1
|
Negro-Demontel L, Maleki AF, Reich DS, Kemper C. The complement system in neurodegenerative and inflammatory diseases of the central nervous system. Front Neurol 2024; 15:1396520. [PMID: 39022733 PMCID: PMC11252048 DOI: 10.3389/fneur.2024.1396520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Neurodegenerative and neuroinflammatory diseases, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, affect millions of people globally. As aging is a major risk factor for neurodegenerative diseases, the continuous increase in the elderly population across Western societies is also associated with a rising prevalence of these debilitating conditions. The complement system, a crucial component of the innate immune response, has gained increasing attention for its multifaceted involvement in the normal development of the central nervous system (CNS) and the brain but also as a pathogenic driver in several neuroinflammatory disease states. Although complement is generally understood as a liver-derived and blood or interstitial fluid operative system protecting against bloodborne pathogens or threats, recent research, particularly on the role of complement in the healthy and diseased CNS, has demonstrated the importance of locally produced and activated complement components. Here, we provide a succinct overview over the known beneficial and pathological roles of complement in the CNS with focus on local sources of complement, including a discussion on the potential importance of the recently discovered intracellularly active complement system for CNS biology and on infection-triggered neurodegeneration.
Collapse
Affiliation(s)
- Luciana Negro-Demontel
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Adam F. Maleki
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
| |
Collapse
|
2
|
Hammond JW, Bellizzi MJ, Ware C, Qiu WQ, Saminathan P, Li H, Luo S, Ma SA, Li Y, Gelbard HA. Complement-dependent synapse loss and microgliosis in a mouse model of multiple sclerosis. Brain Behav Immun 2020; 87:739-750. [PMID: 32151684 PMCID: PMC8698220 DOI: 10.1016/j.bbi.2020.03.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory, neurodegenerative disease of the CNS characterized by both grey and white matter injury. Microglial activation and a reduction in synaptic density are key features of grey matter pathology that can be modeled with MOG35-55 experimental autoimmune encephalomyelitis (EAE). Complement deposition combined with microglial engulfment has been shown during normal development and in disease as a mechanism for pruning synapses. We tested whether there is excess complement production in the EAE hippocampus and whether complement-dependent synapse loss is a source of degeneration in EAE using C1qa and C3 knockout mice. We found that C1q and C3 protein and mRNA levels were elevated in EAE mice. Genetic loss of C3 protected mice from EAE-induced synapse loss, reduced microglial activation, decreased the severity of the EAE clinical score, and protected memory/freezing behavior after contextual fear conditioning. C1qa KO mice with EAE showed little to no change on these measurements compared to WT EAE mice. Thus, pathologic expression and activation of the early complement pathway, specifically at the level of C3, contributes to hippocampal grey matter pathology in the EAE.
Collapse
Affiliation(s)
- Jennetta W. Hammond
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neurology, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642.,Correspondence: Jennetta W. Hammond,
University of Rochester, Center for Neurotherapeutics Discovery, 601 Elmwood
Avenue, Box 645, Rochester, NY 14642, USA,
, Phone:
1-585-273-2872
| | - Matthew J. Bellizzi
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neurology, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neuroscience, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Caroline Ware
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neurology, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Wen Q. Qiu
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neurology, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Priyanka Saminathan
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Microbiology and Immunology, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Herman Li
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Shaopeiwen Luo
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Stefanie A. Ma
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Yuanhao Li
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Harris A. Gelbard
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neurology, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neuroscience, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642
| |
Collapse
|
3
|
Göbel K, Eichler S, Wiendl H, Chavakis T, Kleinschnitz C, Meuth SG. The Coagulation Factors Fibrinogen, Thrombin, and Factor XII in Inflammatory Disorders-A Systematic Review. Front Immunol 2018; 9:1731. [PMID: 30105021 PMCID: PMC6077258 DOI: 10.3389/fimmu.2018.01731] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/12/2018] [Indexed: 11/13/2022] Open
Abstract
Background The interaction of coagulation factors has been shown to go beyond their traditional roles in hemostasis and to affect the development of inflammatory diseases. Key molecular players, such as fibrinogen, thrombin, or factor XII have been mechanistically and epidemiologically linked to inflammatory disorders like multiple sclerosis (MS), rheumatoid arthritis (RA), and colitis. Objectives To systematically review the evidence for a role of coagulation factors, especially factor XII, fibrinogen, and thrombin in inflammatory disorders like MS, RA, and bowel disorders. Methods A systematic literature search was done in the PubMed database to identify studies about coagulation factors in inflammatory diseases. Original articles and reviews investigating the role of the kallikrein–kinin and the coagulation system in mouse and humans were included. Results We identified 43 animal studies dealing with inflammatory disorders and factors of the kallikrein–kinin or the coagulation system. Different immunological influences are described and novel molecular mechanisms linking coagulation and inflammation are reported. Conclusion A number of studies have highlighted coagulation factors to tip the balance between hemostasis and thrombosis and between protection from infection and extensive inflammation. To optimize the treatment of chronic inflammatory disorders by these factors, further studies are necessary.
