1
|
Zhu P, Shu H, Wang Y, Wang X, Zhao Y, Hu J, Peng J, Shang X, Tian Z, Chen J, Wang T. MAEST: accurately spatial domain detection in spatial transcriptomics with graph masked autoencoder. Brief Bioinform 2025; 26:bbaf086. [PMID: 40052440 PMCID: PMC11886571 DOI: 10.1093/bib/bbaf086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/10/2025] Open
Abstract
Spatial transcriptomics (ST) technology provides gene expression profiles with spatial context, offering critical insights into cellular interactions and tissue architecture. A core task in ST is spatial domain identification, which involves detecting coherent regions with similar spatial expression patterns. However, existing methods often fail to fully exploit spatial information, leading to limited representational capacity and suboptimal clustering accuracy. Here, we introduce MAEST, a novel graph neural network model designed to address these limitations in ST data. MAEST leverages graph masked autoencoders to denoise and refine representations while incorporating graph contrastive learning to prevent feature collapse and enhance model robustness. By integrating one-hop and multi-hop representations, MAEST effectively captures both local and global spatial relationships, improving clustering precision. Extensive experiments across diverse datasets, including the human brain, mouse hippocampus, olfactory bulb, brain, and embryo, demonstrate that MAEST outperforms seven state-of-the-art methods in spatial domain identification. Furthermore, MAEST showcases its ability to integrate multi-slice data, identifying joint domains across horizontal tissue sections with high accuracy. These results highlight MAEST's versatility and effectiveness in unraveling the spatial organization of complex tissues. The source code of MAEST can be obtained at https://github.com/clearlove2333/MAEST.
Collapse
Affiliation(s)
- Pengfei Zhu
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
| | - Han Shu
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
| | - Yongtian Wang
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
| | - Xiaofeng Wang
- General Surgery Department, The Affiliated Hospital of Northwest University: Xi’an No 3 Hospital, Xi’an 710018, China
| | - Yuan Zhao
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
| | - Jialu Hu
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
| | - Jiajie Peng
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
| | - Zhen Tian
- School of Computer Science and Artificial Intelligence, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Jing Chen
- School of Computer Science and Engineering, Xi’an University of Technology, No. 5 South Jinhua Road, Xi’an 710048, China
| | - Tao Wang
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
| |
Collapse
|
2
|
Sahu G, Turner RW. The Molecular Basis for the Calcium-Dependent Slow Afterhyperpolarization in CA1 Hippocampal Pyramidal Neurons. Front Physiol 2022; 12:759707. [PMID: 35002757 PMCID: PMC8730529 DOI: 10.3389/fphys.2021.759707] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 12/02/2022] Open
Abstract
Neuronal signal transmission depends on the frequency, pattern, and timing of spike output, each of which are shaped by spike afterhyperpolarizations (AHPs). There are classically three post-spike AHPs of increasing duration categorized as fast, medium and slow AHPs that hyperpolarize a cell over a range of 10 ms to 30 s. Intensive early work on CA1 hippocampal pyramidal cells revealed that all three AHPs incorporate activation of calcium-gated potassium channels. The ionic basis for a fAHP was rapidly attributed to the actions of big conductance (BK) and the mAHP to small conductance (SK) or Kv7 potassium channels. In stark contrast, the ionic basis for a prominent slow AHP of up to 30 s duration remained an enigma for over 30 years. Recent advances in pharmacological, molecular, and imaging tools have uncovered the expression of a calcium-gated intermediate conductance potassium channel (IK, KCa3.1) in central neurons that proves to contribute to the slow AHP in CA1 hippocampal pyramidal cells. Together the data show that the sAHP arises in part from a core tripartite complex between Cav1.3 (L-type) calcium channels, ryanodine receptors, and IK channels at endoplasmic reticulum-plasma membrane junctions. Work on the sAHP in CA1 pyramidal neurons has again quickened pace, with identified contributions by both IK channels and the Na-K pump providing answers to several mysteries in the pharmacological properties of the sAHP.
