1
|
Mensah EO, Chalif JI, Johnston BR, Chalif E, Parker T, Izzy S, He Z, Saigal R, Fehlings MG, Lu Y. Traumatic spinal cord injury: a review of the current state of art and future directions - what do we know and where are we going? NORTH AMERICAN SPINE SOCIETY JOURNAL 2025; 22:100601. [PMID: 40256049 PMCID: PMC12008600 DOI: 10.1016/j.xnsj.2025.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 04/22/2025]
Abstract
Background Traumatic spinal cord injury (SCI) remains a devastating condition, with limited functional recovery despite advancements in clinical management and understanding of its mechanisms. SCI pathophysiology involves primary mechanical trauma and secondary neuroimmune and structural changes, leading to neuronal death and chronic functional deficits. Methods Through a comprehensive literature review of articles published in the PubMed, MEDLINE, Embase, and Cochrane Reviews Library databases, this article provides an update on the current management of traumatic SCI with a focus on these emerging therapeutic strategies that hold potential for future advancements in the field. Results Current management strategies include pre-hospital care, acute clinical interventions, surgical decompression and spine destabilization, and neurorehabilitation. Despite these interventions, SCI patients often fail to fully restore lost functions. Emerging therapies focus on neuroprotection, neuroregeneration, and neuromodulation, leveraging advances in molecular biomarkers, imaging techniques, and cell-based treatments. Neuroprotective agents, including the sodium-glutamate antagonist riluzole, aim to keep cells alive through the secondary injury phase, while regenerative strategies utilize neurotrophic factors and stem cell transplantation or approaches to target inhibitor molecules such as NOGO or RGMa to regenerate new cells, axons, and neural circuits. Neuromodulation techniques, such as electrical and magnetic field stimulation, offer promising avenues for functional recovery. Combining these novel therapies with traditional neurorehabilitation holds potential for improved outcomes. Conclusions While significant strides have been made in understanding the mechanisms underlying SCI and in developing novel therapeutic approaches, the challenge and opportunity will be to tailor treatments to fit the heterogenous clinical presentation of patients with SCI and to better understand the heterogeneity in clinical trajectories.
Collapse
Affiliation(s)
- Emmanuel O. Mensah
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Joshua I. Chalif
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Benjamin R. Johnston
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Eric Chalif
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Tariq Parker
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Saef Izzy
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States
- Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Rajiv Saigal
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, United States
| | - Michael G. Fehlings
- Division of Neurosurgery and Spine Program, University of Toronto, Ontario, Canada
| | - Yi Lu
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Zhang C, Zhai T, Zhu J, Wei D, Ren S, Yang Y, Gao F, Zhao L. Research Progress of Antioxidants in Oxidative Stress Therapy after Spinal Cord Injury. Neurochem Res 2023; 48:3473-3484. [PMID: 37526867 DOI: 10.1007/s11064-023-03993-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 08/02/2023]
Abstract
Spinal cord injury (SCI) is a serious problem in the central nervous system resulting in high disability and mortality with complex pathophysiological mechanisms. Oxidative stress is one of the main secondary reactions of SCI, and its main pathophysiological marker is the production of excess reactive oxygen species. The overproduction of reactive oxygen species and insufficient antioxidant capacity lead to the occurrence of oxidative stress and neuroinflammation, and the dysregulation of oxidative stress and neuroinflammation leads to further aggravation of damage. Oxidative stress can initiate a variety of inflammatory and apoptotic pathways, and targeted antioxidant therapy can greatly reduce oxidative stress and reduce neuroinflammation, which has a certain positive effect on rehabilitation and prognosis in SCI. This article reviewed the research on different types of antioxidants and related treatments in SCI, focusing on the mechanisms of oxidative stress.
Collapse
Affiliation(s)
- Can Zhang
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Tianyu Zhai
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Jinghui Zhu
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Dongmin Wei
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Shuting Ren
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Yanling Yang
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Feng Gao
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Lin Zhao
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
3
|
Garcia E, Buzoianu-Anguiano V, Silva-Garcia R, Esparza-Salazar F, Arriero-Cabañero A, Escandon A, Doncel-Pérez E, Ibarra A. Use of Cells, Supplements, and Peptides as Therapeutic Strategies for Modulating Inflammation after Spinal Cord Injury: An Update. Int J Mol Sci 2023; 24:13946. [PMID: 37762251 PMCID: PMC10531377 DOI: 10.3390/ijms241813946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal cord injury is a traumatic lesion that causes a catastrophic condition in patients, resulting in neuronal deficit and loss of motor and sensory function. That loss is caused by secondary injury events following mechanical damage, which results in cell death. One of the most important events is inflammation, which activates molecules like proinflammatory cytokines (IL-1β, IFN-γ, and TNF-α) that provoke a toxic environment, inhibiting axonal growth and exacerbating CNS damage. As there is no effective treatment, one of the developed therapies is neuroprotection of the tissue to preserve healthy tissue. Among the strategies that have been developed are the use of cell therapy, the use of peptides, and molecules or supplements that have been shown to favor an anti-inflammatory environment that helps to preserve tissue and cells at the site of injury, thus favoring axonal growth and improved locomotor function. In this review, we will explain some of these strategies used in different animal models of spinal cord injury, their activity as modulators of the immune system, and the benefits they have shown.
Collapse
Affiliation(s)
- Elisa Garcia
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Vinnitsa Buzoianu-Anguiano
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Raúl Silva-Garcia
- Unidad de Investigación Médica en Inmunología Hospital de Pediatría, CMN-SXXI, IMSS, Mexico City 06720, Mexico;
| | - Felipe Esparza-Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Alejandro Arriero-Cabañero
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Adela Escandon
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Ernesto Doncel-Pérez
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| |
Collapse
|
4
|
Mohapatra L, Mishra D, Shiomurti Tripathi A, Kumar Parida S. Immunosenescence as a convergence pathway in neurodegeneration. Int Immunopharmacol 2023; 121:110521. [PMID: 37385122 DOI: 10.1016/j.intimp.2023.110521] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Immunity refers to the body's defense mechanism to protect itself against illness or to produce antibodies against pathogens. Senescence is a cellular phenomenon that integrates a sustainable growth restriction, other phenotypic abnormalities and including a pro-inflammatory secretome. It is highly involved in regulating developmental stages, tissue homeostasis, and tumor proliferation monitoring. Contemporary experimental reports imply that abolition of senescent cells employing evolved genetic and therapeutic approaches augment the chances of survival and boosts the health span of an individual. Immunosenescence is considered as a process in which dysfunction of the immune system occurs with aging and greatly includes remodeling of lymphoid organs. This in turn causes fluctuations in the immune function of the elderly that has strict relation with the expansion of autoimmune diseases, infections, malignant tumors and neurodegenerative disorders. The interaction of the nervous and immune systems during aging is marked by bi-directional influence and mutual correlation of variations. The enhanced systemic inflammatory condition in the elderly, and the neuronal immune cell activity can be modulated by inflamm-aging and peripheral immunosenescence resulting in chronic low-grade inflammatory processes in the central Nervous system known as neuro-inflammaging. For example, glia excitation by cytokines and glia pro-inflammatory productions contribute significantly to memory injury as well as in acute systemic inflammation, which is associated with high levels of Tumor necrosis factor -α and a rise in cognitive decline. In recent years its role in the pathology of Alzheimer's disease has caught research interest to a large extent. This article reviews the connection concerning the immune and nervous systems and highlights how immunosenescence and inflamm-aging can affect neurodegenerative disorders.
