1
|
Bierhansl L, Hartung HP, Aktas O, Ruck T, Roden M, Meuth SG. Thinking outside the box: non-canonical targets in multiple sclerosis. Nat Rev Drug Discov 2022; 21:578-600. [PMID: 35668103 PMCID: PMC9169033 DOI: 10.1038/s41573-022-00477-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system that causes demyelination, axonal degeneration and astrogliosis, resulting in progressive neurological disability. Fuelled by an evolving understanding of MS immunopathogenesis, the range of available immunotherapies for clinical use has expanded over the past two decades. However, MS remains an incurable disease and even targeted immunotherapies often fail to control insidious disease progression, indicating the need for new and exceptional therapeutic options beyond the established immunological landscape. In this Review, we highlight such non-canonical targets in preclinical MS research with a focus on five highly promising areas: oligodendrocytes; the blood-brain barrier; metabolites and cellular metabolism; the coagulation system; and tolerance induction. Recent findings in these areas may guide the field towards novel targets for future therapeutic approaches in MS.
Collapse
Affiliation(s)
- Laura Bierhansl
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center of Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
2
|
Tregub PP. Effect of Hypercapnia and Hypoxia on the Physiology and Metabolism of the Cerebral Endothelium under Ischemic Conditions. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Tu Y, Gong X, Zhang Y, Peng J, Zhuo W, Yu X. The Correlation Among the Immunoglobulin G Synthesis Rate, IgG Index and Albumin Quotient in Guillain-Barré Syndrome and Chronic Inflammatory Demyelinating Polyradiculoneuropathy: A Retrospective Case–Control Study. Front Neurol 2021; 12:746186. [PMID: 34975712 PMCID: PMC8718703 DOI: 10.3389/fneur.2021.746186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The immunoglobulin G synthesis rate (IgG SR) and immunoglobulin G (IgG) index are indicators of abnormal intrathecal humoural immune responses, and the albumin quotient (QALB) is an indicator used to evaluate the completeness of the blood-cerebrospinal fluid barrier (BCB). No systematic reports regarding differences in Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) are available. We assessed differences in the IgG SR, IgG index and QALB between GBS and CIDP patients in a Chinese cohort. Methods: A total of 234 patients were retrospectively enrolled in this study, and 167 clinically confirmed GBS and CIDP patients were selected. Meanwhile, 67 non-GBS and non-CIDP patients requiring cerebrospinal fluid (CSF) examination were enrolled as the control group. The IgG SR, IgG index and QALB were calculated using formulas. The relevant clinical data were subjected to statistical analysis. Results: Among the GBS and CIDP study groups and the control group, the QALB had the highest positive rate (80.00%) in the CIDP group (P < 0.01). The QALB stratification analysis showed that the ranges of 10 < QALB ≤ 30 were dominant in the GBS and CIDP groups, and the positive rate of CIDP was higher than that of GBS. Furthermore, a QALB ≤ 7 was dominant in the control group, and a QALB > 30 was dominant in the CIDP group. In receiver operating characteristic (ROC) curve analysis with the CIDP group as the trial group and the GBS group as the control group, the differences in the QALB were statistically significant (P < 0.01). To achieve a high specificity of 98~99%, the diagnostic cut-off value for the QALB was above 57.37 (sensitivity: 9.33%) or below 0.60 (sensitivity: 4.35%). Multivariate logistic regression analysis showed that the CIDP patients had a QALB higher than 57.37, and compared with that in the GBS patients, the difference in the QALB was statistically significant (P < 0.01). Conclusion: QALB elevation was associated with CIDP, while QALB values above 57.37 or below 0.60 had high specificity in differentiating between GBS and CIDP. In CIDP, the BCB is generally moderately to severely damaged; in GBS, the BCB is generally moderately damaged.
