1
|
Soldatov VO, Shmykova EA, Pershina MA, Ksenofontov AO, Zamitsky YM, Kulikov AL, Peresypkina AA, Dovgan AP, Belousova YV. Imidazoline receptors agonists: possible mechanisms of endothelioprotection. RESEARCH RESULTS IN PHARMACOLOGY 2018. [DOI: 10.3897/rrpharmacology.4.27221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Imidazoline receptor agonists are one of the groups of contemporary antihypertensive drugs with the pleiotropic cardiovascular effects. In this review, the historical, physiological, pathophysiological aspects concerning imidazoline receptor agonists and possible mechanisms for their participation in endothelioprotection were considered. Illuminated the molecular biology of each subtype of imidazoline receptors and their significance in the pharmacological correction of cardiovascular disease.IR type 1 are localized in the brain nucleus, carrying out the descending tonic control of sympathetic activation, as well as in the endothelial cells of the vessels and kidneys. Their activation leads to a decrease in blood pressure, slowing the remodeling of the vascular wall and increasing sodium nares. IR type 2 is expressed predominantly in the adrenal gland, fat and muscle tissues. The physiological effects of their stimulation are associated with an increase in glucose utilization by peripheral tissues. IR type 3 are mainly present in pancreatic cells and are associated with the regulation of insulin secretion. Their stimulation leads to an increase in insulin liberation. Thus, IR agonists are able to improve endothelial function through various mechanisms, including blood pressure reduction, improvement in metabolic profile, and direct positive effects on the vascular wall.Current information on the pharmacological effects of this group compounds allows us to conclude that they are a promising group for correcting endothelial dysfunction and complications associated with it.
Collapse
|
2
|
Anti-diabetic effect and mechanism of Kursi Wufarikun Ziyabit in L6 rat skeletal muscle cells. J Pharmacol Sci 2018; 137:212-219. [DOI: 10.1016/j.jphs.2018.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/23/2018] [Accepted: 06/11/2018] [Indexed: 02/03/2023] Open
|
3
|
Lin MH, Hsu CC, Lin J, Cheng JT, Wu MC. Investigation of morin-induced insulin secretion in cultured pancreatic cells. Clin Exp Pharmacol Physiol 2017; 44:1254-1262. [PMID: 28699234 DOI: 10.1111/1440-1681.12815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022]
Abstract
Morin is a flavonoid contained in guava that is known to reduce hyperglycemia in diabetes. Insulin secretion has been demonstrated to increase following the administration of morin. The present study is designed to investigate the potential mechanism(s) of morin-induced insulin secretion in the MIN6 cell line. First, we identified that morin induced a dose-dependent increase in insulin secretion and intracellular calcium content in MIN6 cells. Morin potentiated glucose-stimulated insulin secretion (GSIS). Additionally, we used siRNA for the ablation of imidazoline receptor protein (NISCH) expression in MIN6 cells. Interestingly, the effects of increased insulin secretion by morin and canavanine were markedly reduced in Si-NISCH cells. Moreover, we used KU14R to block imidazoline I3 receptor (I-3R) that is known to enhance insulin release from the pancreatic β-cells. Without influence on the basal insulin secretion, KU14R dose-dependently inhibited the increased insulin secretion induced by morin or efaroxan in MIN6 cells. Additionally, effects of increased insulin secretion by morin or efaroxan were reduced by diazoxide at the dose sufficient to open KATP channels and attenuated by nifedipine at the dose used to inhibit L-type calcium channels. Otherwise, phospholipase C (PLC) is introduced to couple with imidazoline receptor (I-R). The PLC inhibitor dose-dependently inhibited the effects of morin in MIN6 cells. Similar blockade was also observed in protein kinase C (PKC) inhibitor-treated cells. Taken together, we found that morin increases insulin secretion via the activation of I-R in pancreatic cells. Therefore, morin would be useful to develop in the research and treatment of diabetic disorders.
