestinal Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Yi Edi Zhang
- Department of Psychiatry & McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL 32610, USA.
| | - Mark S Gold
- Department of Psychiatry & McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL 32610, USA.
| | - Yijun Liu
- Department of Psychiatry & McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL 32610, USA.
| |
Collapse
|
10
|
Peng SL, Wang FN, Wang CH, Peng HH, Lu CT, Yeh CK. Using microbubbles as an MRI contrast agent for the measurement of cerebral blood volume. NMR IN BIOMEDICINE 2013; 26:1540-1546. [PMID: 23794141 DOI: 10.1002/nbm.2988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
The susceptibility differences at the gas-liquid interface of microbubbles (MBs) allow their use as an intravascular susceptibility contrast agent for in vivo MRI. However, the characteristics of MBs are very different from those of the standard gadolinium-diethylenetriaminepentaacetic acid (Gd-DPTA) contrast agent, including the size distribution and hemodynamic properties, which could influence MRI outcomes. Here, we investigate quantitatively the correlation between the relative cerebral blood volume (rCBV) derived from Gd-DTPA (rCBV(Gd)) and the MB-induced susceptibility effect (ΔR(2*MB)) by conventional dynamic susceptibility contrast MRI (DSC-MRI). Custom-made MBs had a mean diameter of 0.92 µm and were capable of inducing 4.68 ± 3.02% of the maximum signal change (MSC). The MB-associated ΔR(2*MB) was compared with rCBV(Gd) in 16 rats on 4.7-T MRI. We observed a significant effect of the time to peak (TTP) on the correlation between ΔR(2*MB) and rCBV(Gd), and also found a noticeable dependence between TTP and MSC. Our findings suggest that MBs with longer TTPs can be used for the estimation of rCBV by DSC-MRI, and emphasize the critical effect of TTP on MB-based contrast MRI.
Collapse
Affiliation(s)
- Shin-Lei Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
11
|
Zeng BY, Salvage S, Jenner P. Current Development of Acupuncture Research in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 111:141-58. [DOI: 10.1016/b978-0-12-411545-3.00007-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Inhibition of glutamate and acetylcholine release in behavioral improvement induced by electroacupuncture in parkinsonian rats. Neurosci Lett 2012; 520:32-7. [PMID: 22583765 DOI: 10.1016/j.neulet.2012.05.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/29/2012] [Accepted: 05/04/2012] [Indexed: 11/21/2022]
Abstract
Prior evidence shows that acupuncture improves symptoms in both Parkinson's disease (PD) patients and animal models. We examined the effects of high-frequency (100 Hz) electroacupuncture (EA) on behavior in a rat PD model induced by medial forebrain bundle (MFB) transection. Neurotransmitters levels in the striatum were measured using in vivo microdialysis and high performance liquid chromatography (HPLC). High-frequency EA stimulation at Dazhui (GV14) and Baihui (GV20) acupoints decreased rotational behavior induced by apomorphine (APO) and improved motor coordination, protected axotomized dopaminergic neurons from degeneration in the substantia nigra (SN), it did not increase striatal dopamine (DA) levels. However, EA stimulation at acupoints significantly decreased the abnormally elevated glutamate (Glu) and acetylcholine (ACh) levels in the lesioned side of striatum. Moreover, the Glu levels correlated significantly with survival ratios of dopaminergic neurons in the SNc and rotational bahavior. These data suggested that behavioral alleviation with EA stimulation may be associated with modulation of neurotransmitters release, such as Glu and ACh in the striatum, rather than with DA restoration.