Collapse
Affiliation(s)
- Kerstin Göbel
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Susann Eichler
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Laboratory Medicine, Institute for Clinical Chemistry, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Abadier M, Haghayegh Jahromi N, Cardoso Alves L, Boscacci R, Vestweber D, Barnum S, Deutsch U, Engelhardt B, Lyck R. Cell surface levels of endothelial ICAM-1 influence the transcellular or paracellular T-cell diapedesis across the blood-brain barrier. Eur J Immunol 2015; 45:1043-58. [PMID: 25545837 DOI: 10.1002/eji.201445125] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/09/2014] [Accepted: 12/22/2014] [Indexed: 01/13/2023]
Abstract
The extravasation of CD4(+) effector/memory T cells (TEM cells) across the blood-brain barrier (BBB) is a crucial step in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) or multiple sclerosis (MS). Endothelial ICAM-1 and ICAM-2 are essential for CD4(+) TEM cell crawling on the BBB prior to diapedesis. Here, we investigated the influence of cell surface levels of endothelial ICAM-1 in determining the cellular route of CD4(+) TEM -cell diapedesis across cytokine treated primary mouse BBB endothelial cells under physiological flow. Inflammatory conditions, inducing high levels of endothelial ICAM-1, promoted rapid initiation of transcellular diapedesis of CD4(+) T cells across the BBB, while intermediate levels of endothelial ICAM-1 favored paracellular CD4(+) T-cell diapedesis. Importantly, the route of T-cell diapedesis across the BBB was independent of loss of BBB barrier properties. Unexpectedly, a low number of CD4(+) TEM cells was found to cross the inflamed BBB in the absence of endothelial ICAM-1 and ICAM-2 via an obviously alternatively regulated transcellular pathway. In vivo, this translated to the development of ameliorated EAE in ICAM-1(null) //ICAM-2(-/-) C57BL/6J mice. Taken together, our study demonstrates that cell surface levels of endothelial ICAM-1 rather than the inflammatory stimulus or BBB integrity influence the pathway of T-cell diapedesis across the BBB.
Collapse
Affiliation(s)
- Michael Abadier
- Theodor Kocher Institute, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Li Q, Lu Q, Lu H, Tian S, Lu Q. Systemic autoimmunity in TAM triple knockout mice causes inflammatory brain damage and cell death. PLoS One 2013; 8:e64812. [PMID: 23840307 PMCID: PMC3688737 DOI: 10.1371/journal.pone.0064812] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/18/2013] [Indexed: 12/14/2022] Open
Abstract
The Tyro3, Axl and Mertk (TAM) triply knockout (TKO) mice exhibit systemic autoimmune diseases, with characteristics of increased proinflammatory cytokine production, autoantibody deposition and autoreactive lymphocyte infiltration into a variety of tissues. Here we show that TKO mice produce high level of serum TNF-α and specific autoantibodies deposited onto brain blood vessels. The brain-blood barrier (BBB) in mutant brains exhibited increased permeability for Evans blue and fluorescent-dextran, suggesting a breakdown of the BBB in the mutant brains. Impaired BBB integrity facilitated autoreactive T cells infiltrating into all regions of the mutant brains. Brain autoimmune disorder caused accumulation of the ubiquitin-reactive aggregates in the mutant hippocampus, and early formation of autofluorescent lipofuscins in the neurons throughout the entire brains. Chronic neuroinflammation caused damage of the hippocampal mossy fibers and neuronal apoptotic death. This study shows that chronic systemic inflammation and autoimmune disorders in the TKO mice cause neuronal damage and death.