Collapse
Affiliation(s)
- Yu Tu
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
| | - Xuan Gong
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
| | - Yuanyuan Zhang
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
| | - Jiewei Peng
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
| | - Wenyan Zhuo
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
| | - Xueying Yu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xueying Yu
| |
Collapse
|
4
|
Elevated cerebrospinal fluid homocysteine is associated with blood-brain barrier disruption in amyotrophic lateral sclerosis patients. Neurol Sci 2020; 41:1865-1872. [DOI: 10.1007/s10072-020-04292-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022]
|
5
|
de Araujo LS, Pessler K, Sühs KW, Novoselova N, Klawonn F, Kuhn M, Kaever V, Müller-Vahl K, Trebst C, Skripuletz T, Stangel M, Pessler F. Phosphatidylcholine PC ae C44:6 in cerebrospinal fluid is a sensitive biomarker for bacterial meningitis. J Transl Med 2020; 18:9. [PMID: 31910875 PMCID: PMC6945415 DOI: 10.1186/s12967-019-02179-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Background The timely diagnosis of bacterial meningitis is of utmost importance due to the need to institute antibiotic treatment as early as possible. Moreover, the differentiation from other causes of meningitis/encephalitis is critical because of differences in management such as the need for antiviral or immunosuppressive treatments. Considering our previously reported association between free membrane phospholipids in cerebrospinal fluid (CSF) and CNS involvement in neuroinfections we evaluated phosphatidylcholine PC ae C44:6, an integral constituent of cell membranes, as diagnostic biomarker for bacterial meningitis. Methods We used tandem mass spectrometry to measure concentrations of PC ae C44:6 in cell-free CSF samples (n = 221) from patients with acute bacterial meningitis, neuroborreliosis, viral meningitis/encephalitis (herpes simplex virus, varicella zoster virus, enteroviruses), autoimmune neuroinflammation (anti-NMDA-receptor autoimmune encephalitis, multiple sclerosis), facial nerve and segmental herpes zoster (shingles), and noninflammatory CNS disorders (Bell’s palsy, Tourette syndrome, normal pressure hydrocephalus). Results PC ae C44:6 concentrations were significantly higher in bacterial meningitis than in all other diagnostic groups, and were higher in patients with a classic bacterial meningitis pathogen (e.g. Streptococcus pneumoniae, Neisseria meningitidis, Staphylococcus aureus) than in those with less virulent or opportunistic pathogens as causative agents (P = 0.026). PC ae C44:6 concentrations were only moderately associated with CSF cell count (Spearman’s ρ = 0.45; P = 0.009), indicating that they do not merely reflect neuroinflammation. In receiver operating characteristic curve analysis, PC ae C44:6 equaled CSF cell count in the ability to distinguish bacterial meningitis from viral meningitis/encephalitis and autoimmune CNS disorders (AUC 0.93 both), but had higher sensitivity (91% vs. 41%) and negative predictive value (98% vs. 89%). A diagnostic algorithm comprising cell count, lactate and PC ae C44:6 had a sensitivity of 97% (specificity 87%) and negative predictive value of 99% (positive predictive value 61%) and correctly diagnosed three of four bacterial meningitis samples that were misclassified by cell count and lactate due to low values not suggestive of bacterial meningitis. Conclusions Increased CSF PC ae C44:6 concentrations in bacterial meningitis likely reflect ongoing CNS cell membrane stress or damage and have potential as additional, sensitive biomarker to diagnose bacterial meningitis in patients with less pronounced neuroinflammation.
Collapse
Affiliation(s)
- Leonardo Silva de Araujo
- Research Group "Biomarkers for Infectious Diseases", TWINCORE Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625, Hannover, Germany.,Helmholtz Centre for Infection Research, Brunswick, Germany.,Molecular and Experimental Mycobacteriology, Research Center Borstel-Leibniz Lung Center, Sülfeld, Germany
| | - Kevin Pessler
- Research Group "Biomarkers for Infectious Diseases", TWINCORE Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Kurt-Wolfram Sühs
- Clinical Neuroimmunology and Neurochemistry, Dept. of Neurology, Hannover Medical School, Hannover, Germany.,Centre for Individualised Infection Medicine, Hannover, Germany
| | - Natalia Novoselova
- Division of Bioinformatics, United Institute of Informatics Problems, Minsk, Belarus
| | - Frank Klawonn
- Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Maike Kuhn
- Research Group "Biomarkers for Infectious Diseases", TWINCORE Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625, Hannover, Germany.,Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Corinna Trebst
- Clinical Neuroimmunology and Neurochemistry, Dept. of Neurology, Hannover Medical School, Hannover, Germany
| | - Thomas Skripuletz
- Clinical Neuroimmunology and Neurochemistry, Dept. of Neurology, Hannover Medical School, Hannover, Germany
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Dept. of Neurology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany.,Cluster_of_Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.,Centre for Individualised Infection Medicine, Hannover, Germany
| | - Frank Pessler
- Research Group "Biomarkers for Infectious Diseases", TWINCORE Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625, Hannover, Germany. .,Helmholtz Centre for Infection Research, Brunswick, Germany. .,Centre for Individualised Infection Medicine, Hannover, Germany.