Collapse
Affiliation(s)
- Giriraj Sahu
- National Institute of Pharmaceutical Education and Research Ahmedabad, Ahmedabad, India
| | - Ray W Turner
- Department Cell Biology & Anatomy, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Zhang J, Krishnan A, Wu H, Venkataraman V. Calcium-Dependent Translocation of S100B Is Facilitated by Neurocalcin Delta. Molecules 2021; 26:molecules26010227. [PMID: 33466232 PMCID: PMC7794955 DOI: 10.3390/molecules26010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022] Open
Abstract
S100B is a calcium-binding protein that governs calcium-mediated responses in a variety of cells—especially neuronal and glial cells. It is also extensively investigated as a potential biomarker for several disease conditions, especially neurodegenerative ones. In order to establish S100B as a viable pharmaceutical target, it is critical to understand its mechanistic role in signaling pathways and its interacting partners. In this report, we provide evidence to support a calcium-regulated interaction between S100B and the neuronal calcium sensor protein, neurocalcin delta both in vitro and in living cells. Membrane overlay assays were used to test the interaction between purified proteins in vitro and bimolecular fluorescence complementation assays, for interactions in living cells. Added calcium is essential for interaction in vitro; however, in living cells, calcium elevation causes translocation of the NCALD-S100B complex to the membrane-rich, perinuclear trans-Golgi network in COS7 cells, suggesting that the response is independent of specialized structures/molecules found in neuronal/glial cells. Similar results are also observed with hippocalcin, a closely related paralog; however, the interaction appears less robust in vitro. The N-terminal region of NCALD and HPCA appear to be critical for interaction with S100B based on in vitro experiments. The possible physiological significance of this interaction is discussed.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Cell Biology and Neuroscience, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA; (J.Z.); (A.K.); (H.W.)
| | - Anuradha Krishnan
- Department of Cell Biology and Neuroscience, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA; (J.Z.); (A.K.); (H.W.)
| | - Hao Wu
- Department of Cell Biology and Neuroscience, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA; (J.Z.); (A.K.); (H.W.)
| | - Venkat Venkataraman
- Department of Cell Biology and Neuroscience, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA; (J.Z.); (A.K.); (H.W.)
- Department of Rehabilitation Medicine, NeuroMusculoskeletal Institute, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
- Correspondence: ; Tel.: +1-856-566-6418
| |
Collapse
|
4
|
Sheremet YE, Olifirov B, Okhrimenko A, Cherkas V, Bagatskaya O, Belan P. Hippocalcin Distribution between the Cytosol and Plasma Membrane of Living Cells. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Perturbed Ca2+-dependent signaling of DYT2 hippocalcin mutant as mechanism of autosomal recessive dystonia. Neurobiol Dis 2019; 132:104529. [DOI: 10.1016/j.nbd.2019.104529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/22/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022] Open
|
6
|
Burgoyne RD, Helassa N, McCue HV, Haynes LP. Calcium Sensors in Neuronal Function and Dysfunction. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035154. [PMID: 30833454 DOI: 10.1101/cshperspect.a035154] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium signaling in neurons as in other cell types can lead to varied changes in cellular function. Neuronal Ca2+ signaling processes have also become adapted to modulate the function of specific pathways over a wide variety of time domains and these can have effects on, for example, axon outgrowth, neuronal survival, and changes in synaptic strength. Ca2+ also plays a key role in synapses as the trigger for fast neurotransmitter release. Given its physiological importance, abnormalities in neuronal Ca2+ signaling potentially underlie many different neurological and neurodegenerative diseases. The mechanisms by which changes in intracellular Ca2+ concentration in neurons can bring about diverse responses is underpinned by the roles of ubiquitous or specialized neuronal Ca2+ sensors. It has been established that synaptotagmins have key functions in neurotransmitter release, and, in addition to calmodulin, other families of EF-hand-containing neuronal Ca2+ sensors, including the neuronal calcium sensor (NCS) and the calcium-binding protein (CaBP) families, play important physiological roles in neuronal Ca2+ signaling. It has become increasingly apparent that these various Ca2+ sensors may also be crucial for aspects of neuronal dysfunction and disease either indirectly or directly as a direct consequence of genetic variation or mutations. An understanding of the molecular basis for the regulation of the targets of the Ca2+ sensors and the physiological roles of each protein in identified neurons may contribute to future approaches to the development of treatments for a variety of human neuronal disorders.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Nordine Helassa