Collapse
Affiliation(s)
- Mang Hung Lin
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Chief Secretary's Office, Chiayi Hospital, Ministry of Health and Welfare, Chiayi, Taiwan
| | - Chia-Chen Hsu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Jenshinn Lin
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Juei Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Ming Chang Wu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
4
|
Lin MH, Hsu CC, Lin J, Cheng JT, Wu MC. Identification of morin as an agonist of imidazoline I-3 receptor for insulin secretion in diabetic rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 390:997-1003. [PMID: 28689255 DOI: 10.1007/s00210-017-1399-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
Morin is a flavonoid contained in guava that is known to reduce hyperglycemia in diabetics. Morin has been demonstrated to increase plasma insulin. However, the mechanism(s) remains unknown. The present study is designed to investigate the effect of morin on the imidazoline receptor (I-R) that regulates insulin secretion. We used Chinese hamster ovary (CHO) cells transfected with an I-R expression construct (NISCH-CHO-K1 cells) to identify the direct effect of morin on the I-R. Moreover, the imidazoline I3 receptor (I-3R) is known to be present in pancreatic β cells and involved in insulin secretion. Therefore, we applied a specific antagonist (KU14R) to block I-3R in diabetic rats. Additionally, the effect of morin on insulin secretion was characterized in isolated pancreatic islets. Morin decreased blood glucose levels by increasing plasma insulin levels in diabetic rats. In CHO cells expressing an I-R, morin increased calcium influx in a dose-dependent manner. Additionally, KU14R dose-dependently inhibited the morin-induced effects, including hypoglycemia and the increase in insulin secretion and plasma C-peptide levels, in diabetic rats. Furthermore, morin enhanced insulin secretion from isolated pancreatic islets, and this effect was also dose-dependently inhibited by KU14R. Phospholipase C (PLC) is known to couple with the I-R, and a PLC inhibitor dose-dependently attenuated the insulin secretion induced by morin in isolated pancreatic islets. Taken together, these data suggest that morin can activate I-3R to enhance insulin secretion. Therefore, it would be useful to develop morin into a treatment for diabetic disorders.
Collapse
Affiliation(s)
- Mang Hung Lin
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung City, Taiwan, 90801
- Chief Secretary's Office, Chiayi Hospital, Ministry of Health and Welfare, Chiayi City, Taiwan, 60001
| | - Chia-Chen Hsu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung City, Taiwan, 90801
| | - Jenshinn Lin
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung City, Taiwan, 90801
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan, 73101.
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Guei-Ren, Tainan City, Taiwan, 71101.
| | - Ming Chang Wu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung City, Taiwan, 90801.
| |
Collapse
|
5
|
Hsu CC, Lin MH, Cheng JT, Wu MC. Diosmin, a Citrus Nutrient, Activates Imidazoline Receptors to Alleviate Blood Glucose and Lipids in Type 1-Like Diabetic Rats. Nutrients 2017; 9:684. [PMID: 28665324 PMCID: PMC5537799 DOI: 10.3390/nu9070684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 11/20/2022] Open
Abstract
Diosmin is a nutrient that is widely contained in citrus and that has been indicated to improve glucose metabolism in diabetic disorders. Recently, we demonstrated that diosmin induces β-endorphin to lower hyperglycemia in diabetic rats. However, the mechanisms of diosmin in opioid secretion were unclear. Therefore, we focused on the secretion of opioids from isolated adrenal glands induced by diosmin. The changes in the released β-endorphin-like immunoreactivity (BER) were determined using ELISA. Diosmin increased the BER level in a dose-dependent manner, and this effect was markedly reduced in the absence of calcium ions. Activation of the imidazoline I-2 receptor (I-2R) has been introduced to induce opioid secretion. Interestingly, we observed that diosmin activates CHO cells expressing I-R. Additionally, diosmin-increased BER was inhibited by the blockade of I-2R in isolated adrenal glands. Additionally, an antagonist of I-2R blocked diosmin-induced effects, including the reduction in hyperglycemia and the increase in plasma BER in streptozotocin-induced diabetic rats (STZ-diabetic rats). Repeated treatment of STZ-diabetic rats with diosmin for one week induced changes in hepatic glycogen, lipid levels, and the expression of phosphoenolpyruvate carboxykinase (PEPCK). Furthermore, an antagonist of I-2R blocked the diosmin-induced changes. Additionally, plasma lipids modified by diosmin were also reversed by the blockade of I-2R in STZ-diabetic rats. Taken together, we suggest that diosmin may activate I-2R to enhance the secretion of β-endorphin from adrenal glands and to influence metabolic homeostasis, resulting in alleviation of blood glucose and lipids in STZ-diabetic rats.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung City 90801, Taiwan.
| | - Mang Hung Lin
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung City 90801, Taiwan.