| |
Collapse
|
6
|
Wang S, Zhao Y, Li J, Wang X, Luo K, Gong Q. Brain structure links trait conscientiousness to academic performance. Sci Rep 2019; 9:12168. [PMID: 31434943 PMCID: PMC6704183 DOI: 10.1038/s41598-019-48704-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/31/2019] [Indexed: 02/05/2023] Open
Abstract
In the long history of identifying factors to predict academic performance, conscientiousness, a so-called ‘big five’ personality trait describing self-regulation and goal-directed behavior, has emerged as a stable predictor for this purpose. However, the neuroanatomical substrates of trait conscientiousness and the underlying brain mechanism linking trait conscientiousness and academic performance are still largely unknown. Here, we examined these issues in 148 high school students within the same grade by estimating cortical gray matter volume (GMV) utilizing a voxel-based morphometry method based on structural magnetic resonance imaging. A whole-brain regression analysis showed that trait conscientiousness was positively associated with the GMV in the bilateral superior parietal lobe (SPL) and was negatively associated with the GMV in the right middle frontal gyrus (MFG). Furthermore, mediation analysis revealed that trait conscientiousness mediated the influences of the SPL and MFG volume on academic performance. Importantly, our results persisted even when we adjusted for general intelligence, family socioeconomic status and ‘big five’ personality traits other than conscientiousness. Altogether, our study suggests that the GMV in the frontoparietal network is a neurostructural marker of adolescents’ conscientiousness and reveals a potential brain-personality-achievement pathway for predicting academic performance in which gray matter structures affect academic performance through trait conscientiousness.
Collapse
Affiliation(s)
- Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, 610036, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yajun Zhao
- School of Sociology and Psychology, Southwest Minzu University, Chengdu, 610041, China
| | - Jingguang Li
- College of Education, Dali University, Dali, 671003, China
| | - Xu Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China. .,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, 610036, China. .,Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Kong F, Ma X, You X, Xiang Y. The resilient brain: psychological resilience mediates the effect of amplitude of low-frequency fluctuations in orbitofrontal cortex on subjective well-being in young healthy adults. Soc Cogn Affect Neurosci 2019; 13:755-763. [PMID: 29939335 PMCID: PMC6121151 DOI: 10.1093/scan/nsy045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/18/2018] [Indexed: 01/01/2023] Open
Abstract
Psychological resilience reflects the capacity to bounce back from stress, which plays an important role in health and well-being. However, less is known about the neural substrate for psychological resilience and the underlying mechanism for how psychological resilience enhances subjective well-being in the healthy brain. To investigate these issues, we employed fractional amplitude of low-frequency fluctuations (fALFF) measured with resting-state fMRI in 100 young healthy adults. The correlation analysis found that higher psychological resilience was related to lower fALFF in the left orbitofrontal cortex (OFC), which is involved in reward-related processing and emotion regulation. Furthermore, the mediation analysis indicated that psychological resilience acted as a full mediator of the association between the fALFF in left OFC and subjective well-being indicators (i.e. life satisfaction and hedonic balance). Importantly, these results remained significant after controlling for the effect of gray matter volume and regional homogeneity in the region. Overall, the present study provides the further evidence for functional neural substrates of psychological resilience and reveals a potential mechanism that psychological resilience mediates the effect of spontaneous brain activity on subjective well-being.