Collapse
Affiliation(s)
- Lucy Mohapatra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Sector-125, Noida, 201313, India.
| | - Deepak Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Sector-125, Noida, 201313, India
| | | | | |
Collapse
|
5
|
Saeed Y. Title: Immunotherapy; a ground-breaking remedy for spinal cord injury with stumbling blocks: An overview. Front Pharmacol 2023; 14:1110008. [PMID: 36778022 PMCID: PMC9909832 DOI: 10.3389/fphar.2023.1110008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Spinal cord injury (SCI) is a debilitating disorder with no known standard and effective treatment. Despite its ability to exacerbate SCI sequel by accelerating auto-reactive immune cells, an immune response is also considered essential to the healing process. Therefore, immunotherapeutic strategies targeting spinal cord injuries may benefit from the dual nature of immune responses. An increasing body of research suggests that immunization against myelin inhibitors can promote axon remyelination after SCI. However, despite advancements in our understanding of neuroimmune responses, immunoregulation-based therapeutic strategies have yet to receive widespread acceptance. Therefore, it is a prerequisite to enhance the understanding of immune regulation to ensure the safety and efficacy of immunotherapeutic treatments. The objective of the present study was to provide an overview of previous studies regarding the advantages and limitations of immunotherapeutic strategies for functional recovery after spinal cord injury, especially in light of limiting factors related to DNA and cell-based vaccination strategies by providing a novel prospect to lay the foundation for future studies that will help devise a safe and effective treatment for spinal cord injury.
Collapse
Affiliation(s)
- Yasmeen Saeed
- Provincial Key Laboratory for Utilization and Conservation of Food and Medicinal Resources in Northern Guangdong, 288 University Ave. Zhenjiang District, Shaoguan City, Guangdong Province, China
| |
Collapse
|
6
|
Lu Y, Zhang W, Tian Z, Liang Q, Liu C, Wu Y, Zhang L, Rong L. The optimal transplantation strategy of umbilical cord mesenchymal stem cells in spinal cord injury: a systematic review and network meta-analysis based on animal studies. Stem Cell Res Ther 2022; 13:441. [PMID: 36056386 PMCID: PMC9438219 DOI: 10.1186/s13287-022-03103-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/31/2022] [Indexed: 12/09/2022] Open
Abstract
Objective Umbilical cord mesenchymal stem cells (UCMSCs) have great potential in the treatment of spinal cord injury. However, the specific therapeutic effect and optimal transplantation strategy are still unclear. Therefore, exploring the optimal treatment strategy of UCMSCs in animal studies by systematic review can provide reference for the development of animal studies and clinical research in the future. Methods Databases of PubMed, Ovid-Embase, Web of Science, CNKI, WanFang, VIP, and CBM were searched for the literature in February 11, 2022. Two independent reviewers performed the literature search, identification, screening, quality assessment, and data extraction. Results and Discussion A total of 40 animal studies were included for combined analysis. In different subgroups, the results of traditional meta-analysis and network meta-analysis were consistent, that is, the therapeutic effect of high-dose (≥ 1 × 106) transplantation of UCMSCs was significantly better than that of low dose (< 1 × 106), the therapeutic effect of local transplantation of UCMSCs was significantly better than that of intravenous transplantation, and the therapeutic effect of subacute transplantation of UCMSCs was significantly better than that of acute and chronic transplantation. However, in view of the inherent risk of bias and limited internal and external validity of the current animal studies, more high-quality, direct comparison studies are needed to further explore the optimal transplantation strategy for UCMSCs in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03103-8.
Collapse
Affiliation(s)
- Yubao Lu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China.,National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Wei Zhang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China.,National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Zhenming Tian
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China.,National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Qian Liang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China.,National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Chenrui Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China.,National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Yingjie Wu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China.,National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China. .,National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, 510630, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China. .,National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, 510630, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.
| |
Collapse
|
7
|
Toledo ARL, Monroy GR, Salazar FE, Lee JY, Jain S, Yadav H, Borlongan CV. Gut-Brain Axis as a Pathological and Therapeutic Target for Neurodegenerative Disorders. Int J Mol Sci 2022; 23:1184. [PMID: 35163103 PMCID: PMC8834995 DOI: 10.3390/ijms23031184] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Human lifestyle and dietary behaviors contribute to disease onset and progression. Neurodegenerative diseases (NDDs), considered multifactorial disorders, have been associated with changes in the gut microbiome. NDDs display pathologies that alter brain functions with a tendency to worsen over time. NDDs are a worldwide health problem; in the US alone, 12 million Americans will suffer from NDDs by 2030. While etiology may vary, the gut microbiome serves as a key element underlying NDD development and prognosis. In particular, an inflammation-associated microbiome plagues NDDs. Conversely, sequestration of this inflammatory microbiome by a correction in the dysbiotic state of the gut may render therapeutic effects on NDDs. To this end, treatment with short-chain fatty acid-producing bacteria, the main metabolites responsible for maintaining gut homeostasis, ameliorates the inflammatory microbiome. This intimate pathological link between the gut and NDDs suggests that the gut-brain axis (GBA) acts as an underexplored area for developing therapies for NDDs. Traditionally, the classification of NDDs depends on their clinical presentation, mostly manifesting as extrapyramidal and pyramidal movement disorders, with neuropathological evaluation at autopsy as the gold standard for diagnosis. In this review, we highlight the evolving notion that GBA stands as an equally sensitive pathological marker of NDDs, particularly in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and chronic stroke. Additionally, GBA represents a potent therapeutic target for treating NDDs.
Collapse
Affiliation(s)
- Alma Rosa Lezama Toledo
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Germán Rivera Monroy
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Felipe Esparza Salazar
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Shalini Jain
- Center for Microbiome Research, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (S.J.); (H.Y.)
| | - Hariom Yadav
- Center for Microbiome Research, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (S.J.); (H.Y.)
| | - Cesario Venturina Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| |
Collapse
|
8
|
Garcia E, Hernández-Ayvar F, Rodríguez-Barrera R, Flores-Romero A, Borlongan C, Ibarra A. Supplementation With Vitamin E, Zinc, Selenium, and Copper Re-Establishes T-Cell Function and Improves Motor Recovery in a Rat Model of Spinal Cord Injury. Cell Transplant 2022; 31:9636897221109884. [PMID: 35808825 PMCID: PMC9272473 DOI: 10.1177/09636897221109884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Spinal cord injury (SCI) causes a dysfunction of sympathetic nervous
system innervation that affects the immune system, leading to
immunosuppression syndrome (ISS) and contributing to patient
degeneration and increased risk of several infections. A possible
therapeutic strategy that could avoid further patient deterioration is
the supplementation with Vitamin E or trace elements, such as Zinc,
Selenium, and Copper, which individually promotes T-cell
differentiation and proliferative responses. For this reason, the aim
of the present study was to evaluate whether Vitamin E, Zinc,
Selenium, and Copper supplementation preserves the number of
T-lymphocytes and improves their proliferative function after
traumatic SCI. Sprague–Dawley female rats were subjected to moderate
SCI and then randomly allocated into three groups: (1) SCI +
supplements; (2) SCI + vehicle (olive oil and phosphate-buffered
saline); and (3) sham-operated rats. In all rats, the intervention was
initiated 15 min after SCI and then administered daily until the end
of study. Locomotor recovery was assessed at 7 and 15 days after SCI.
At 15 days after supplementation, the quantification of the number of
T-cells and its proliferation function were examined. Our results
showed that the SCI + supplements group presented a significant
improvement in motor recovery at 7 and 15 days after SCI. In addition,
this group showed a better T-cell number and proliferation rate than
that observed in the group with SCI + vehicle. Our findings suggest
that Vitamin E, Zinc, Selenium, and Copper supplementation could be
part of a therapy for patients suffering from acute SCI, helping to
preserve T-cell function, avoiding complications, and promoting a
better motor recovery. All procedures were approved by the Animal
Bioethics and Welfare Committee (Approval No. 201870; CSNBTBIBAJ
090812960).