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Hannah V McCue
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Lee P Haynes
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Measurement of intracellular concentration of fluorescently-labeled targets in living cells. PLoS One 2018; 13:e0194031. [PMID: 29694385 PMCID: PMC5918622 DOI: 10.1371/journal.pone.0194031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 02/16/2018] [Indexed: 02/04/2023] Open
Abstract
Estimations of intracellular concentrations of fluorescently-labeled molecules within living cells are very important for guidance of biological experiments and interpretation of their results. Here we propose a simple and universal approach for such estimations. The approach is based upon common knowledge that the dye fluorescence is directly proportional to its quantum yield and the number of its molecules and that a coefficient of proportionality is determined by spectral properties of the dye and optical equipment used to record fluorescent signals. If two fluorescent dyes are present in the same volume, then a ratio of their concentrations is equal to a ratio of their fluorescence multiplied by some dye- and equipment-dependent coefficient. Thus, if the coefficient and concentration of one dye is known then the concentration of another dye can be determined. Here we have demonstrated how to calculate this coefficient (called a ratio factor) and how to use it for concentration measurements of fluorescently tagged molecules. As an example of how this approach can be used, we estimated a concentration of exogenously expressed neuronal Ca2+ sensor protein, hippocalcin, tagged by a fluorescent protein in a dendritic tree of rat hippocampal neurons loaded via a patch pipette with Alexa Fluor dye of known concentration. The new approach should allow performing a fast, inexpensive and reliable quantitative analysis of fluorescently-labeled targets in different parts of living cells.
Collapse
|
8
|
Helassa N, Antonyuk SV, Lian LY, Haynes LP, Burgoyne RD. Biophysical and functional characterization of hippocalcin mutants responsible for human dystonia. Hum Mol Genet 2017; 26:2426-2435. [PMID: 28398555 PMCID: PMC5886089 DOI: 10.1093/hmg/ddx133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/29/2017] [Indexed: 11/13/2022] Open
Abstract
Dystonia is a neurological movement disorder that forces the body into twisting, repetitive movements or sometimes painful abnormal postures. With the advent of next-generation sequencing technologies, the homozygous mutations T71N and A190T in the neuronal calcium sensor (NCS) hippocalcin were identified as the genetic cause of primary isolated dystonia (DYT2 dystonia). However, the effect of these mutations on the physiological role of hippocalcin has not yet been elucidated. Using a multidisciplinary approach, we demonstrated that hippocalcin oligomerises in a calcium-dependent manner and binds to voltage-gated calcium channels. Mutations T71N and A190T in hippocalcin did not affect stability, calcium-binding affinity or translocation to cellular membranes (Ca2+/myristoyl switch). We obtained the first crystal structure of hippocalcin and alignment with other NCS proteins showed significant variability in the orientation of the C-terminal part of the molecule, the region expected to be important for target binding. We demonstrated that the disease-causing mutations did not affect the structure of the protein, however both mutants showed a defect in oligomerisation. In addition, we observed an increased calcium influx in KCl-depolarised cells expressing mutated hippocalcin, mostly driven by N-type voltage-gated calcium channels. Our data demonstrate that the dystonia-causing mutations strongly affect hippocalcin cellular functions which suggest a central role for perturbed calcium signalling in DYT2 dystonia.