Collapse
Affiliation(s)
- Feng Kong
- School of Psychology, Shaanxi Normal University, China
| | - Xiaosi Ma
- School of Psychology, Shaanxi Normal University, China
| | - Xuqun You
- School of Psychology, Shaanxi Normal University, China
| | - Yanhui Xiang
- Department of Psychology, Hunan Normal University, China
| |
Collapse
|
8
|
Trotter A, Anstadt E, Clark RB, Nichols F, Dwivedi A, Aung K, Cervantes JL. The role of phospholipase A2 in multiple Sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2018; 27:206-213. [PMID: 30412818 DOI: 10.1016/j.msard.2018.10.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 01/25/2023]
Abstract
Phospholipases A2 (PLA2) are a diverse group of enzymes that cleave the fatty acids of membrane phospholipids. They play critical roles in pathogenesis of neurodegenerative diseases such as multiple sclerosis by enhancing oxidative stress and initiating inflammation. The levels of PLA2 activity in MS patients compared to controls and role of inhibiting PLA2 activity on severity scores in different experimental models are not comprehensively assessed in the light of varying evidence from published studies. The objective of this systematic review is to determine the association between PLA2 activity and multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). We performed a systematic review of six studies that assessed PLA2 activity in MS patients compared to controls and nine studies that assessed PLA2 activity in EAE. sPLA2 nor Lp-PLA2 activity were not increased in MS compared to controls in five of those six studies. A difference in sPLA2 activity was only found in a study that measured the enzyme activity in urine. However, inhibiting cPLA2 or sPLA2 led to lower clinical severity or no signs of EAE in mice, and a lower incidence of EAE lesions compared to animals without cPLA2 inhibition. These findings indicate that PLA2 appears to play a role in the pathogenesis of EAE.
Collapse
Affiliation(s)
- Austin Trotter
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Emily Anstadt
- Department of Immunology, and Department of Medicine, Farmington, CT, USA
| | - Robert B Clark
- Department of Immunology, and Department of Medicine, Farmington, CT, USA; University of Connecticut School of Medicine, Farmington, CT, USA
| | - Frank Nichols
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Alok Dwivedi
- Department of Biomedical Sciences, Division of Biostatistics and Epidemiology, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Koko Aung
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Jorge L Cervantes
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; Department of Medical Education, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
9
|
Sun Y, Shi Z, Wang Y, Tang C, Liao Y, Yang C, Cai P. Coupling of oxidative stress responses to tricarboxylic acid cycle and prostaglandin E2 alterations in Caenorhabditis elegans under extremely low-frequency electromagnetic field. Int J Radiat Biol 2018; 94:1159-1166. [DOI: 10.1080/09553002.2019.1524943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yongyan Sun
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Zhenhua Shi
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Environmental Bioelectrochemistry Center, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Yahong Wang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Chao Tang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Yanyan Liao
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Chuanjun Yang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Peng Cai
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| |
Collapse
|
10
|
Jiang D, Ju W, Wu X, Zhan X. Elevated lysophosphatidic acid levels in the serum and cerebrospinal fluid in patients with multiple sclerosis: therapeutic response and clinical implication. Neurol Res 2018; 40:335-339. [PMID: 29557721 DOI: 10.1080/01616412.2018.1446256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND To date, although great effort has been made to identify biomarkers of multiple sclerosis (MS), it remains unclear whether lysophosphatidic acid (LPA) can be used as a biomarker for MS. METHODS This study compared the LPA levels in the serum and cerebrospinal fluid (CSF) in patients with MS in relapse versus in remission and investigated the change in LPA levels in MS patients in relapse after treatment. Forty-one patients with relapsing-remitting MS (RRMS) (21 patients in relapse and 20 patients in remission) and 21 patients with non-inflammatory, non-vascular neurological diseases as controls were included in this study. MS patients in relapse received standard glucocorticoid treatment. LPA concentrations in serum and CSF were measured using an inorganic phosphate quantification assay. RESULTS LPA levels in the serum and CSF were significantly higher in MS patients in relapse than in MS patients in remission and control patients (P < 0.05). The LPA level in MS patients in relapse was significantly reduced after treatment (P < 0.05). CONCLUSION LPA concentrations in the serum and CSF may be used as biomarkers to monitor disease activity and therapeutic response in MS patients.