Collapse
Affiliation(s)
- Elisa Garcia
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, México
| | - Fernanda Hernández-Ayvar
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, México
| | - Roxana Rodríguez-Barrera
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, México
| | - Adrián Flores-Romero
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, México
| | - Cesar Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, México
| |
Collapse
|
9
|
Palumbo ML, Moroni AD, Quiroga S, Castro MM, Burgueño AL, Genaro AM. Immunomodulation induced by central nervous system-related peptides as a therapeutic strategy for neurodegenerative disorders. Pharmacol Res Perspect 2021; 9:e00795. [PMID: 34609083 PMCID: PMC8491457 DOI: 10.1002/prp2.795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
Neurodegenerative diseases (NDD) are disorders characterized by the progressive loss of neurons affecting motor, sensory, and/or cognitive functions. The incidence of these diseases is increasing and has a great impact due to their high morbidity and mortality. Unfortunately, current therapeutic strategies only temporarily improve the patients' quality of life but are insufficient for completely alleviating the symptoms. An interaction between the immune system and the central nervous system (CNS) is widely associated with neuronal damage in NDD. Usually, immune cell infiltration has been identified with inflammation and is considered harmful to the injured CNS. However, the immune system has a crucial role in the protection and regeneration of the injured CNS. Nowadays, there is a consensus that deregulation of immune homeostasis may represent one of the key initial steps in NDD. Dr. Michal Schwartz originally conceived the concept of "protective autoimmunity" (PA) as a well-controlled peripheral inflammatory reaction after injury, essential for neuroprotection and regeneration. Several studies suggested that immunizing with a weaker version of the neural self-antigen would generate PA without degenerative autoimmunity. The development of CNS-related peptides with immunomodulatory neuroprotective effect led to important research to evaluate their use in chronic and acute NDD. In this review, we refer to the role of PA and the potential applications of active immunization as a therapeutic option for NDD treatment. In particular, we focus on the experimental and clinical promissory findings for CNS-related peptides with beneficial immunomodulatory effects.
Collapse
Affiliation(s)
- María Laura Palumbo
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA)‐UNNOBA‐UNsADA‐CONICETJunínArgentina
| | - Alejandro David Moroni
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA)‐UNNOBA‐UNsADA‐CONICETJunínArgentina
| | - Sofía Quiroga
- Instituto de Investigaciones BiomédicasConsejo Nacional de Investigaciones Científicas y Técnicas (CONICETPontificia Universidad Católica ArgentinaBuenos AiresArgentina
| | - María Micaela Castro
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA)‐UNNOBA‐UNsADA‐CONICETJunínArgentina
| | - Adriana Laura Burgueño
- Instituto de Investigaciones BiomédicasConsejo Nacional de Investigaciones Científicas y Técnicas (CONICETPontificia Universidad Católica ArgentinaBuenos AiresArgentina
| | - Ana María Genaro
- Instituto de Investigaciones BiomédicasConsejo Nacional de Investigaciones Científicas y Técnicas (CONICETPontificia Universidad Católica ArgentinaBuenos AiresArgentina
| |
Collapse
|
10
|
Rodríguez-Barrera R, Rivas-González M, García-Sánchez J, Mojica-Torres D, Ibarra A. Neurogenesis after Spinal Cord Injury: State of the Art. Cells 2021; 10:cells10061499. [PMID: 34203611 PMCID: PMC8232196 DOI: 10.3390/cells10061499] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023] Open
Abstract
Neurogenesis in the adult state is the process of new neuron formation. This relatively infrequent phenomenon comprises four stages: cell proliferation, cell migration, differentiation, and the integration of these cells into an existing circuit. Recent reports suggest that neurogenesis can be found in different regions of the Central Nervous System (CNS), including the spinal cord (SC). This process can be observed in physiological settings; however, it is more evident in pathological conditions. After spinal cord injury (SCI), the activation of microglial cells and certain cytokines have shown to exert different modulatory effects depending on the presence of inflammation and on the specific region of the injury site. In these conditions, microglial cells and cytokines are considered to play an important role in the regulation of neurogenesis after SCI. The purpose of this article is to present an overview on neural progenitor cells and neurogenic and non-neurogenic zones as well as the cellular and molecular regulation of neurogenesis. Additionally, we will briefly describe the recent advances in the knowledge of neurogenesis after SCI.
Collapse
|
11
|
Parra-Villamar D, Blancas-Espinoza L, Garcia-Vences E, Herrera-García J, Flores-Romero A, Toscano-Zapien A, Villa JV, Barrera-Roxana R, Karla SZ, Ibarra A, Silva-García R. Neuroprotective effect of immunomodulatory peptides in rats with traumatic spinal cord injury. Neural Regen Res 2021; 16:1273-1280. [PMID: 33318405 PMCID: PMC8284257 DOI: 10.4103/1673-5374.301485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Several therapies have shown obvious effects on structural conservation contributing to motor functional recovery after spinal cord injury (SCI). Nevertheless, neither strategy has achieved a convincing effect. We purposed a combined therapy of immunomodulatory peptides that individually have shown significant effects on motor functional recovery in rats with SCI. The objective of this study was to investigate the effects of the combined therapy of monocyte locomotion inhibitor factor (MLIF), A91 peptide, and glutathione monoethyl ester (GSH-MEE) on chronic-stage spinal cord injury. Female Sprague-Dawley rats underwent a laminectomy of the T9 vertebra and a moderate contusion. Six groups were included: sham, PBS, MLIF + A91, MLIF + GSH-MEE, A91 + GSH-MEE, and MLIF + A91 + GSH-MEE. Two months after injury, motor functional recovery was evaluated using the open field test. Parenchyma and white matter preservation was evaluated using hematoxylin & eosin staining and Luxol Fast Blue staining, respectively. The number of motoneurons in the ventral horn and the number of axonal fibers were determined using hematoxylin & eosin staining and immunohistochemistry, respectively. Collagen deposition was evaluated using Masson's trichrome staining. The combined therapy of MLIF, A91, and GSH-MEE greatly contributed to motor functional recovery and preservation of the medullary parenchyma, white matter, motoneurons, and axonal fibres, and reduced the deposition of collagen in the lesioned area. The combined therapy of MLIF, A91, and GSH-MEE preserved spinal cord tissue integrity and promoted motor functional recovery of rats after SCI. This study was approved by the National Commission for Scientific Research on Bioethics and Biosafety of the Instituto Mexicano del Seguro Social under registration number R-2015-785-116 (approval date November 30, 2015) and R-2017-3603-33 (approval date June 5, 2017).
Collapse
Affiliation(s)
- Dulce Parra-Villamar
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI; Instituto Mexicano del Seguro Social; Ciudad de México, México
| | - Liliana Blancas-Espinoza
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI; Instituto Mexicano del Seguro Social; Ciudad de México, México
| | - Elisa Garcia-Vences
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Campus Norte, Huixquilucan, Edo de México; Centro de Investigación del Proyecto Camina A.C, Ciudad de México, México
| | - Juan Herrera-García
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI; Instituto Mexicano del Seguro Social; Ciudad de México, México
| | - Adrian Flores-Romero
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Campus Norte, Huixquilucan, Edo de México; Centro de Investigación del Proyecto Camina A.C, Ciudad de México, México
| | - Alberto Toscano-Zapien
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI; Instituto Mexicano del Seguro Social; Ciudad de México, México
| | - Jonathan Vilchis Villa
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI; Instituto Mexicano del Seguro Social; Ciudad de México, México
| | - Rodríguez Barrera-Roxana
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Campus Norte, Huixquilucan, Edo de México; Centro de Investigación del Proyecto Camina A.C, Ciudad de México, México
| | - Soria Zavala Karla
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI; Instituto Mexicano del Seguro Social; Ciudad de México; Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Campus Norte, Huixquilucan, Edo de México, México
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Campus Norte, Huixquilucan, Edo de México; Centro de Investigación del Proyecto Camina A.C, Ciudad de México, México
| | - Raúl Silva-García
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI; Instituto Mexicano del Seguro Social; Ciudad de México, México
| |
Collapse
|
12
|
Rodríguez-Barrera R, Flores-Romero A, García E, Fernández-Presas AM, Incontri-Abraham D, Navarro-Torres L, García-Sánchez J, Juárez-Vignon Whaley JJ, Madrazo I, Ibarra A. Immunization with neural-derived peptides increases neurogenesis in rats with chronic spinal cord injury. CNS Neurosci Ther 2020; 26:650-658. [PMID: 32352656 PMCID: PMC7248545 DOI: 10.1111/cns.13368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/13/2020] [Accepted: 03/07/2020] [Indexed: 02/06/2023] Open
Abstract
Aims Immunization with neural‐derived peptides (INDP) has demonstrated to be a promising therapy to achieve a regenerative effect in the chronic phase of the spinal cord injury (SCI). Nevertheless, INDP‐induced neurogenic effects in the chronic stage of SCI have not been explored. Methods and Results In this study, we analyzed the effect of INDP on both motor and sensitive function recovery; afterward, we assessed neurogenesis and determined the production of cytokines (IL‐4, IL‐10, and TNF alpha) and neurotrophic factors (BDNF and GAP‐43). During the chronic stage of SCI, rats subjected to INDP showed a significant increase in both motor and sensitive recovery when compared to the control group. Moreover, we found a significant increase in neurogenesis, mainly at the central canal and at both the dorsal and ventral horns of INDP‐treated animals. Finally, INDP induced significant production of antiinflammatory and regeneration‐associated proteins in the chronic stages of SCI. Conclusions These findings suggest that INDP has a neurogenic effect that could improve motor and sensitive recovery in the chronic stage of SCI. Moreover, our results also envision the use of INDP as a possible therapeutic strategy for other trauma‐related disorders like traumatic brain injury.