- Chief Secretary's Office, Chiayi Hospital, Ministry of Health and Welfare, Chiayi City 60001, Taiwan.
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City 73101, Taiwan.
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Guei-Ren, Tainan City 71101, Taiwan.
| | - Ming Chang Wu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung City 90801, Taiwan.
| |
Collapse
|
6
|
Zaitseva II, Zaitsev SV, Berggren PO. The imidazoline compound RX871024 promotes insulinoma cell death independent of AMP-activated protein kinase inhibition. Invest New Drugs 2016; 34:522-9. [DOI: 10.1007/s10637-016-0362-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/18/2016] [Indexed: 11/29/2022]
|
7
|
Canavanine activates imidazoline I-2 receptors to reduce hyperglycemia in type 1-like diabetic rats. Chem Biol Interact 2015; 240:304-9. [DOI: 10.1016/j.cbi.2015.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/23/2015] [Accepted: 08/28/2015] [Indexed: 11/21/2022]
|
8
|
Amitani M, Cheng KC, Asakawa A, Amitani H, Kairupan TS, Sameshima N, Shimizu T, Hashiguchi T, Inui A. Allantoin ameliorates chemically-induced pancreatic β-cell damage through activation of the imidazoline I3 receptors. PeerJ 2015; 3:e1105. [PMID: 26290782 PMCID: PMC4540048 DOI: 10.7717/peerj.1105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/25/2015] [Indexed: 01/01/2023] Open
Abstract
Objective. Allantoin is the primary active compound in yams (Dioscorea spp.). Recently, allantoin has been demonstrated to activate imidazoline 3 (I3) receptors located in pancreatic tissues. Thus, the present study aimed to investigate the role of allantoin in the effect to improve damage induced in pancreatic β-cells by streptozotocin (STZ) via the I3 receptors. Research Design and Methods. The effect of allantoin on STZ-induced apoptosis in pancreatic β-cells was examined using the ApoTox-Glo triplex assay, live/dead cell double staining assay, flow cytometric analysis, and Western blottings. The potential mechanism was investigated using KU14R: an I3 receptor antagonist, and U73122: a phospholipase C (PLC) inhibitor. The effects of allantoin on serum glucose and insulin secretion were measured in STZ-treated rats. Results. Allantoin attenuated apoptosis and cytotoxicity and increased the viability of STZ-induced β-cells in a dose-dependent manner; this effect was suppressed by KU14R and U73112. Allantoin decreased the level of caspase-3 and increased the level of phosphorylated B-cell lymphoma 2 (Bcl-2) expression detected by Western blotting. The improvement in β-cells viability was confirmed using flow cytometry analysis. Daily injection of allantoin for 8 days in STZ-treated rats significantly lowered plasma glucose and increased plasma insulin levels. This action was inhibited by treatment with KU14R. Conclusion. Allantoin ameliorates the damage of β-cells induced by STZ. The blockade by pharmacological inhibitors indicated that allantoin can activate the I3 receptors through a PLC-related pathway to decrease this damage. Therefore, allantoin and related analogs may be effective in the therapy for β-cell damage.
