1
|
Chivero ET, Sil S, Singh S, Thangaraj A, Gordon L, Evah-Nzoughe GB, Ferguson N, Callen S, Buch S. Protective Role of Lactobacillus rhamnosus Probiotic in Reversing Cocaine-Induced Oxidative Stress, Glial Activation and Locomotion in Mice. J Neuroimmune Pharmacol 2022; 17:62-75. [PMID: 34628571 DOI: 10.1007/s11481-021-10020-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022]
Abstract
Cocaine abuse is known to cause inflammation, oxidative injury and alterations in the gut microbiota. Although emerging studies have demonstrated the role of gut microbiota in modulating neurological complications and behavior, the mechanism(s) underlying these processes remain unclear. In the present study, we investigated the protective effect of Lactobacillus rhamnosus probiotic on cocaine-induced oxidative stress, glial activation, and locomotion in mice. In this study, groups of male C56BL6 mice were administered gut-resident commensal bacteria L. rhamnosus probiotic (oral gavage) concurrently with cocaine (20 mg/kg, i.p.) or saline for 28 days and assessed for oxidative stress and cellular activation in both the gut and brain as well as alterations in locomotion behavior. Cocaine-induced gut dysregulation was associated with increased formation of 4-hydroxynonenal (4-HNE) adducts, increased expression of pERK-1/2, pNF-kB-p65 and antioxidant mediators (SOD1, GPx1). In cocaine administered mice, there was increased activation of both microglia and astrocytes in the striatum and cortex of the brain as shown by enhanced expression of CD11b and GFAP, respectively. Cocaine administration also resulted in increased locomotor activity in the open field test in these mice. Administration of L. rhamnosus attenuated cocaine-induced gut oxidative stress and inflammation as well as glial activation and locomotion. These results suggest the potential of microbial-based interventions to attenuate cocaine-mediated behavioral responses and neuroinflammation, in addition to systemic inflammation and oxidative damage.
Collapse
Affiliation(s)
- Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lila Gordon
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Grace B Evah-Nzoughe
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Natasha Ferguson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
2
|
Guan X, Wan R, Zhu C, Li S. Corticotropin-releasing factor receptor type-2 is involved in the cocaine-primed reinstatement of cocaine conditioned place preference in rats. Behav Brain Res 2013; 258:90-6. [PMID: 24144545 DOI: 10.1016/j.bbr.2013.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 01/13/2023]
Abstract
Here we explored the in vivo role of brain corticotropin-releasing factor receptor type-2 (CRFR2) in cocaine-primed reinstatement of drug seeking. Conditioned place preference (CPP) procedure was used to assess the acquisition, extinction and reinstatement of cocaine-seeking behavior in rats. First, expressions of CRFR2 were shown to be affected in a brain region-specific manner within cocaine-induced CPP and cocaine-extinct CPP models. Bilateral blockade of CRFR2 in the dorsal portion of the medial prefrontal cortex (mPFC), or hippocampus (HP) was partially inhibited, but in the dorsal striatum (DS) did not affect, the cocaine-primed reinstatement of cocaine CPP.
Collapse
Affiliation(s)
- Xiaowei Guan
- Department of Human Anatomy, Nanjing Medical University, Nanjing 210029, China.
| | | | | | | |
Collapse
|
3
|
Proteomic profile of differentially expressed proteins in the medial prefrontal cortex after repeated cocaine exposure. Neuroscience 2013; 236:262-70. [DOI: 10.1016/j.neuroscience.2013.01.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/18/2013] [Indexed: 01/12/2023]
|
4
|
Alteration of c-Fos mRNA in the accessory lobe of crayfish is associated with a conditioned-cocaine induced reward. Neurosci Res 2012; 72:243-56. [DOI: 10.1016/j.neures.2011.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 11/04/2011] [Accepted: 11/28/2011] [Indexed: 02/02/2023]
|
5
|
Chen G, Qiu H, Yu SY. FGFR2: a key molecule in the progression of gastric cancer. Shijie Huaren Xiaohua Zazhi 2011; 19:384-388. [DOI: 10.11569/wcjd.v19.i4.384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factor receptor 2 (FGFR2) is a tyrosine kinase receptor of the FGFR family and plays an important role in the progression of gastric cancer. FGFR2 expression is closely associated with pathological type, clinical stage, lymph node metastasis, and distant metastasis in advanced gastric cancer. Monoclonal antibodies directed against FGFR2 can inhibit the proliferation of gastric cancer cells and, when used in combination with chemotherapy, has a synergistic effect against gastric cancer, suggesting that FGFR2 is a potential therapeutic target for advanced gastric cancer.
Collapse
|
6
|
Sun WL, Zhou L, Hazim R, Quinones-Jenab V, Jenab S. Effects of dopamine and NMDA receptors on cocaine-induced Fos expression in the striatum of Fischer rats. Brain Res 2008; 1243:1-9. [PMID: 18822274 PMCID: PMC2621447 DOI: 10.1016/j.brainres.2008.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 07/28/2008] [Accepted: 09/08/2008] [Indexed: 11/28/2022]
Abstract
Cocaine is an addictive psychostimulant that induces immediate early gene (IEG) expression by activating dopamine (DA) D1 and glutamate NMDA receptors in the striatum. In this study, we show that a single cocaine administration (30 mg/kg) time-dependently increases ERK phosphorylation, c-Fos and FosB protein expression, and MKP-1 phosphorylation (p-MKP-1), in the caudate-putamen (CPu) and nucleus accumbens (NAc) of Fischer rats. In the CPu, 1 h after cocaine injection, the increase in c-Fos and FosB protein expressions is totally abolished by pre-administration of DA-D1 receptor antagonist, SCH23390. In the NAc, SCH23390 also inhibits cocaine-induced c-Fos protein expression. The pre-treatment of NMDA receptor antagonist, MK801, partially reduces cocaine-activated c-Fos protein expression in the CPu. Furthermore, the escalation of p-MKP-1 after acute cocaine administration is dependent on both DA-D1 and NMDA receptor activation in both brain regions examined. Our data suggest that cocaine may modulate ERK pathway signaling through the activation of DA-D1 and NMDA receptors, subsequently influencing the IEG protein expression.
Collapse
Affiliation(s)
- Wei-Lun Sun
- Department of Psychology, Hunter College, CUNY, 695 Park Ave, New York, NY 10065, USA.
| | | | | | | | | |
Collapse
|