Collapse
Affiliation(s)
- Roxana Rodríguez-Barrera
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Adrián Flores-Romero
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Elisa García
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Ana Maria Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Coyoacan, Mexico
| | - Diego Incontri-Abraham
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Lisset Navarro-Torres
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Julián García-Sánchez
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Juan José Juárez-Vignon Whaley
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Ignacio Madrazo
- Proyecto CAMINA A.C, Tlalpan, Mexico.,Unidad de Investigación Médica en Enfermedades Neurológicas, CMN Siglo XXI, IMSS, Ciudad de México, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico.,Proyecto CAMINA A.C, Tlalpan, Mexico
| |
Collapse
|
13
|
Rodríguez-Barrera R, Flores-Romero A, Buzoianu-Anguiano V, Garcia E, Soria-Zavala K, Incontri-Abraham D, Garibay-López M, Juárez-Vignon Whaley JJ, Ibarra A. Use of a Combination Strategy to Improve Morphological and Functional Recovery in Rats With Chronic Spinal Cord Injury. Front Neurol 2020; 11:189. [PMID: 32300328 PMCID: PMC7142263 DOI: 10.3389/fneur.2020.00189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/28/2020] [Indexed: 01/10/2023] Open
Abstract
Immunization with neural derived peptides (INDP), as well as scar removal (SR) and the use of matrices with bone marrow-mesenchymal stem cells (MSCs), have been studied separately and proven to induce a functional and morphological improvement after spinal cord injury (SCI). Herein, we evaluated the therapeutic effects of INDP combined with SR and a fibrin glue matrix (FGM) with MSCs (FGM-MSCs), on motor recovery, axonal regeneration-associated molecules and cytokine expression, axonal regeneration (catecholaminergic and serotonergic fibers), and the induction of neurogenesis after a chronic SCI. For this purpose, female adult Sprague-Dawley rats were subjected to SCI, 60 days after lesion, rats were randomly distributed in four groups: (1) Rats immunized with complete Freund's adjuvant + PBS (vehicle; PBS-I); (2) Rats with SR+ FGM-MSCs; (3) Rats with SR+ INDP + FGM-MSCs; (4) Rats only with INDP. Afterwards, we evaluated motor recovery using the BBB locomotor test. Sixty days after the therapy, protein expression of TNFα, IL-4, IL-10, BDNF, and GAP-43 were evaluated using ELISA assay. The number of catecholaminergic and serotonergic fibers were also determined. Neurogenesis was evaluated through immunofluorescence. The results show that treatment with INDP alone significantly increased motor recovery, anti-inflammatory cytokines, regeneration-associated molecules, axonal regeneration, and neurogenesis when compared to the rest of the groups. Our findings suggest that the combination therapy (SR + INDP + FGM-MSCs) modifies the non-permissive microenvironment post SCI, but it is not capable of inducing an appropriate axonal regeneration or neurogenesis when compared to the treatment with INDP alone.
Collapse
Affiliation(s)
- Roxana Rodríguez-Barrera
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico.,Proyecto CAMINA A.C., Mexico City, Mexico
| | - Adrián Flores-Romero
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico.,Proyecto CAMINA A.C., Mexico City, Mexico
| | | | - Elisa Garcia
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico.,Proyecto CAMINA A.C., Mexico City, Mexico
| | - Karla Soria-Zavala
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico.,Proyecto CAMINA A.C., Mexico City, Mexico
| | - Diego Incontri-Abraham
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Marcela Garibay-López
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Juan José Juárez-Vignon Whaley
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico.,Proyecto CAMINA A.C., Mexico City, Mexico
| |
Collapse
|
14
|
Ibarra A, Mendieta-Arbesú E, Suarez-Meade P, García-Vences E, Martiñón S, Rodriguez-Barrera R, Lomelí J, Flores-Romero A, Silva-García R, Buzoianu-Anguiano V, Borlongan CV, Frydman TD. Motor Recovery after Chronic Spinal Cord Transection in Rats: A Proof-of-Concept Study Evaluating a Combined Strategy. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:52-62. [DOI: 10.2174/1871527317666181105101756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/20/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022]
Abstract
Background:
The chronic phase of Spinal Cord (SC) injury is characterized by the presence
of a hostile microenvironment that causes low activity and a progressive decline in neurological function;
this phase is non-compatible with regeneration. Several treatment strategies have been investigated
in chronic SC injury with no satisfactory results. OBJECTIVE- In this proof-of-concept study,
we designed a combination therapy (Comb Tx) consisting of surgical glial scar removal plus scar inhibition,
accompanied with implantation of mesenchymal stem cells (MSC), and immunization with
neural-derived peptides (INDP).
Methods:
This study was divided into three subsets, all in which Sprague Dawley rats were subjected
to a complete SC transection. Sixty days after injury, animals were randomly allocated into two groups
for therapeutic intervention: control group and animals receiving the Comb-Tx. Sixty-three days after
treatment we carried out experiments analyzing motor recovery, presence of somatosensory evoked
potentials, neural regeneration-related genes, and histological evaluation of serotoninergic fibers.
Results:
Comb-Tx induced a significant locomotor and electrophysiological recovery. An increase in the
expression of regeneration-associated genes and the percentage of 5-HT+ fibers was noted at the caudal
stump of the SC of animals receiving the Comb-Tx. There was a significant correlation of locomotor recovery
with positive electrophysiological activity, expression of GAP43, and percentage of 5-HT+ fibers.
Conclusion:
Comb-Tx promotes motor and electrophysiological recovery in the chronic phase of SC
injury subsequent to a complete transection. Likewise, it is capable of inducing the permissive microenvironment
to promote axonal regeneration.