Collapse
|
13
|
Chen YI, Ren JQ, Kaptchuk TJ, Kwong KK. Restoring cerebral dopamine homeostasis by electrical forepaw stimulation: an FMRI study. Synapse 2012; 66:331-9. [PMID: 22170513 PMCID: PMC3278158 DOI: 10.1002/syn.21516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/22/2011] [Indexed: 11/10/2022]
Abstract
Deviation of dopamine homeostasis is known to be associated with disorders like drug addiction and Parkinson's disease. As dopamine function is tightly regulated within the basal ganglia circuitry, cortical perturbation would lead to modulation of dopaminergic activity in the striatum. We proposed and tested if somatosensory activity such as forepaw stimulation could modulate dopaminergic function. Specifically, we tested in rats if electrical forepaw stimulation (EFS) could attenuate dopamine release in the brain if dopamine is excessive, and boost dopamine release if dopamine is deficient. We had previously demonstrated that EFS effectively attenuated excessive DA concentration in the striatum. We now show in this manuscript with fMRI that EFS boosted DA release on two DA deficient conditions: (1) with quinpirole challenge, and (2) partial Parkinsonism model (PD). Quinpirole alone decreased dopamine release and thus the cerebral blood volume (CBV) that was restored by EFS. EFS also succeeded in increasing CBV in the basal-ganglia circuitry of the PD rats, but not in the controls. Context-dependent connectivity analysis showed increased connectivity during the basal state in the PD rats, compared with the controls. This "enhanced" yet abnormal connectivity of PD rats was reduced post-EFS. Our results suggest that EFS resets the deficient DA system by partially increasing DA release, in the meanwhile lessening the need for recruiting extra functional network in the basal ganglia circuitry. This study shows not only the capacity of peripheral stimulation to perturb neurotransmitter function, but also the potential of peripheral stimulation to restore neurotransmitter homeostasis.
Collapse
Affiliation(s)
- Y Iris Chen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | | | | | |
Collapse
|
14
|
Hui KKS, Marina O, Liu J, Rosen BR, Kwong KK. Acupuncture, the limbic system, and the anticorrelated networks of the brain. Auton Neurosci 2010; 157:81-90. [PMID: 20494627 DOI: 10.1016/j.autneu.2010.03.022] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 11/30/2022]
Abstract
The study of the mechanism of acupuncture action was revolutionized by the use of functional magnetic resonance imaging (fMRI). Over the past decade, our fMRI studies of healthy subjects have contributed substantially to elucidating the central effect of acupuncture on the human brain. These studies have shown that acupuncture stimulation, when associated with sensations comprising deqi, evokes deactivation of a limbic-paralimbic-neocortical network, which encompasses the limbic system, as well as activation of somatosensory brain regions. These networks closely match the default mode network and the anti-correlated task-positive network described in the literature. We have also shown that the effect of acupuncture on the brain is integrated at multiple levels, down to the brainstem and cerebellum. Our studies support the hypothesis that the effect of acupuncture on the brain goes beyond the effect of attention on the default mode network or the somatosensory stimulation of acupuncture needling. The amygdala and hypothalamus, in particular, show decreased activation during acupuncture stimulation that is not commonly associated with default mode network activity. At the same time, our research shows that acupuncture stimulation needs to be done carefully, limiting stimulation when the resulting sensations are very strong or when sharp pain is elicited. When acupuncture induced sharp pain, our studies show that the deactivation was attenuated or reversed in direction. Our results suggest that acupuncture mobilizes the functionally anti-correlated networks of the brain to mediate its actions, and that the effect is dependent on the psychophysical response. In this work we also discuss multiple avenues of future research, including the role of neurotransmitters, the effect of different acupuncture techniques, and the potential clinical application of our research findings to disease states including chronic pain, major depression, schizophrenia, autism, and Alzheimer's disease.