Collapse
Affiliation(s)
- Marie Amitani
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Haruka Amitani
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Timothy Sean Kairupan
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Nanami Sameshima
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Toshiaki Shimizu
- Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Teruto Hashiguchi
- Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Akio Inui
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| |
Collapse
|
9
|
Chao PC, Chang CH, Niu HS, Huang GC, Chen LJ, Cheng JT. Canavanine increases glucose uptake in C2 C12 cells through the activation of imidazoline I-2B receptors. Clin Exp Pharmacol Physiol 2015; 42:1045-50. [PMID: 26192192 DOI: 10.1111/1440-1681.12464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/27/2015] [Accepted: 07/10/2015] [Indexed: 11/29/2022]
Abstract
Canavanine is a guanidinium derivative that contains the basic structure of the ligand(s) of imidazoline receptor (I-R). Canavanine has been reported to activate the imidazoline I-3 receptor (I-3R) both in vivo and in vitro. Additionally, the activation of the imidazoline I-2B receptor (I-2BR) by guanidinium derivatives may increase glucose uptake. Therefore, the effect of canavanine on the I-2BR was investigated in the present study. Glucose uptake into cultured C2 C12 cells was determined using the radio-ligated tracer 2-[(14) C]-deoxy-glucose. The changes in 5' AMP-activated protein kinase (AMPK) expression were also identified using Western blotting analysis. The canavanine-induced glucose uptake was inhibited in a dose-dependent manner by BU224 (0.01-1 μmol/L), which is a specific I-2BR antagonist, in the C2 C12 cells. Additionally, the canavanine-stimulated AMPK phosphorylation and glucose transporter (GLUT4) expression were also sensitive to BU224 inhibition in the C2 C12 cells. Moreover, both canavanine-stimulated glucose uptake and AMPK phosphorylation were attenuated by high concentrations of amiloride (1-2 μmol/L), which is another established I-2BR inhibitor, in a dose-dependent manner in C2 C12 cells. Additionally, compound C abolished the canavanine-induced glucose uptake and AMPK phosphorylation at a concentration (0.1 μmol/L) sufficient to inhibit AMPK. In conclusion, these data demonstrated that canavanine has an ability to activate I-2BR through the AMPK pathway to increase glucose uptake, which indicates I-2BR as a new target for diabetic therapy.
Collapse
Affiliation(s)
- Pin-Chun Chao
- Bachelor Program of Senior Services, College of Humanities and Social Sciences, Southern Taiwan University of Science and Technology, Yong Kang, Tainan City, Taiwan
| | - Chin-Hong Chang
- Department of Neurosurgery, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan.,Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan
| | - Ho-Shan Niu
- Department of Nursing, Tzu Chi College of Technology, Hualien City, Taiwan
| | - Gin-Chi Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Li-Jen Chen
- Department of Nursing, Tzu Chi College of Technology, Hualien City, Taiwan
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.,Institute of Medical Sciences, Chang Jung Christian University, Guei-Ren, Tainan City, Taiwan
| |
Collapse
|
10
|
Yang TT, Niu HS, Chen LJ, Ku PM, Lin KC, Cheng JT. Canavanine induces insulin release via activation of imidazoline I3 receptors. Clin Exp Pharmacol Physiol 2014; 42:263-8. [PMID: 25482045 DOI: 10.1111/1440-1681.12348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/18/2014] [Accepted: 11/26/2014] [Indexed: 12/01/2022]
Abstract
The aim of the present study was to identify the effect of canavanine on the imidazoline receptor because canavanine is a guanidinium derivative that has a similar structure to imidazoline receptor ligands. Transfected Chinese hamster ovary-K1 cells expressing imidazoline receptors (nischarin (NISCH)-CHO-K1 cells) were used to elucidate the direct effects of canavanine on imidazoline receptors. In addition, the imidazoline I3 receptor has been implicated in stimulation of insulin secretion from pancreatic β-cells. Wistar rats were used to investigate the effects of canavanine (0.1, 1 and 2.5 mg/kg, i.v.) on insulin secretion. In addition the a specific I3 receptor antagonist KU14R (4 or 8 mg/kg, i.v.) was used to block I3 receptors. Canavanine decreased blood glucose by increasing plasma insulin in rats. In addition, canavanine increased calcium influx into NISCH-CHO-K1 cells in a manner similar to agmatine, the endogenous ligand of imidazoline receptors. Moreover, KU12R dose-dependently attenuated canavanine-induced insulin secretion in HIT-T15 pancreatic β-cells and in the plasma of rats. The data suggest that canavanine is an agonist of I3 receptors both in vivo and in vitro. Thus, canavanine would be a useful tool in imidazoline receptor research.