Collapse
Affiliation(s)
- Antonio Ibarra
- Centro de Investigacion en Ciencias de la Salud (CICSA), Universidad Anahuac Mexico Campus Norte, Huixquilucan Estado de Mexico, Mexico
| | - Erika Mendieta-Arbesú
- Centro de Investigacion en Ciencias de la Salud (CICSA), Universidad Anahuac Mexico Campus Norte, Huixquilucan Estado de Mexico, Mexico
| | - Paola Suarez-Meade
- Centro de Investigacion en Ciencias de la Salud (CICSA), Universidad Anahuac Mexico Campus Norte, Huixquilucan Estado de Mexico, Mexico
| | - Elisa García-Vences
- Centro de Investigacion en Ciencias de la Salud (CICSA), Universidad Anahuac Mexico Campus Norte, Huixquilucan Estado de Mexico, Mexico
| | | | - Roxana Rodriguez-Barrera
- Centro de Investigacion en Ciencias de la Salud (CICSA), Universidad Anahuac Mexico Campus Norte, Huixquilucan Estado de Mexico, Mexico
| | - Joel Lomelí
- Instituto Politecnico Nacional, Escuela Superior de Medicina, Ciudad de Mexico, Mexico
| | - Adrian Flores-Romero
- Centro de Investigacion en Ciencias de la Salud (CICSA), Universidad Anahuac Mexico Campus Norte, Huixquilucan Estado de Mexico, Mexico
| | | | | | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, United States
| | - Tamara D. Frydman
- Centro de Investigacion en Ciencias de la Salud (CICSA), Universidad Anahuac Mexico Campus Norte, Huixquilucan Estado de Mexico, Mexico
| |
Collapse
|
15
|
García E, Rodríguez-Barrera R, Buzoianu-Anguiano V, Flores-Romero A, Malagón-Axotla E, Guerrero-Godinez M, De la Cruz-Castillo E, Castillo-Carvajal L, Rivas-Gonzalez M, Santiago-Tovar P, Morales I, Borlongan C, Ibarra A. Use of a combination strategy to improve neuroprotection and neuroregeneration in a rat model of acute spinal cord injury. Neural Regen Res 2019; 14:1060-1068. [PMID: 30762019 PMCID: PMC6404491 DOI: 10.4103/1673-5374.250627] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury is a very common pathological event that has devastating functional consequences in patients. In recent years, several research groups are trying to find an effective therapy that could be applied in clinical practice. In this study, we analyzed the combination of different strategies as a potential therapy for spinal cord injury. Immunization with neural derived peptides (INDP), inhibition of glial scar formation (dipyridyl: DPY), as well as the use of biocompatible matrix (fibrin glue: FG) impregnated with bone marrow mesenchymal stem cells (MSCs) were combined and then its beneficial effects were evaluated in the induction of neuroprotection and neuroregeneration after acute SCI. Sprague-Dawley female rats were subjected to a moderate spinal cord injury and then randomly allocated into five groups: 1) phosphate buffered saline; 2) DPY; 3) INDP + DPY; 4) DPY+ FG; 5) INDP + DPY + FG + MSCs. In all rats, intervention was performed 72 hours after spinal cord injury. Locomotor and sensibility recovery was assessed in all rats. At 60 days after treatment, histological examinations of the spinal cord (hematoxylin-eosin and Bielschowsky staining) were performed. Our results showed that the combination therapy (DPY+ INDP + FG + MSCs) was the best strategy to promote motor and sensibility recovery. In addition, significant increases in tissue preservation and axonal density were observed in the combination therapy group. Findings from this study suggest that the combination theapy (DPY+ INDP + FG + MSCs) exhibits potential effects on the protection and regeneration of neural tissue after acute spinal cord injury. All procedures were approved by the Animal Bioethics and Welfare Committee (approval No. 178544; CSNBTBIBAJ 090812960) on August 15, 2016.
Collapse
Affiliation(s)
- Elisa García
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México; Centro de Investigación del Proyecto CAMINA A.C.; Ciudad de México, México
| | - Roxana Rodríguez-Barrera
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México; Centro de Investigación del Proyecto CAMINA A.C.; Ciudad de México, México
| | - Vinnitsa Buzoianu-Anguiano
- Unidad de Investigación Médica en Enfermedades Neurologicas, Hospital Especialidades CMN Siglo XXI, Ciudad de México, Mexico
| | - Adrian Flores-Romero
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México; Centro de Investigación del Proyecto CAMINA A.C.; Ciudad de México, México
| | - Emanuel Malagón-Axotla
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México
| | - Marco Guerrero-Godinez
- Unidad de Rehabilitación Osteoarticular. Instituto Nacional de Rehabilitación. Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Estefanía De la Cruz-Castillo
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México
| | - Laura Castillo-Carvajal
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México
| | - Monserrat Rivas-Gonzalez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México
| | - Paola Santiago-Tovar
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México
| | - Ivis Morales
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México
| | - Cesar Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Edo. de México, México; Centro de Investigación del Proyecto CAMINA A.C.; Ciudad de México, México
| |
Collapse
|
16
|
García E, Silva-García R, Flores-Romero A, Blancas-Espinoza L, Rodríguez-Barrera R, Ibarra A. The Severity of Spinal Cord Injury Determines the Inflammatory Gene Expression Pattern after Immunization with Neural-Derived Peptides. J Mol Neurosci 2018; 65:190-195. [PMID: 29796836 DOI: 10.1007/s12031-018-1077-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/27/2018] [Indexed: 11/28/2022]
Abstract
Previous studies revealed that the intensity of spinal cord injury (SCI) plays a key role in the therapeutic effects induced by immunizing with neural-derived peptides (INDP), as severe injuries abolish the beneficial effects induced by INDP. In the present study, we analyzed the expression of some inflammation-related genes (IL6, IL12, IL-1β, IFNɣ, TNFα, IL-10, IL-4, and IGF-1) by quantitative PCR in rats subjected to SCI and INDP. We investigated the expression of these genes after a moderate or severe contusion. In addition, we evaluated the effect of INDP by utilizing two different peptides: A91 and Cop-1. After moderate injury, both A91 and Cop-1 elicited a pattern of genes characterized by a significant reduction of IL6, IL1β, and TNFα but an increase in IL10, IL4, and IGF-1 expression. There was no effect on IL-12 and INFɣ. In contrast, the opposite pattern was observed when rats were subjected to a severe spinal cord contusion. Immunization with either peptide caused a significant increase in the expression of IL-12, IL-1β, IFNɣ (pro-inflammatory genes), and IGF-1. There was no effect on IL-4 and IL-10 compared to controls. After a moderate SCI, INDP reduced pro-inflammatory gene expression and generated a microenvironment prone to neuroprotection. Nevertheless, severe injury elicits the expression of pro-inflammatory genes that could be aggravated by INDP. These findings correlate with our previous results demonstrating that severe injury inhibits the beneficial effects of protective autoimmunity.
Collapse
Affiliation(s)
- Elisa García
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Av. Universidad Anáhuac No. 46, Col. Lomas Anáhuac, C.P. 52786, Huixquilucan Edo. de México, México.,Centro de Investigación del Proyecto CAMINA A.C., 14050, Mexico City, Mexico
| | - Raúl Silva-García
- Departamento de Inmunología, CMN Siglo XXI, 06720, Mexico City, Mexico
| | - Adrian Flores-Romero
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Av. Universidad Anáhuac No. 46, Col. Lomas Anáhuac, C.P. 52786, Huixquilucan Edo. de México, México.,Centro de Investigación del Proyecto CAMINA A.C., 14050, Mexico City, Mexico
| | | | - Roxana Rodríguez-Barrera
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Av. Universidad Anáhuac No. 46, Col. Lomas Anáhuac, C.P. 52786, Huixquilucan Edo. de México, México.,Centro de Investigación del Proyecto CAMINA A.C., 14050, Mexico City, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Av. Universidad Anáhuac No. 46, Col. Lomas Anáhuac, C.P. 52786, Huixquilucan Edo. de México, México. .,Centro de Investigación del Proyecto CAMINA A.C., 14050, Mexico City, Mexico.
| |
Collapse
|
17
|
Pineda-Rodriguez B, Toscano-Tejeida D, García–Vences E, Rodriguez-Barrera R, Flores-Romero A, Castellanos-Canales D, Gutierrez–Ospina G, Castillo-Carvajal L, Meléndez-Herrera E, Ibarra A. Anterior chamber associated immune deviation used as a neuroprotective strategy in rats with spinal cord injury. PLoS One 2017; 12:e0188506. [PMID: 29190648 PMCID: PMC5708781 DOI: 10.1371/journal.pone.0188506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/08/2017] [Indexed: 02/07/2023] Open
Abstract
The inflammatory response is probably one of the main destructive events occurring after spinal cord injury (SCI). Its progression depends mostly on the autoimmune response developed against neural constituents. Therefore, modulation or inhibition of this self-reactive reaction could help to reduce tissue destruction. Anterior chamber associated immune deviation (ACAID) is a phenomenon that induces immune-tolerance to antigens injected into the eye´s anterior chamber, provoking the reduction of such immune response. In the light of this notion, induction of ACAID to neural constituents could be used as a potential prophylactic therapy to promote neuroprotection. In order to evaluate this approach, three experiments were performed. In the first one, the capability to induce ACAID of the spinal cord extract (SCE) and the myelin basic protein (MBP) was evaluated. Using the delayed type hypersensibility assay (DTH) we demonstrated that both, SCE and MBP were capable of inducing ACAID. In the second experiment we evaluated the effect of SCE-induced ACAID on neurological and morphological recovery after SCI. In the results, there was a significant improvement of motor recovery, nociceptive hypersensitivity and motoneuron survival in rats with SCE-induced ACAID. Moreover, ACAID also up-regulated the expression of genes encoding for anti-inflammatory cytokines and FoxP3 but down-regulated those for pro-inflamatory cytokines. Finally, in the third experiment, the effect of a more simple and practical strategy was evaluated: MBP-induced ACAID, we also found significant neurological and morphological outcomes. In the present study we demonstrate that the induction of ACAID against neural antigens in rats, promotes neuroprotection after SCI.