Collapse
Affiliation(s)
- Dongxiao Jiang
- a Department of Neurology , Weihai Central Hospital Affiliated to Medical College of Qingdao University , Weihai , China
| | - Weiping Ju
- a Department of Neurology , Weihai Central Hospital Affiliated to Medical College of Qingdao University , Weihai , China
| | - Xijun Wu
- a Department of Neurology , Weihai Central Hospital Affiliated to Medical College of Qingdao University , Weihai , China
| | - Xia Zhan
- a Department of Neurology , Weihai Central Hospital Affiliated to Medical College of Qingdao University , Weihai , China
| |
Collapse
|
11
|
Cerebrospinal fluid and serum levels of interleukin-8 in patients with multiple sclerosis and its correlation with Q-albumin. Mult Scler Relat Disord 2017; 14:12-15. [DOI: 10.1016/j.msard.2017.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/06/2017] [Accepted: 03/12/2017] [Indexed: 12/12/2022]
|
12
|
Russell RL, Levine JM, Jeffery ND, Young C, Mondragon A, Lee B, Boudreau CE, Welsh CJ, Levine GJ. Arachidonic acid pathway alterations in cerebrospinal fluid of dogs with naturally occurring spinal cord injury. BMC Neurosci 2016; 17:31. [PMID: 27287721 PMCID: PMC4901514 DOI: 10.1186/s12868-016-0269-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 06/03/2016] [Indexed: 11/25/2022] Open
Abstract
Background Canine intervertebral disc πherniation causes a naturally-occurring spinal cord injury (SCI) that bears critical similarities to human SCI with respect to both injury pathomechanisms and treatment. As such, it has tremendous potential to enhance our understanding of injury biology and the preclinical evaluation of novel therapies. Currently, there is limited understanding of the role of arachidonic acid metabolites in canine SCI. Results The CSF concentrations of PLA2 and PGE2 were higher in SCI dogs compared to control dogs (p = 0.0370 and 0.0273, respectively), but CSF LCT4 concentration in SCI dogs was significantly lower than that in control dogs (p < 0.0001). Prostaglandin E2 concentration in the CSF was significantly and positively associated with increased severity of SCI at the time of sampling (p = 0.041) and recovery 42 days post-injury (p = 0.006), as measured by ordinal behavioral scores. Conclusion Arachidonic acid metabolism is altered in dogs with SCI, and these data suggest that these AA metabolites reflect injury severity and recovery, paralleling data from other model systems.
Collapse
Affiliation(s)
- Rae L Russell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jonathan M Levine
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Nick D Jeffery
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, 1720 Veterinary Medicine, Ames, IA, 50011, USA
| | - Colin Young
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Armando Mondragon
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Bryan Lee
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - C Elizabeth Boudreau
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - C Jane Welsh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gwendolyn J Levine
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TAMU 4467, College Station, TX, 77843, USA.
| |
Collapse
|
13
|
AN in vitro evaluation of a carmustine-loaded Nano-co-Plex for potential magnetic-targeted intranasal delivery to the brain. Int J Pharm 2016; 500:196-209. [PMID: 26806465 DOI: 10.1016/j.ijpharm.2016.01.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 01/02/2023]
Abstract
Targeted delivery of carmustine (BCNU), an efficient brain tumor therapeutic, has been challenged with bioavailability issues due to the Blood Brain Barrier (BBB). The currently effective delivery approach is by implants at the site of the tumor, but this is highly invasive. The intranasal route, which is non-invasive and bypasses the BBB, may be alternative route for delivering BCNU to the brain. In this work, polyvinyl alcohol/polyethyleneimine/fIuorecein isothiocyanate complex (Polyplex) coated iron-oxide nanoparticles (Magnetite) were synthesized employing co-precipitation, epoxidation and EDC/NHS coupling reactions. The Polyplex coated magnetite (Nano-co-Plex) was loaded with BCNU for potential magnetically targeted delivery to the brain following intranasal administration. The Nano-co-Plex was characterized employing Thermogravimetric analysis (TGA), Superconducting Quantum Interference Device (SQUID) magnetometry, Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), X-ray Diffractometry (XRD), Transmission Electron Microscopy (TEM) and Zetasize analysis. Results revealed superparamagnetic hexagonally shaped "core-shell" nanoparticles with cell labeling attributes, of size ranging between 30-50 nm, and a zeta potential value of + 32 ± 2 mV. The Nano-co-Plex synthesized was found to possess high degree of crystallinity with 32% Polyplex coating. The loading and release studies indicated a time-dependent loading with maximum loading capacity of 176.82 μg BCNU/mg of the carrier and maximum release of 75.8% of the loaded BCNU. Cytotoxicity of the BCNU-loaded Nano-co-Plex displayed superiority over the conventional BCNU towards human glioblastoma (HG) cells. Cell studies revealed enhanced uptake and internalization of BCNU-loaded Nano-co-plex in HG cells in the presence of an external magnetic field. These Nano-co-Plexes may be ideal as an intranasal magnetic drug targeting device for BCNU delivery.