Collapse
Affiliation(s)
- Ting-Ting Yang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Yanchao, Kaohsiung City, Taiwan
| | | | | | | | | | | |
Collapse
|
11
|
Tsai CC, Chen LJ, Niu HS, Chung KM, Cheng JT, Lin KC. Allantoin activates imidazoline I-3 receptors to enhance insulin secretion in pancreatic β-cells. Nutr Metab (Lond) 2014. [DOI: 10.1186/1743-7075-11-41] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
12
|
Chen MF, Tsai JT, Chen LJ, Wu TP, Yang JJ, Yin LT, Yang YL, Chiang TA, Lu HL, Wu MC. Characterization of imidazoline receptors in blood vessels for the development of antihypertensive agents. BIOMED RESEARCH INTERNATIONAL 2014; 2014:182846. [PMID: 24800210 PMCID: PMC3996295 DOI: 10.1155/2014/182846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/09/2014] [Indexed: 01/01/2023]
Abstract
It has been indicated that activation of peripheral imidazoline I2-receptor (I-2R) may reduce the blood pressure in spontaneously hypertensive rats (SHRs). Also, guanidinium derivatives show the ability to activate imidazoline receptors. Thus, it is of special interest to characterize the I-2R using guanidinium derivatives in blood vessels for development of antihypertensive agent(s). Six guanidinium derivatives including agmatine, amiloride, aminoguanidine, allantoin, canavanine, and metformin were applied in this study. Western blot analysis was used for detecting the expression of imidazoline receptor in tissues of Wistar rats. The isometric tension of aortic rings isolated from male rats was also estimated. The expression of imidazoline receptor on rat aorta was identified. However, guanidinium derivatives for detection of aortic relaxation were not observed except agmatine and amiloride which induced a marked relaxation in isolated aortic rings precontracted with phenylephrine or KCl. Both relaxations induced by agmatine and amiloride were attenuated by glibenclamide at concentration enough to block ATP-sensitive potassium (KATP) channels. Meanwhile, only agmatine-induced relaxation was abolished by BU224, a selective antagonist of imidazoline I2-receptors. Taken together, we suggest that agmatine can induce vascular relaxation through activation of peripheral imidazoline I2-receptor to open KATP channels. Thus, agmatine-like compound has the potential to develop as a new therapeutic agent for hypertension in the future.
Collapse
Affiliation(s)
- Mei-Fen Chen
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
- College of Medicine and Life Science, Chung Hwa University of Medical Technology, Rende District, Tainan City 71703, Taiwan
| | - Jo-Ting Tsai
- Department of Radiation Oncology, Taipei Medical University-Shuang Ho Hospital, and College of Medicine, Taipei Medical University, Taipei City 10361, Taiwan
| | - Li-Jen Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Tung-Pi Wu
- Department of Obs/Gyn, Tainan Sin-Lau Hospital, The Presbyterian Church in Taiwan, Tainan City 70142, Taiwan
| | - Jia-Jang Yang
- College of Medicine and Life Science, Chung Hwa University of Medical Technology, Rende District, Tainan City 71703, Taiwan
| | - Li-Te Yin
- College of Medicine and Life Science, Chung Hwa University of Medical Technology, Rende District, Tainan City 71703, Taiwan
| | - Yu-lin Yang
- College of Medicine and Life Science, Chung Hwa University of Medical Technology, Rende District, Tainan City 71703, Taiwan
| | - Tai-An Chiang
- College of Medicine and Life Science, Chung Hwa University of Medical Technology, Rende District, Tainan City 71703, Taiwan
| | - Han-Lin Lu
- Department of Chinese Medicine, Tainan Sin-Lau Hospital, The Presbyterian Church in Taiwan, Tainan City 70142, Taiwan
| | - Ming-Chang Wu
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
| |
Collapse
|
13
|
Chen MF, Tsai JT, Chen LJ, Wu TP, Yang JJ, Yin LT, Yang YL, Chiang TA, Lu HL, Wu MC. Antihypertensive action of allantoin in animals. BIOMED RESEARCH INTERNATIONAL 2014; 2014:690135. [PMID: 24745022 PMCID: PMC3972943 DOI: 10.1155/2014/690135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/10/2014] [Indexed: 01/16/2023]
Abstract
The agonists of imidazoline I-1 receptors (I-1R) are widely used to lower blood pressure. It has been indicated that guanidinium derivatives show an ability to activate imidazoline receptors. Also, allantoin has a chemical stricture similar to guanidinium derivatives. Thus, it is of special interest to characterize the effect of allantoin on I-1R. In conscious male spontaneous hypertensive rats (SHRs), mean blood pressure (MBP) was recorded using the tail-cuff method. Furthermore, the hemodynamic analyses in catheterized rats were applied to measure the actions of allantoin in vivo. Allantoin decreased blood pressures in SHRs at 30 minutes, as the most effective time. Also, this antihypertensive action was shown in a dose-dependent manner from SHRs treated with allantoin. Moreover, in anesthetized rats, allantoin inhibited cardiac contractility and heart rate as showing in hemodynamic dP/dt max significantly. Also, the peripheral blood flow was markedly increased by allantoin. Both actions were diminished by efaroxan at the dose sufficient to block I-1R. Thus, we suggest that allantoin, as I-1R agonist, has the potential to develop as a new therapeutic agent for hypertension in the future.