Collapse
Affiliation(s)
- Beatriz Pineda-Rodriguez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud; Universidad Anáhuac México Campus Norte. Avenida Universidad Anáhuac No. 46, Colonia Lomas Anáhuac, Huixquilucan Estado de México, México
| | - Diana Toscano-Tejeida
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud; Universidad Anáhuac México Campus Norte. Avenida Universidad Anáhuac No. 46, Colonia Lomas Anáhuac, Huixquilucan Estado de México, México
| | - Elisa García–Vences
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud; Universidad Anáhuac México Campus Norte. Avenida Universidad Anáhuac No. 46, Colonia Lomas Anáhuac, Huixquilucan Estado de México, México
| | - Roxana Rodriguez-Barrera
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud; Universidad Anáhuac México Campus Norte. Avenida Universidad Anáhuac No. 46, Colonia Lomas Anáhuac, Huixquilucan Estado de México, México
| | - Adrian Flores-Romero
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud; Universidad Anáhuac México Campus Norte. Avenida Universidad Anáhuac No. 46, Colonia Lomas Anáhuac, Huixquilucan Estado de México, México
| | - Daniela Castellanos-Canales
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud; Universidad Anáhuac México Campus Norte. Avenida Universidad Anáhuac No. 46, Colonia Lomas Anáhuac, Huixquilucan Estado de México, México
| | - Gabriel Gutierrez–Ospina
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Laura Castillo-Carvajal
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud; Universidad Anáhuac México Campus Norte. Avenida Universidad Anáhuac No. 46, Colonia Lomas Anáhuac, Huixquilucan Estado de México, México
| | - Esperanza Meléndez-Herrera
- Laboratorio de Ecofisiología Animal, Departamento de Zoología, Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacán, México
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud; Universidad Anáhuac México Campus Norte. Avenida Universidad Anáhuac No. 46, Colonia Lomas Anáhuac, Huixquilucan Estado de México, México
- Proyecto CAMINA A.C., Ciudad de México, México
- * E-mail:
| |
Collapse
|
18
|
Rodríguez-Barrera R, Flores-Romero A, Fernández-Presas AM, García-Vences E, Silva-García R, Konigsberg M, Blancas-Espinoza L, Buzoianu-Anguiano V, Soria-Zavala K, Suárez-Meade P, Ibarra A. Immunization with neural derived peptides plus scar removal induces a permissive microenvironment, and improves locomotor recovery after chronic spinal cord injury. BMC Neurosci 2017; 18:7. [PMID: 28056790 PMCID: PMC5217189 DOI: 10.1186/s12868-016-0331-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/27/2016] [Indexed: 11/17/2022] Open
Abstract
Background Immunization with neural derived peptides (INDP) as well as scar removal—separately—have shown to induce morphological and functional improvement after spinal cord injury (SCI). In the present study, we compared the effect of INDP alone versus INDP with scar removal on motor recovery, regeneration-associated and cytokine gene expression, and axonal regeneration after chronic SCI. Scar removal was conducted through a single incision with a double-bladed scalpel along the stump, and scar renewal was halted by adding α,α′-dipyridyl. Results During the chronic injury stage, two experiments were undertaken. The first experiment was aimed at testing the therapeutic effect of INDP combined with scar removal. Sixty days after therapeutic intervention, the expression of genes encoding for TNFα, IFNγ, IL4, TGFβ, BDNF, IGF1, and GAP43 was evaluated at the site of injury. Tyrosine hydroxylase and 5-hydroxytryptamine positive fibers were also studied. Locomotor evaluations showed a significant recovery in the group treated with scar removal + INDP. Moreover; this group presented a significant increase in IL4, TGFβ, BDNF, IGF1, and GAP43 expression, but a decrease of TNFα and IFNγ. Also, the spinal cord of animals receiving both treatments presented a significant increase of serotonergic and catecholaminergic fibers as compared to other the groups. The second experiment compared the results of the combined approach versus INDP alone. Rats receiving INDP likewise showed improved motor recovery, although on a lesser scale than those who received the combined treatment. An increase in inflammation and regeneration-associated gene expression, as well as in the percentage of serotonergic and catecholaminergic fibers was observed in INDP-treated rats to a lesser degree than those in the combined therapy group. Conclusions These findings suggest that INDP, both alone and in combination with scar removal, could modify the non-permissive microenvironment prevailing at the chronic phase of SCI, providing the opportunity of improving motor recovery.
Collapse
Affiliation(s)
- Roxana Rodríguez-Barrera
- Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico.,Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico.,Centro de Investigación del Proyecto CAMINA A.C., Ciudad de México, Mexico.,Posgrado en Biología Experimental, UAMI, Ciudad de México, Mexico
| | - Adrián Flores-Romero
- Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico.,Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico.,Centro de Investigación del Proyecto CAMINA A.C., Ciudad de México, Mexico
| | | | - Elisa García-Vences
- Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico.,Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico.,Centro de Investigación del Proyecto CAMINA A.C., Ciudad de México, Mexico
| | | | - Mina Konigsberg
- Lab. Bioenergética y Envejecimiento Celular, UAMI, Ciudad de México, Mexico
| | - Liliana Blancas-Espinoza
- Centro de Investigación del Proyecto CAMINA A.C., Ciudad de México, Mexico.,Hospital de Pediatría CMN Siglo XXI, Ciudad de México, Mexico
| | | | - Karla Soria-Zavala
- Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico.,Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico.,Centro de Investigación del Proyecto CAMINA A.C., Ciudad de México, Mexico
| | - Paola Suárez-Meade
- Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico.,Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico. .,Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, Mexico. .,Centro de Investigación del Proyecto CAMINA A.C., Ciudad de México, Mexico.
| |
Collapse
|
19
|
Martiñón S, García-Vences E, Toscano-Tejeida D, Flores-Romero A, Rodriguez-Barrera R, Ferrusquia M, Hernández-Muñoz RE, Ibarra A. Long-term production of BDNF and NT-3 induced by A91-immunization after spinal cord injury. BMC Neurosci 2016; 17:42. [PMID: 27364353 PMCID: PMC4928355 DOI: 10.1186/s12868-016-0267-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/03/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND After spinal cord (SC)-injury, a non-modulated immune response contributes to the damage of neural tissue. Protective autoimmunity (PA) is a T cell mediated, neuroprotective response induced after SC-injury. Immunization with neural-derived peptides (INDP), such as A91, has shown to promote-in vitro-the production of neurotrophic factors. However, the production of these molecules has not been studied at the site of injury. RESULTS In order to evaluate these issues, we performed four experiments in adult female Sprague-Dawley rats. In the first one, brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) concentrations were evaluated at the site of lesion 21 days after SC-injury. BDNF and NT-3 were significantly increased in INDP-treated animals. In the second experiment, proliferation of anti-A91 T cells was assessed at chronic stages of injury. In this case, we found a significant proliferation of these cells in animals subjected to SC-injury + INDP. In the third experiment, we explored the amount of BDNF and NT3 at the site of injury in the chronic phase of rats subjected to either SC-contusion (SCC; moderate or severe) or SC-transection (SCT; complete or incomplete). The animals were treated with INDP immediately after injury. Rats subjected to moderate contusion or incomplete SCT showed significantly higher levels of BDNF and NT-3 as compared to PBS-immunized ones. In rats with severe SCC and complete SCT, BDNF and NT-3 concentrations were barely detected. Finally, in the fourth experiment we assessed motor function recovery in INDP-treated rats with moderate SC-injury. Rats immunized with A91 showed a significantly higher motor recovery from the first week and up to 4 months after SC-injury. CONCLUSIONS The results of this study suggest that PA boosted by immunization with A91 after moderate SC-injury can exert its benefits even at chronic stages, as shown by long-term production of BDNF and NT-3 and a substantial improvement in motor recovery.