Collapse
Affiliation(s)
- Nordine Helassa
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69?3BX, UK
| | - Svetlana V Antonyuk
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69?7ZB, UK and
| | - Lu-Yun Lian
- NMR Centre for Structural Biology, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69?7ZB, UK
| | - Lee P Haynes
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69?3BX, UK
| | - Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69?3BX, UK
| |
Collapse
|
9
|
Mutations in HPCA cause autosomal-recessive primary isolated dystonia. Am J Hum Genet 2015; 96:657-65. [PMID: 25799108 PMCID: PMC4385177 DOI: 10.1016/j.ajhg.2015.02.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/06/2015] [Indexed: 12/20/2022] Open
Abstract
Reports of primary isolated dystonia inherited in an autosomal-recessive (AR) manner, often lumped together as “DYT2 dystonia,” have appeared in the scientific literature for several decades, but no genetic cause has been identified to date. Using a combination of homozygosity mapping and whole-exome sequencing in a consanguineous kindred affected by AR isolated dystonia, we identified homozygous mutations in HPCA, a gene encoding a neuronal calcium sensor protein found almost exclusively in the brain and at particularly high levels in the striatum, as the cause of disease in this family. Subsequently, compound-heterozygous mutations in HPCA were also identified in a second independent kindred affected by AR isolated dystonia. Functional studies suggest that hippocalcin might play a role in regulating voltage-dependent calcium channels. The identification of mutations in HPCA as a cause of AR primary isolated dystonia paves the way for further studies to assess whether “DYT2 dystonia” is a genetically homogeneous condition or not.
Collapse
|
10
|
Buchta WC, Riegel AC. Chronic cocaine disrupts mesocortical learning mechanisms. Brain Res 2015; 1628:88-103. [PMID: 25704202 DOI: 10.1016/j.brainres.2015.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/28/2015] [Accepted: 02/01/2015] [Indexed: 01/06/2023]
Abstract
The addictive power of drugs of abuse such as cocaine comes from their ability to hijack natural reward and plasticity mechanisms mediated by dopamine signaling in the brain. Reward learning involves burst firing of midbrain dopamine neurons in response to rewards and cues predictive of reward. The resulting release of dopamine in terminal regions is thought to act as a teaching signaling to areas such as the prefrontal cortex and striatum. In this review, we posit that a pool of extrasynaptic dopaminergic D1-like receptors activated in response to dopamine neuron burst firing serve to enable synaptic plasticity in the prefrontal cortex in response to rewards and their cues. We propose that disruptions in these mechanisms following chronic cocaine use contribute to addiction pathology, in part due to the unique architecture of the mesocortical pathway. By blocking dopamine reuptake in the cortex, cocaine elevates dopamine signaling at these extrasynaptic receptors, prolonging D1-receptor activation and the subsequent activation of intracellular signaling cascades, and thus inducing long-lasting maladaptive plasticity. These cellular adaptations may account for many of the changes in cortical function observed in drug addicts, including an enduring vulnerability to relapse. Therefore, understanding and targeting these neuroadaptations may provide cognitive benefits and help prevent relapse in human drug addicts.