Collapse
Affiliation(s)
- Kathleen K S Hui
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
15
|
Jia J, Sun Z, Li B, Pan Y, Wang H, Wang X, Yu F, Liu L, Zhang L, Wang X. Electro-acupuncture stimulation improves motor disorders in Parkinsonian rats. Behav Brain Res 2009; 205:214-8. [PMID: 19549545 DOI: 10.1016/j.bbr.2009.06.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/09/2009] [Accepted: 06/15/2009] [Indexed: 11/27/2022]
Abstract
Electro-acupuncture (EA) is believed to be effective for alleviating motor symptoms in patients with Parkinson's disease. In a rat hemiparkinsonian model induced by unilateral transection of the medial forebrain bundle (MFB), the effects of EA stimulation were investigated. EA stimulation at a high frequency (100 Hz) significantly reduced apomorphine-induced rotational behavior. Tyrosine hydroxylase immunohistochemical staining revealed that EA at 100 Hz protected axotomized dopaminergic neurons from degeneration in the substantia nigra (SN). Moreover, high frequency EA reversed the axotomy-induced decrease in substance P content and increase in glutamate decarboxylase-67 (GAD 67) mRNA level in the midbrain; however, it did not affect the axotomy-induced increase in enkephalin content in the globus pallidus. These results suggest that the effects of high frequency EA on motor symptoms of Parkinsonian rats may involve restoration of the homeostasis of dopaminergic transmission in the basal ganglia circuit.
Collapse
Affiliation(s)
- Jun Jia
- Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tan CO. Anticipatory changes in regional cerebral hemodynamics: a new role for dopamine? J Neurophysiol 2009; 101:2738-40. [PMID: 19321643 DOI: 10.1152/jn.00141.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, adaptively timed, anticipatory changes in hemodynamic responses, independent of neural activity, were described in primate primary visual cortex. Task-related properties of these responses point to a possible link between regional cerebral microcirculation and dopaminergic signaling. In this report, this link is elaborated on the basis of known physiological data and further experiments are proposed to test the possible role of dopamine in task-dependent, "on-demand" allocation of metabolic resources.
Collapse
Affiliation(s)
- Can Ozan Tan
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, and Cardiovascular Research Laboratory, Spaulding Rehabilitation Hospital, Boston, Massachusetts 02114, USA.
| |
Collapse
|
17
|
Wang GJ, Volkow ND, Thanos PK, Fowler JS. Imaging of brain dopamine pathways: implications for understanding obesity. J Addict Med 2009; 3:8-18. [PMID: 21603099 PMCID: PMC3098897 DOI: 10.1097/adm.0b013e31819a86f7] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity is typically associated with abnormal eating behaviors. Brain imaging studies in humans implicate the involvement of dopamine (DA)-modulated circuits in pathologic eating behavior(s). Food cues increase striatal extracellular DA, providing evidence for the involvement of DA in the nonhedonic motivational properties of food. Food cues also increase metabolism in the orbitofrontal cortex indicating the association of this region with the motivation for food consumption. Similar to drug-addicted subjects, striatal DA D2 receptor availability is reduced in obese subjects, which may predispose obese subjects to seek food as a means to temporarily compensate for understimulated reward circuits. Decreased DA D2 receptors in the obese subjects are also associated with decreased metabolism in prefrontal regions involved in inhibitory control, which may underlie their inability to control food intake. Gastric stimulation in obese subjects activates cortical and limbic regions involved with self-control, motivation, and memory. These brain regions are also activated during drug craving in drug-addicted subjects. Obese subjects have increased metabolism in the somatosensory cortex, which suggests an enhanced sensitivity to the sensory properties of food. The reduction in DA D2 receptors in obese subjects coupled with the enhanced sensitivity to food palatability could make food their most salient reinforcer putting them at risk for compulsive eating and obesity. The results from these studies suggest that multiple but similar brain circuits are disrupted in obesity and drug addiction and suggest that strategies aimed at improving DA function might be beneficial in the treatment and prevention of obesity.