Collapse
MESH Headings
- Animals
- Apoptosis
- Autoantibodies/blood
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/pathology
- Blood-Brain Barrier/metabolism
- Brain Damage, Chronic/genetics
- Brain Damage, Chronic/immunology
- Brain Damage, Chronic/pathology
- CA3 Region, Hippocampal/blood supply
- CA3 Region, Hippocampal/immunology
- CA3 Region, Hippocampal/pathology
- Capillary Permeability/immunology
- Cells, Cultured
- Cytokines/metabolism
- Dentate Gyrus/blood supply
- Dentate Gyrus/immunology
- Dentate Gyrus/pathology
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Female
- Gene Knockdown Techniques
- Inclusion Bodies/metabolism
- Inflammation Mediators/metabolism
- Lipopolysaccharides/pharmacology
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Microvessels/immunology
- Microvessels/metabolism
- Neurons/physiology
- Proto-Oncogene Proteins/genetics
- Receptor Protein-Tyrosine Kinases/genetics
- T-Lymphocytes/immunology
- Tumor Necrosis Factor-alpha/blood
- Ubiquitinated Proteins/metabolism
- c-Mer Tyrosine Kinase
- Axl Receptor Tyrosine Kinase
Collapse
Affiliation(s)
- Qiutang Li
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America
- The James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Qingjun Lu
- School of Basic Medicine and Beijing Tong-Ren Hospital, Beijing Ophthalmology and Visual Science Key Laboratory, Capital Medical University, Beijing, China
| | - Huayi Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America
| | - Shifu Tian
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America
| | - Qingxian Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
- The James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
6
|
Dunkelberger JR, Song WC. Role and mechanism of action of complement in regulating T cell immunity. Mol Immunol 2010; 47:2176-86. [PMID: 20603023 DOI: 10.1016/j.molimm.2010.05.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complement is a part of the innate immune system that contributes to first-line host defense. It is also implicated in a number of human inflammatory conditions and has attracted interest as a potential therapeutic target. Understanding the basic biology of complement and its mechanism(s) of action is imperative for developing complement-based treatments for infectious and autoimmune diseases. One of the exciting new developments in this regard is the revelation that complement plays an important role in T cell immunity. In this review, we highlight recent published studies implicating complement in models of CD4+ and CD8+ T cell immune responses, and discuss its potential mechanism(s) action in these processes. We also comment on issues that may impact data interpretation and draw attention to their consideration in future studies.
Collapse
Affiliation(s)
- Jason R Dunkelberger
- Institute for Translational Medicine and Therapeutics and Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
7
|
Deletion of both the C3a and C5a receptors fails to protect against experimental autoimmune encephalomyelitis. Neurosci Lett 2009; 467:234-6. [PMID: 19850104 DOI: 10.1016/j.neulet.2009.10.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 11/21/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease in which inflammation, leukocyte infiltration, and ultimately, demyelination occur as a result of innate and adaptive immune-mediated mechanisms. The pathophysiological role of the complement system, a major component of innate immunity, in the development and progression of experimental autoimmune encephalomyelitis (EAE), the animal model for MS has been extensively examined. Previous studies from our lab have shown that the complement receptor for the anaphylatoxin C3a, but not for C5a plays an important role in EAE. Based on the important contributions of the complement anaphylatoxin receptors to other inflammatory conditions in the CNS, we reasoned that deletion of both receptors may reveal underlying interactions between them that are important to EAE pathology. We performed EAE in C3aR/C5aR double knockout mice (C3aR/C5aR(-/-)) and observed delayed onset of disease but no attenuation of disease severity compared to wild type mice. Interestingly there was trend toward greater infiltration of CD4(+), but not CD8(+) T cells, in C3aR/C5aR(-/-) mice with EAE, suggesting altered trafficking of these cells. Antigen-specific T cells isolated from C3aR/C5aR(-/-) mice during acute EAE produced elevated levels of TNF-alpha, but markedly reduced levels of IFN-gamma and IL-12 compared to wild type mice. It remains unclear how the changes in these disease parameters contribute to the loss of the protective effect seen in C3aR(-/-) mice, however our data indicate a level of cross-modulation between the C3aR and C5aR during EAE.
Collapse
|