Collapse
Affiliation(s)
- William C Buchta
- Neurobiology of Addiction Research Center (NARC), Medical University of South Carolina, Charleston, SC 29425, USA
| | - Arthur C Riegel
- Neurobiology of Addiction Research Center (NARC), Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
11
|
Burgoyne RD, Haynes LP. Sense and specificity in neuronal calcium signalling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1921-32. [PMID: 25447549 PMCID: PMC4728190 DOI: 10.1016/j.bbamcr.2014.10.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/25/2014] [Accepted: 10/29/2014] [Indexed: 11/02/2022]
Abstract
Changes in the intracellular free calcium concentration ([Ca²⁺]i) in neurons regulate many and varied aspects of neuronal function over time scales from microseconds to days. The mystery is how a single signalling ion can lead to such diverse and specific changes in cell function. This is partly due to aspects of the Ca²⁺ signal itself, including its magnitude, duration, localisation and persistent or oscillatory nature. The transduction of the Ca²⁺ signal requires Ca²⁺binding to various Ca²⁺ sensor proteins. The different properties of these sensors are important for differential signal processing and determine the physiological specificity of Ca(2+) signalling pathways. A major factor underlying the specific roles of particular Ca²⁺ sensor proteins is the nature of their interaction with target proteins and how this mediates unique patterns of regulation. We review here recent progress from structural analyses and from functional analyses in model organisms that have begun to reveal the rules that underlie Ca²⁺ sensor protein specificity for target interaction. We discuss three case studies exemplifying different aspects of Ca²⁺ sensor/target interaction. This article is part of a special issue titled the 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom.
| | - Lee P Haynes
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom
| |
Collapse
|
12
|
Andrade R, Foehring RC, Tzingounis AV. The calcium-activated slow AHP: cutting through the Gordian knot. Front Cell Neurosci 2012; 6:47. [PMID: 23112761 PMCID: PMC3480710 DOI: 10.3389/fncel.2012.00047] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/05/2012] [Indexed: 11/13/2022] Open
Abstract
The phenomenon known as the slow afterhyperpolarization (sAHP) was originally described more than 30 years ago in pyramidal cells as a slow, Ca(2+)-dependent afterpotential controlling spike frequency adaptation. Subsequent work showed that similar sAHPs were widely expressed in the brain and were mediated by a Ca(2+)-activated potassium current that was voltage-independent, insensitive to most potassium channel blockers, and strongly modulated by neurotransmitters. However, the molecular basis for this current has remained poorly understood. The sAHP was initially imagined to reflect the activation of a potassium channel directly gated by Ca(2+) but recent studies have begun to question this idea. The sAHP is distinct from the Ca(2+)-dependent fast and medium AHPs in that it appears to sense cytoplasmic [Ca(2+)](i) and recent evidence implicates proteins of the neuronal calcium sensor (NCS) family as diffusible cytoplasmic Ca(2+) sensors for the sAHP. Translocation of Ca(2+)-bound sensor to the plasma membrane would then be an intermediate step between Ca(2+) and the sAHP channels. Parallel studies strongly suggest that the sAHP current is carried by different potassium channel types depending on the cell type. Finally, the sAHP current is dependent on membrane PtdIns(4,5)P(2) and Ca(2+) appears to gate this current by increasing PtdIns(4,5)P(2) levels. Because membrane PtdIns(4,5)P(2) is essential for the activity of many potassium channels, these finding have led us to hypothesize that the sAHP reflects a transient Ca(2+)-induced increase in the local availability of PtdIns(4,5)P(2) which then activates a variety of potassium channels. If this view is correct, the sAHP current would not represent a unitary ionic current but the embodiment of a generalized potassium channel gating mechanism. This model can potentially explain the cardinal features of the sAHP, including its cellular heterogeneity, slow kinetics, dependence on cytoplasmic [Ca(2+)], high temperature-dependence, and modulation.