Collapse
Affiliation(s)
- Mei-Fen Chen
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung City 91201, Taiwan
- College of Medicine and Life Science, Chung Hwa University of Medical Technology, Rende District, Tainan City 71703, Taiwan
| | - Jo-Ting Tsai
- Department of Radiation Oncology, Taipei Medical University-Shuang Ho Hospital, and College of Medicine, Taipei Medical University, Taipei City 10361, Taiwan
| | - Li-Jen Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Tung-Pi Wu
- Department of Obs/Gyn, Tainan SinLau Hospital, The Presbyterian Church in Taiwan, Tainan City 70142, Taiwan
| | - Jia-Jang Yang
- College of Medicine and Life Science, Chung Hwa University of Medical Technology, Rende District, Tainan City 71703, Taiwan
| | - Li-Te Yin
- College of Medicine and Life Science, Chung Hwa University of Medical Technology, Rende District, Tainan City 71703, Taiwan
| | - Yu-lin Yang
- College of Medicine and Life Science, Chung Hwa University of Medical Technology, Rende District, Tainan City 71703, Taiwan
| | - Tai-An Chiang
- College of Medicine and Life Science, Chung Hwa University of Medical Technology, Rende District, Tainan City 71703, Taiwan
| | - Han-Lin Lu
- Department of Chinese Medicine, Tainan SinLau Hospital, The Presbyterian Church in Taiwan, Tainan City 70142, Taiwan
| | - Ming-Chang Wu
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung City 91201, Taiwan
| |
Collapse
|
14
|
Garau C, Miralles A, García-Sevilla JA. Chronic treatment with selective I2-imidazoline receptor ligands decreases the content of pro-apoptotic markers in rat brain. J Psychopharmacol 2013; 27:123-34. [PMID: 22719017 DOI: 10.1177/0269881112450785] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Selective I(2)-imidazoline receptor ligands induce neuroprotection through various molecular mechanisms including blockade of N-methyl-D-aspartate (NMDA) receptors. To investigate new neuroprotective mechanisms associated with I(2)-imidazoline receptors, the effects of selective (2-styryl-2-imidazoline (LSL 61122), 2-(2-benzofuranyl)-2-imidazoline (2-BFI), 2-(4,5-dihydroimidazol-2-yl) quinoline hydrochloride (BU-224)) and non-selective (idazoxan) I(2)-drugs on canonical apoptotic pathways were assessed in rat brain cortex. The acute treatment with LSL 61122 (10 mg/kg) reduced the content of mitochondrial (pro-apoptotic) Bax (-33%) and cytochrome c (-31%), which was prevented by idazoxan, an I(2)-receptor antagonist. The sustained stimulation of I(2)-imidazoline receptors with selective drugs (10 mg/kg, every 12 h for seven days) was associated with down-regulation of key components of the extrinsic (Fas receptor: -20%; Fas associated protein with death domain (FADD) adaptor: -47-54%) and/or intrinsic (Bax: -20-23%; cytochrome c: -22-28%) apoptotic signalling and/or up-regulation of survival anti-apoptotic factors (p-Ser194 FADD/FADD ratio: +1.6-2.5-fold; and/or Bcl-2/Bax ratio: +1.5-fold), which in the long-term could dampen cell death in the brain. Similar chronic treatments with LSL 60101 (the imidazole analogue of 2-BFI) and idazoxan (a mixed I(2)/α(2)-ligand) did not induce significant alterations of pro- or anti-apoptotic proteins. The disclosed anti-apoptotic mechanisms of selective I(2)-imidazoline drugs may work in concert with other molecular mechanisms of neuroprotection (e.g. blockade of NMDA receptors) that are engaged by I(2)-ligands.