Collapse
Affiliation(s)
- Susana Martiñón
- Facultad de Ciencias de la Salud, Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico.,Centro de Investigación del Proyecto CAMINA A.C., Mexico, D.F., Mexico.,Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Mexico, D.F., Mexico
| | - Elisa García-Vences
- Facultad de Ciencias de la Salud, Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico
| | - Diana Toscano-Tejeida
- Facultad de Ciencias de la Salud, Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico
| | - Adrian Flores-Romero
- Facultad de Ciencias de la Salud, Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico
| | - Roxana Rodriguez-Barrera
- Facultad de Ciencias de la Salud, Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico
| | - Manuel Ferrusquia
- Facultad de Ciencias de la Salud, Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico
| | - Rolando E Hernández-Muñoz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, UNAM, Mexico, D.F., Mexico
| | - Antonio Ibarra
- Facultad de Ciencias de la Salud, Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico. .,Centro de Investigación del Proyecto CAMINA A.C., Mexico, D.F., Mexico.
| |
Collapse
|
20
|
Hu JG, Shi LL, Chen YJ, Xie XM, Zhang N, Zhu AY, Jiang ZS, Feng YF, Zhang C, Xi J, Lü HZ. Differential effects of myelin basic protein-activated Th1 and Th2 cells on the local immune microenvironment of injured spinal cord. Exp Neurol 2016; 277:190-201. [PMID: 26772636 DOI: 10.1016/j.expneurol.2016.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 01/22/2023]
Abstract
Myelin basic protein (MBP) activated T cells (MBP-T) play an important role in the damage and repair process of the central nervous system (CNS). However, whether these cells play a beneficial or detrimental role is still a matter of debate. Although some studies showed that MBP-T cells are mainly helper T (Th) cells, their subtypes are still not very clear. One possible explanation for MBP-T immunization leading to conflicting results may be the different subtypes of T cells are responsible for distinct effects. In this study, the Th1 and Th2 type MBP-T cells (MBP-Th1 and -Th2) were polarized in vitro, and their effects on the local immune microenvironment and tissue repair of spinal cord injury (SCI) after adoptive immunization were investigated. In MBP-Th1 cell transferred rats, the high levels of pro-inflammatory cells (Th1 cells and M1 macrophages) and cytokines (IFN-γ, TNF-α, -β, IL-1β) were detected in the injured spinal cord; however, the anti-inflammatory cells (Th2 cells, regulatory T cells, and M2 macrophages) and cytokines (IL-4, -10, and -13) were found in MBP-Th2 cell transferred animals. MBP-Th2 cell transfer resulted in decreased lesion volume, increased myelination of axons, and preservation of neurons. This was accompanied by significant locomotor improvement. These results indicate that MBP-Th2 adoptive transfer has beneficial effects on the injured spinal cord, in which the increased number of Th2 cells may alter the local microenvironment from one primarily populated by Th1 and M1 cells to another dominated by Th2, Treg, and M2 cells and is conducive for SCI repair.
Collapse
Affiliation(s)
- Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Ling-Ling Shi
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Yue-Juan Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Xiu-Mei Xie
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Nan Zhang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - An-You Zhu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Zheng-Song Jiang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Yi-Fan Feng
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Chen Zhang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Jin Xi
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China.
| |
Collapse
|
21
|
Ibarra A, García E, Mondragón-Caso J. Spinal cord injury: potential neuroprotective therapy based on neural-derived peptides. Neural Regen Res 2016; 11:1762-1763. [PMID: 28123415 PMCID: PMC5204227 DOI: 10.4103/1673-5374.194718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
22
|
Mestre H, Ramirez M, Garcia E, Martiñón S, Cruz Y, Campos MG, Ibarra A. Lewis, Fischer 344, and sprague-dawley rats display differences in lipid peroxidation, motor recovery, and rubrospinal tract preservation after spinal cord injury. Front Neurol 2015; 6:108. [PMID: 26029162 PMCID: PMC4432686 DOI: 10.3389/fneur.2015.00108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/30/2015] [Indexed: 01/20/2023] Open
Abstract
The rat is the most common animal model for the preclinical validation of neuroprotective therapies in spinal cord injury (SCI). Lipid peroxidation (LP) is a hallmark of the damage triggered after SCI. Free radicals react with fatty acids causing cellular and membrane disruption. LP accounts for a considerable amount of neuronal cell death after SCI. To better understand the implications of inbred and outbred rat strain selection on preclinical SCI research, we evaluated LP after laminectomy sham surgery and a severe contusion of the T9 spinal cord in female Sprague-Dawley (SPD), Lewis (LEW), and Fischer 344 (F344) rats. Further analysis included locomotor recovery using the Basso, Beattie, and Bresnahan (BBB) scale and retrograde rubrospinal tract tracing. LEW had the highest levels of LP products 72 h after sham surgery and SCI, significantly different from both F344 and SPD. SPD rats had the fastest functional recovery and highest BBB scores; these were not significantly different to F344. However, LEW rats achieved the lowest BBB scores throughout the 2-month follow-up, yielding significant differences when compared to SPD and F344. To see if the improvement in locomotion was secondary to an increase in axon survival, we evaluated rubrospinal neurons (RSNs) via retrograde labeling of the rubrospinal tract and quantified cells at the red nuclei. The highest numbers of RSNs were observed in SPD rats then F344; the lowest counts were seen in LEW rats. The BBB scores significantly correlated with the amount of positively stained RSN in the red nuclei. It is critical to identify interstrain variations as a potential confound in preclinical research. Multi-strain validation of neuroprotective therapies may increase chances of successful translation.
Collapse
Affiliation(s)
- Humberto Mestre
- Faculty of Health Sciences, Universidad Anahuac Mexico Norte , Mexico City , Mexico
| | | | - Elisa Garcia
- Faculty of Health Sciences, Universidad Anahuac Mexico Norte , Mexico City , Mexico ; CAMINA Project Research Center , Mexico City , Mexico
| | | | - Yolanda Cruz
- Faculty of Health Sciences, Universidad Anahuac Mexico Norte , Mexico City , Mexico
| | - Maria G Campos
- Pharmacology Medical Research Unit, National Medical Center "Century XXI", IMSS , Mexico City , Mexico
| | - Antonio Ibarra
- Faculty of Health Sciences, Universidad Anahuac Mexico Norte , Mexico City , Mexico ; CAMINA Project Research Center , Mexico City , Mexico
| |
Collapse
|
23
|
Jones TB. Lymphocytes and autoimmunity after spinal cord injury. Exp Neurol 2014; 258:78-90. [PMID: 25017889 DOI: 10.1016/j.expneurol.2014.03.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 12/23/2022]
Abstract
Over the past 15 years an immense amount of data has accumulated regarding the infiltration and activation of lymphocytes in the traumatized spinal cord. Although the impact of the intraspinal accumulation of lymphocytes is still unclear, modulation of the adaptive immune response via active and passive vaccination is being evaluated for its preclinical efficacy in improving the outcome for spinal-injured individuals. The complexity of the interaction between the nervous and the immune systems is highlighted in the contradictions that appear in response to these modulations. Current evidence regarding augmentation and inhibition of the adaptive immune response to spinal cord injury is reviewed with an aim toward reconciling conflicting data and providing consensus issues that may be exploited in future therapies. Opportunities such an approach may provide are highlighted as well as the obstacles that must be overcome before such approaches can be translated into clinical trials.