Collapse
Affiliation(s)
- Rodrigo Andrade
- Department of Pharmacology, Wayne State University School of Medicine Detroit, MI, USA
| | | | | |
Collapse
|
13
|
Peng L, Li B, Du T, Wang F, Hertz L. Does conventional anti-bipolar and antidepressant drug therapy reduce NMDA-mediated neuronal excitation by downregulating astrocytic GluK2 function? Pharmacol Biochem Behav 2012; 100:712-25. [PMID: 21463649 DOI: 10.1016/j.pbb.2011.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 03/16/2011] [Accepted: 03/28/2011] [Indexed: 01/25/2023]
Abstract
Chronic treatment with anti-bipolar drugs (lithium, carbamazepine, and valproic acid) down-regulates mRNA and protein expression of kainate receptor GluK2 in mouse brain and cultured astrocytes. It also abolishes glutamate-mediated, Ca(2+)-dependent ERK(1/2) phosphorylation in the astrocytes. Chronic treatment with the SSRI fluoxetine enhances astrocytic GluK2 expression, but increases mRNA editing, abolishing glutamate-mediated ERK(1/2) phosphorylation and [Ca(2+)](i) increase, which are shown to be GluK2-mediated. Neither drug group affects Glu4/Glu5 expression necessary for GluK2's ionotropic effect. Consistent with a metabotropic effect, the PKC inhibitor GF 109203X and the IP(3) inhibitor xestospongin C abolish glutamate stimulation in cultured astrocytes. In CA1/CA3 pyramidal cells in hippocampal slices, activation of extrasynaptic GluK2 receptors, presumably including astrocytic, metabotropic GluK2 receptors, causes long-lasting inhibition of slow neuronal afterhyperpolarization mediated by Ca(2+)-dependent K(+) flux. This may be secondary to the induced astrocytic [Ca(2+)](i) increase, causing release of 'gliotransmitter' glutamate. Neuronal NMDA receptors respond to astrocytic glutamate release with enhancement of excitatory glutamatergic activity. Since reduction of NMDA receptor activity is known to have antidepressant effect in bipolar depression and major depression, these observations suggest that the inactivation of astrocytic GluK2 activity by antidepressant/anti-bipolar therapy ameliorates depression by inhibiting astrocytic glutamate release. A resultant strengthening of neuronal afterhyperpolarization may cause reduced NMDA-mediated activity.
Collapse
Affiliation(s)
- Liang Peng
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China.
| | | | | | | | | |
Collapse
|
14
|
Mikhaylova M, Hradsky J, Kreutz MR. Between promiscuity and specificity: novel roles of EF-hand calcium sensors in neuronal Ca2+ signalling. J Neurochem 2011; 118:695-713. [PMID: 21722133 DOI: 10.1111/j.1471-4159.2011.07372.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, substantial progress has been made towards an understanding of the physiological function of EF-hand calcium sensor proteins of the Calmodulin (CaM) superfamily in neurons. This deeper appreciation is based on the identification of novel target interactions, structural studies and the discovery of novel signalling mechanisms in protein trafficking and synaptic plasticity, in which CaM-like sensor proteins appear to play a role. However, not all interactions are of plausible physiological relevance and in many cases it is not yet clear how the CaM signaling network relates to the proposed function of other EF-hand sensors. In this review, we will summarize these findings and address some of the open questions on the functional role of EF-hand calcium binding proteins in neurons.
Collapse
Affiliation(s)
- Marina Mikhaylova
- PG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | | | | |
Collapse
|
15
|
Visinin-like neuronal calcium sensor proteins regulate the slow calcium-activated afterhyperpolarizing current in the rat cerebral cortex. J Neurosci 2010; 30:14361-5. [PMID: 20980592 DOI: 10.1523/jneurosci.3440-10.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many neurons in the nervous systems express afterhyperpolarizations that are mediated by a slow calcium-activated potassium current. This current shapes neuronal firing and is inhibited by neuromodulators, suggesting an important role in the regulation of neuronal function. Surprisingly, very little is currently known about the molecular basis for this current or how it is gated by calcium. Recently, the neuronal calcium sensor protein hippocalcin was identified as a calcium sensor for the slow afterhyperpolarizing current in the hippocampus. However, while hippocalcin is very strongly expressed in the hippocampus, this protein shows a relatively restricted distribution in the brain. Furthermore, the genetic deletion of this protein only partly reduces the slow hyperpolarizing current in hippocampus. These considerations question whether hippocalcin can be the sole calcium sensor for the slow afterhyperpolarizing current. Here we use loss of function and overexpression strategies to show that hippocalcin functions as a calcium sensor for the slow afterhyperpolarizing current in the cerebral cortex, an area where hippocalcin is expressed at much lower levels than in hippocampus. In addition we show that neurocalcin δ, but not VILIP-2, can also act as a calcium sensor for the slow afterhyperpolarizing current. Finally we show that hippocalcin and neurocalcin δ both increase the calcium sensitivity of the afterhyperpolarizing current but do not alter its sensitivity to inhibition by carbachol acting through the Gαq-11-PLCβ signaling cascade. These results point to a general role for a subgroup of visinin-like neuronal calcium sensor proteins in the activation of the slow calcium-activated afterhyperpolarizing current.