Collapse
Affiliation(s)
- Celia Garau
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | | |
Collapse
|
15
|
Thorn DA, An XF, Zhang Y, Pigini M, Li JX. Characterization of the hypothermic effects of imidazoline I₂ receptor agonists in rats. Br J Pharmacol 2012; 166:1936-45. [PMID: 22324428 DOI: 10.1111/j.1476-5381.2012.01894.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Imidazoline I(2) receptors have been implicated in several CNS disorders. Although several I(2) receptor agonists have been described, no simple and sensitive in vivo bioassay is available for studying I(2) receptor ligands. This study examined I(2) receptor agonist-induced hypothermia as a functional in vivo assay of I(2) receptor agonism. EXPERIMENTAL APPROACH Different groups of rats were used to examine the effects of I(2) receptor agonists on the rectal temperature and locomotion. The pharmacological mechanisms were investigated by combining I(2) receptor ligands and different antagonists. KEY RESULTS All the selective I(2) receptor agonists examined (2-BFI, diphenyzoline, phenyzoline, CR4056, tracizoline, BU224 and S22687, 3.2-56 mg·kg(-1) , i.p.) dose-dependently and markedly decreased the rectal temperature (hypothermia) in rats, with varied duration of action. Pharmacological mechanism of the observed hypothermia was studied by combining the I(2) receptor agonists (2-BFI, BU224, tracizoline and diphenyzoline) with imidazoline I(2 ) receptor/ α(2) adrenoceptor antagonist idazoxan, selective I(1) receptor antagonist efaroxan, α(2) adrenoceptor antagonist/5-HT(1A) receptor agonist yohimbine. Idazoxan but not yohimbine or efaroxan attenuated the hypothermic effects of 2-BFI, BU224, tracizoline and diphenyzoline, supporting the I(2) receptor mechanism. In contrast, both idazoxan and yohimbine attenuated hypothermia induced by the α(2) adrenoceptor agonist clonidine. Among all the I(2) receptor agonists studied, only S22687 markedly increased the locomotor activity in rats. CONCLUSIONS AND IMPLICATIONS Imidazoline I(2) receptor agonists can produce hypothermic effects, which are primarily mediated by I(2) receptors. These data suggest that I(2) receptor agonist-induced hypothermia is a simple and sensitive in vivo assay for studying I(2) receptor ligands.
Collapse
Affiliation(s)
- David A Thorn
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | | | | | | | | |
Collapse
|
16
|
Transient Silencing of a Type IV P-Type ATPase, Atp10c, Results in Decreased Glucose Uptake in C2C12 Myotubes. J Nutr Metab 2012; 2012:152902. [PMID: 22474575 PMCID: PMC3317196 DOI: 10.1155/2012/152902] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/15/2011] [Accepted: 10/29/2011] [Indexed: 11/26/2022] Open
Abstract
Atp10c is a strong candidate gene for diet-induced obesity and type 2 diabetes. To identify molecular and cellular targets of ATP10C, Atp10c expression was altered in vitro in C2C12 skeletal muscle myotubes by transient transfection with an Atp10c-specific siRNA. Glucose uptake assays revealed that insulin stimulation caused a significant 2.54-fold decrease in 2-deoxyglucose uptake in transfected cells coupled with a significant upregulation of native mitogen-activated protein kinases (MAPKs), p38, and p44/42. Additionally, glucose transporter-1 (GLUT1) was significantly upregulated; no changes in glucose transporter-4 (GLUT4) expression were observed. The involvement of MAPKs was confirmed using the specific inhibitor SB203580, which downregulated the expression of native and phosphorylated MAPK proteins in transfected cells without any changes in insulin-stimulated glucose uptake. Results indicate that Atp10c regulates glucose metabolism, at least in part via the MAPK pathway, and, thus, plays a significant role in the development of insulin resistance and type 2 diabetes.
Collapse
|
17
|
Yang PS, Wu HT, Chung HH, Chen CT, Chi CW, Yeh CH, Cheng JT. Rilmenidine improves hepatic steatosis through p38-dependent pathway to higher the expression of farnesoid X receptor. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:51-6. [DOI: 10.1007/s00210-011-0691-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 09/06/2011] [Indexed: 02/07/2023]
|