Collapse
Affiliation(s)
- T Bucky Jones
- Department of Anatomy, Arizona College of Medicine, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
24
|
Monocyte locomotion inhibitory factor produced by E. histolytica improves motor recovery and develops neuroprotection after traumatic injury to the spinal cord. BIOMED RESEARCH INTERNATIONAL 2013; 2013:340727. [PMID: 24294606 PMCID: PMC3835973 DOI: 10.1155/2013/340727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 09/04/2013] [Accepted: 09/08/2013] [Indexed: 11/03/2022]
Abstract
Monocyte locomotion inhibitory factor (MLIF) is a pentapeptide produced by Entamoeba histolytica that has a potent anti-inflammatory effect. Either MLIF or phosphate buffered saline (PBS) was administered directly onto the spinal cord (SC) immediately after injury. Motor recovery was evaluated. We also analyzed neuroprotection by quantifying the number of surviving ventral horn motor neurons and the persistence of rubrospinal tract neurons. To evaluate the mechanism through which MLIF improved the outcome of SC injury, we quantified the expression of inducible nitric oxide synthase (iNOS), interleukin-10 (IL-10), and transforming growth factor- β (TGF- β ) genes at the site of injury. Finally, the levels of nitric oxide and of lipid peroxidation were also determined in peripheral blood. Results showed that MLIF improved the rate of motor recovery and this correlated with an increased survival of ventral horn and rubrospinal neurons. These beneficial effects were in turn associated with a reduction in iNOS gene products and a significant upregulation of IL-10 and TGF- β expression. In the same way, MLIF reduced the concentration of nitric oxide and the levels of lipid peroxidation in systemic circulation. The present results demonstrate for the first time the neuroprotective effects endowed by MLIF after SC injury.
Collapse
|
25
|
Immunization with a neural-derived peptide protects the spinal cord from apoptosis after traumatic injury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:827517. [PMID: 24236295 PMCID: PMC3819886 DOI: 10.1155/2013/827517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/23/2013] [Accepted: 09/06/2013] [Indexed: 11/17/2022]
Abstract
Apoptosis is one of the most destructive mechanisms that develop after spinal cord (SC) injury. Immunization with neural-derived peptides (INDPs) such as A91 has shown to reduce the deleterious proinflammatory response and the amount of harmful compounds produced after SC injury. With the notion that the aforementioned elements are apoptotic inducers, we hypothesized that INDPs would reduce apoptosis after SC injury. In order to test this assumption, adult rats were subjected to SC contusion and immunized either with A91 or phosphate buffered saline (PBS; control group). Seven days after injury, animals were euthanized to evaluate the number of apoptotic cells at the injury site. Apoptosis was evaluated using DAPI and TUNEL techniques; caspase-3 activity was also evaluated. To further elucidate the mechanisms through which A91 exerts this antiapoptotic effects we quantified tumor necrosis factor-alpha (TNF-α). To also demonstrate that the decrease in apoptotic cells correlated with a functional improvement, locomotor recovery was evaluated. Immunization with A91 significantly reduced the number of apoptotic cells and decreased caspase-3 activity and TNF-α concentration. Immunization with A91 also improved the functional recovery of injured rats. The present study shows the beneficial effect of INDPs on preventing apoptosis and provides more evidence on the neuroprotective mechanisms exerted by this strategy.
Collapse
|
26
|
Ibarra A, Sosa M, García E, Flores A, Cruz Y, Mestre H, Martiñón S, Pineda-Rodríguez B, Gutiérrez-Ospina G. Prophylactic neuroprotection with A91 improves the outcome of spinal cord injured rats. Neurosci Lett 2013; 554:59-63. [DOI: 10.1016/j.neulet.2013.08.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 12/14/2022]
|
27
|
Development of protective autoimmunity by immunization with a neural-derived peptide is ineffective in severe spinal cord injury. PLoS One 2012; 7:e32027. [PMID: 22348141 PMCID: PMC3279414 DOI: 10.1371/journal.pone.0032027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/17/2012] [Indexed: 11/19/2022] Open
Abstract
Protective autoimmunity (PA) is a physiological response to central nervous system trauma that has demonstrated to promote neuroprotection after spinal cord injury (SCI). To reach its beneficial effect, PA should be boosted by immunizing with neural constituents or neural-derived peptides such as A91. Immunizing with A91 has shown to promote neuroprotection after SCI and its use has proven to be feasible in a clinical setting. The broad applications of neural-derived peptides make it important to determine the main features of this anti-A91 response. For this purpose, adult Sprague-Dawley rats were subjected to a spinal cord contusion (SCC; moderate or severe) or a spinal cord transection (SCT; complete or incomplete). Immediately after injury, animals were immunized with PBS or A91. Motor recovery, T cell-specific response against A91 and the levels of IL-4, IFN-γ and brain-derived neurotrophic factor (BDNF) released by A91-specific T (TA91) cells were evaluated. Rats with moderate SCC, presented a better motor recovery after A91 immunization. Animals with moderate SCC or incomplete SCT showed significant T cell proliferation against A91 that was characterized chiefly by the predominant production of IL-4 and the release of BDNF. In contrast, immunization with A91 did not promote a better motor recovery in animals with severe SCC or complete SCT. In fact, T cell proliferation against A91 was diminished in these animals. The present results suggest that the effective development of PA and, consequently, the beneficial effects of immunizing with A91 significantly depend on the severity of SCI. This could mainly be attributed to the lack of TA91 cells which predominantly showed to have a Th2 phenotype capable of producing BDNF, further promoting neuroprotection.
Collapse
|
28
|
Zajarías-Fainsod D, Carrillo-Ruiz J, Mestre H, Grijalva I, Madrazo I, Ibarra A. Autoreactivity against myelin basic protein in patients with chronic paraplegia. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2011; 21:964-70. [PMID: 22057439 DOI: 10.1007/s00586-011-2060-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 08/31/2011] [Accepted: 10/22/2011] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Previous studies have shown the existence of either cellular or humoral MBP-reactive elements up to 5 years after spinal cord injury (SCI), but not the presence of both after 10 years. MATERIALS AND METHODS Twelve SCI patients, with more than 10 years of evolution, and 18 healthy blood donors were studied. Lymphocyte proliferation (colorimetric-BrdU ELISA assay) and antibody titers against MBP (ELISA Human IgG MBP-specific assay) were assessed. RESULTS SCI patients presented a significant T-cell proliferation against MBP (lymphocyte proliferation index: 3.7 ± 1.5, mean ± SD) compared to control individuals (0.7 ± 0.3; P < 0.001). Humoral response analysis yielded a significant difference (P < 0.0001) between the antibody titers of controls and SCI patients. A significant correlation between cellular and humoral responses was observed. Finally, patients with an ASIA B presented the highest immune responses. CONCLUSION This work demonstrates, for the first time, the existence of both cellular and humoral responses against MBP in the chronic stages (>10 years) of injury.
Collapse
Affiliation(s)
- D Zajarías-Fainsod
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Edo. de México, Mexico
| | | | | | | | | | | |
Collapse
|
29
|
García E, Silva-García R, Mestre H, Flores N, Martiñón S, Calderón-Aranda ES, Ibarra A. Immunization with A91 peptide or copolymer-1 reduces the production of nitric oxide and inducible nitric oxide synthase gene expression after spinal cord injury. J Neurosci Res 2011; 90:656-63. [PMID: 22002544 DOI: 10.1002/jnr.22771] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 07/01/2011] [Accepted: 07/22/2011] [Indexed: 11/11/2022]
Abstract
Immunization with neurally derived peptides (INDP) boosts the action of an autoreactive immune response that has been shown to induce neuroprotection in several neurodegenerative diseases, especially after spinal cord (SC) injury. This strategy provides an environment that promotes neuronal survival and tissue preservation. The mechanisms by which this autoreactive response exerts its protective effects is not totally understood at the moment. A recent study showed that INDP reduces lipid peroxidation. Lipid peroxidation is a neurodegenerative phenomenon caused by the increased production of reactive nitrogen species such as nitric oxide (NO). It is possible that INDP could be interfering with NO production. To test this hypothesis, we examined the effect of INDP on the amount of NO produced by glial cells when cocultured with autoreactive T cells. We also evaluated the amount of NO and the expression of the inducible form of nitric oxide synthase (iNOS) at the injury site of SC-injured animals. The neural-derived peptides A91 and Cop-1 were used to immunize mice and rats with SC injury. In vitro studies showed that INDP significantly reduces the production of NO by glial cells. This observation was substantiated by in vivo experiments demonstrating that INDP decreases the amount of NO and iNOS gene expression at the site of injury. The present study provides substantial evidence on the inhibitory effect of INDP on NO production, helpingour understanding of the mechanisms through which protective autoimmunity promotes neuroprotection.
Collapse
Affiliation(s)
- Elisa García
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan Edo. de México, México
| | | | | | | | | | | | | |
Collapse
|