Collapse
|
16
|
Dovgan AV, Cherkas VP, Stepanyuk AR, Fitzgerald DJ, Haynes LP, Tepikin AV, Burgoyne RD, Belan PV. Decoding glutamate receptor activation by the Ca2+ sensor protein hippocalcin in rat hippocampal neurons. Eur J Neurosci 2010; 32:347-58. [PMID: 20704590 PMCID: PMC3069492 DOI: 10.1111/j.1460-9568.2010.07303.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hippocalcin is a Ca2+-binding protein that belongs to a family of neuronal Ca2+sensors and is a key mediator of many cellular functions including synaptic plasticity and learning. However, the molecular mechanisms involved in hippocalcin signalling remain illusive. Here we studied whether glutamate receptor activation induced by locally applied or synaptically released glutamate can be decoded by hippocalcin translocation. Local AMPA receptor activation resulted in fast hippocalcin-YFP translocation to specific sites within a dendritic tree mainly due to AMPA receptor-dependent depolarization and following Ca2+influx via voltage-operated calcium channels. Short local NMDA receptor activation induced fast hippocalcin-YFP translocation in a dendritic shaft at the application site due to direct Ca2+influx via NMDA receptor channels. Intrinsic network bursting produced hippocalcin-YFP translocation to a set of dendritic spines when they were subjected to several successive synaptic vesicle releases during a given burst whereas no translocation to spines was observed in response to a single synaptic vesicle release and to back-propagating action potentials. The translocation to spines required Ca2+influx via synaptic NMDA receptors in which Mg2+ block is relieved by postsynaptic depolarization. This synaptic translocation was restricted to spine heads and even closely (within 1–2 μm) located spines on the same dendritic branch signalled independently. Thus, we conclude that hippocalcin may differentially decode various spatiotemporal patterns of glutamate receptor activation into site- and time-specific translocation to its targets. Hippocalcin also possesses an ability to produce local signalling at the single synaptic level providing a molecular mechanism for homosynaptic plasticity.
Collapse
Affiliation(s)
- A V Dovgan
- Department of General Physiology of the Nervous System, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
17
|
McCue HV, Haynes LP, Burgoyne RD. The diversity of calcium sensor proteins in the regulation of neuronal function. Cold Spring Harb Perspect Biol 2010; 2:a004085. [PMID: 20668007 DOI: 10.1101/cshperspect.a004085] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Calcium signaling in neurons as in other cell types mediates changes in gene expression, cell growth, development, survival, and cell death. However, neuronal Ca(2+) signaling processes have become adapted to modulate the function of other important pathways including axon outgrowth and changes in synaptic strength. Ca(2+) plays a key role as the trigger for fast neurotransmitter release. The ubiquitous Ca(2+) sensor calmodulin is involved in various aspects of neuronal regulation. The mechanisms by which changes in intracellular Ca(2+) concentration in neurons can bring about such diverse responses has, however, become a topic of widespread interest that has recently focused on the roles of specialized neuronal Ca(2+) sensors. In this article, we summarize synaptotagmins in neurotransmitter release, the neuronal roles of calmodulin, and the functional significance of the NCS and the CaBP/calneuron protein families of neuronal Ca(2+) sensors.