Collapse
Affiliation(s)
- Gene-Jack Wang
- Medical Department (GJW, JSF), Brookhaven National Laboratory, Upton, NY; Mount Sinai School of Medicine (GJW, JSF), New York, NY; and National Institute of Drug Abuse/National Institute of Alcohol Abuse and Alcoholism (NDV, PKT), Bethesda, MD
| | | | | | | |
Collapse
|
18
|
Chen YI, Wang FN, Nelson AJ, Xu H, Kim Y, Rosen BR, Kwong KK. Electrical stimulation modulates the amphetamine-induced hemodynamic changes: an fMRI study to compare the effect of stimulating locations and frequencies on rats. Neurosci Lett 2008; 444:117-21. [PMID: 18722508 PMCID: PMC2602879 DOI: 10.1016/j.neulet.2008.08.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
UNLABELLED Our previous fMRI and microdialysis measurements showed that electroacupuncture (EA) at LI4 was effective in alleviating excessive cerebral dopamine release induced by d-amphetamine (AMPH) in rats. We now compare the effect of EA in adjusting excess dopamine release at two stimulating frequencies (2 Hz versus 100 Hz at LI4) and at two acupoints (forepaw (LI4) versus hindpaw (ST36), at 2 Hz). fMRI measurements of relative cerebral blood volume (rCBV) were used to monitor the brain activity of "rest", followed by AMPH challenge, 10 min "rest", and then 20 min of EA. RESULTS EA at LI4 and ST36 significantly attenuated the AMPH-induced rCBV increases in the striatum, S1 cortex, and thalamus. Frequency: EA at 100 Hz induced greater attenuation of rCBV than EA at 2 Hz in the S1, insula, anterior cingulate cortices, dorsolateral striatum, and thalamus. Acupoints: EA at LI4 modulated a broader area in the medial anterior striatum while EA at ST36 modulated a more site-specific area in the dorsolateral striatum. In the thalamus, EA at LI4 showed greater attenuating effect than EA at ST36 did. However, in the insular cortex, EA at ST36 showed stronger attenuation. CONCLUSION EA at both LI4 and ST36 was effective in restoring dopamine homeostasis from an excess state, with the most effective response at LI4 with 100 Hz, while the responses to 2Hz EA at LI4 and ST36 showed slightly different spatial distribution of MR signal. This therefore provided insight into the neurophysiological basis of electroacupuncture effects in cortical and subcortical circuits.
Collapse
Affiliation(s)
- Y Iris Chen
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK, Logan J, Alexoff D, Ding YS, Wong C, Ma Y, Pradhan K. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 2008; 42:1537-43. [PMID: 18598772 PMCID: PMC2659013 DOI: 10.1016/j.neuroimage.2008.06.002] [Citation(s) in RCA: 415] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 05/29/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022] Open
Abstract
Dopamine's role in inhibitory control is well recognized and its disruption may contribute to behavioral disorders of discontrol such as obesity. However, the mechanism by which impaired dopamine neurotransmission interferes with inhibitory control is poorly understood. We had previously documented a reduction in dopamine D2 receptors in morbidly obese subjects. To assess if the reductions in dopamine D2 receptors were associated with activity in prefrontal brain regions implicated in inhibitory control we assessed the relationship between dopamine D2 receptor availability in striatum with brain glucose metabolism (marker of brain function) in ten morbidly obese subjects (BMI>40 kg/m(2)) and compared it to that in twelve non-obese controls. PET was used with [(11)C]raclopride to assess D2 receptors and with [(18)F]FDG to assess regional brain glucose metabolism. In obese subjects striatal D2 receptor availability was lower than controls and was positively correlated with metabolism in dorsolateral prefrontal, medial orbitofrontal, anterior cingulate gyrus and somatosensory cortices. In controls correlations with prefrontal metabolism were not significant but comparisons with those in obese subjects were not significant, which does not permit to ascribe the associations as unique to obesity. The associations between striatal D2 receptors and prefrontal metabolism in obese subjects suggest that decreases in striatal D2 receptors could contribute to overeating via their modulation of striatal prefrontal pathways, which participate in inhibitory control and salience attribution. The association between striatal D2 receptors and metabolism in somatosensory cortices (regions that process palatability) could underlie one of the mechanisms through which dopamine regulates the reinforcing properties of food.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, Bethesda MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|