Collapse
Affiliation(s)
- Hannah V McCue
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom
| | | | | |
Collapse
|
18
|
VanGuilder HD, Yan H, Farley JA, Sonntag WE, Freeman WM. Aging alters the expression of neurotransmission-regulating proteins in the hippocampal synaptoproteome. J Neurochem 2010; 113:1577-88. [PMID: 20374424 DOI: 10.1111/j.1471-4159.2010.06719.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Decreased cognitive performance reduces independence and quality of life for aging individuals. Healthy brain aging does not involve significant neuronal loss, but little is known about the effects of aging at synaptic terminals. Age-related cognitive decline likely reflects the manifestation of dysregulated synaptic function and ineffective neurotransmission. In this study, hippocampal synaptosomes were enriched from young-adult (3 months), adult (12 months), and aged (26 months) Fischer 344 x Brown Norway rats, and quantitative alterations in the synaptoproteome were examined by 2-DIGE and MS/MS. Bioinformatic analysis of differentially expressed proteins identified a significant effect of aging on a network of neurotransmission-regulating proteins. Specifically, altered expression of DNM1, HPCA, PSD95, SNAP25, STX1, SYN1, SYN2, SYP, and VAMP2 was confirmed by immunoblotting. 14-3-3 isoforms identified in the proteomic analysis were also confirmed as a result of their implication in the regulation of the synaptic vesicle cycle and neurotransmission modulation. The findings of this study demonstrate a coordinated down-regulation of neurotransmission-regulating proteins that suggests an age-based deterioration of hippocampal neurotransmission occurring between adulthood and advanced age. Altered synaptic protein expression may decrease stimulus-induced neurotransmission and vesicle replenishment during prolonged or intense stimulation, which are necessary for learning and the formation and perseverance of memory.
Collapse
Affiliation(s)
- Heather D VanGuilder
- Department of Pharmacology, Hershey Center for Applied Research, Penn State College of Medicine, University Drive, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Glutamate and GABA (gamma-aminobutyric acid) are the predominant excitatory and inhibitory neurotransmitters in the mammalian CNS (central nervous system) respectively, and as such have undergone intense investigation. Given their predominance, it is no wonder that the reciprocal receptors for these neurotransmitters have attracted so much attention as potential targets for the promotion of health and the treatment of disease. Indeed, dysfunction of these receptors underlies a number of well-characterized neuropathological conditions such as anxiety, epilepsy and neurodegenerative diseases. Although intrinsically linked, the glutamatergic and GABAergic systems have, by and large, been investigated independently, with researchers falling into the 'excitatory' or 'inhibitory' camps. Around 70 delegates gathered at the University of St Andrews for this Biochemical Society Focused Meeting aimed at bringing excitation and inhibition together. With sessions on behaviour, receptor structure and function, receptor trafficking, activity-dependent changes in gene expression and excitation/inhibition in disease, the meeting was the ideal occasion for delegates from both backgrounds to interact. This issue of Biochemical Society Transactions contains papers written by those who gave oral presentations at the meeting. In this brief introductory review, I put into context and give a brief overview of these contributions.
Collapse
|
20
|
Abstract
Calcium entry plays a major role in the induction of several forms of synaptic plasticity in different areas of the central nervous system. The spatiotemporal aspects of these calcium signals can determine the type of synaptic plasticity induced, e.g. LTP (long-term potentiation) or LTD (long-term depression). A vast amount of research has been conducted to identify the molecular and cellular signalling pathways underlying LTP and LTD, but many components remain to be identified. Calcium sensor proteins are thought to play an essential role in regulating the initial part of synaptic plasticity signalling pathways. However, there is still a significant gap in knowledge, and it is only recently that evidence for the importance of members of the NCS (neuronal calcium sensor) protein family has started to emerge. The present minireview aims to bring together evidence supporting a role for NCS proteins in plasticity, focusing on emerging roles of NCS-1 and hippocalcin.
Collapse
|