Collapse
|
14
|
Conjugated linoleic acid-enriched butter improved memory and up-regulated phospholipase A2 encoding-genes in rat brain tissue. J Neural Transm (Vienna) 2015; 122:1371-80. [DOI: 10.1007/s00702-015-1401-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/10/2015] [Indexed: 12/11/2022]
|
15
|
Zetterberg H, Lautner R, Skillbäck T, Rosén C, Shahim P, Mattsson N, Blennow K. CSF in Alzheimer's disease. Adv Clin Chem 2014; 65:143-72. [PMID: 25233613 DOI: 10.1016/b978-0-12-800141-7.00005-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is a progressive brain amyloidosis that injures brain regions involved in memory consolidation and other cognitive functions. Neuropathologically, the disease is characterized by accumulation of a 42-amino acid protein called amyloid beta, and N-terminally truncated fragments thereof, in extracellular senile plaques together with intraneuronal inclusions of hyperphosphorylated tau protein in neurofibrillary tangles, and neuronal and axonal degeneration and loss. Clinical chemistry tests for these pathologies have been developed for use on cerebrospinal fluid samples. Here, we review what these markers have taught us on the disease process in AD and how they can be implemented in routine clinical chemistry. We also provide an update on new marker development and ongoing analytical standardization effort.
Collapse
|
16
|
Biomarkers in Alzheimer's disease analysis by mass spectrometry-based proteomics. Int J Mol Sci 2014; 15:7865-82. [PMID: 24806343 PMCID: PMC4057708 DOI: 10.3390/ijms15057865] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/03/2014] [Accepted: 04/09/2014] [Indexed: 01/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a common chronic and destructive disease. The early diagnosis of AD is difficult, thus the need for clinically applicable biomarkers development is growing rapidly. There are many methods to biomarker discovery and identification. In this review, we aim to summarize Mass spectrometry (MS)-based proteomics studies on AD and discuss thoroughly the methods to identify candidate biomarkers in cerebrospinal fluid (CSF) and blood. This review will also discuss the potential research areas on biomarkers.
Collapse
|
17
|
Tabaei SR, Rabe M, Zetterberg H, Zhdanov VP, Höök F. Single lipid vesicle assay for characterizing single-enzyme kinetics of phospholipid hydrolysis in a complex biological fluid. J Am Chem Soc 2013; 135:14151-8. [PMID: 23957250 DOI: 10.1021/ja4046313] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Imaging of individual lipid vesicles is used to track single-enzyme kinetics of phospholipid hydrolysis. The method is employed to quantify the catalytic activity of phospholipase A2 (PLA2) in both pure and complex biological fluids. The measurements are demonstrated to offer a subpicomolar limit of detection (LOD) of human secretory PLA2 (sPLA2) in up to 1000-fold-diluted cerebrospinal fluid (CSF). An additional new feature provided by the single-enzyme sensitivity is that information about both relative concentration variations of active sPLA2 in CSF and the specific enzymatic activity can be simultaneously obtained. When CSF samples from healthy controls and individuals diagnosed with Alzheimer's disease (AD) are analyzed, the specific enzymatic activity is found to be preserved within 7% in the different CSF samples whereas the enzyme concentration differs by up to 56%. This suggests that the previously reported difference in PLA2 activity in CSF samples from healthy and AD individuals originates from differences in the PLA2 expression level rather than from the enzyme activity. Conventional ensemble averaging methods used to probe sPLA2 activity do not allow one to obtain such information. Together with an improvement in the LOD of at least 1 order of magnitude compared to that of conventional assays, this suggests that the method will become useful in furthering our understanding of the role of PLA2 in health and disease and in detecting the pharmacodynamic effects of PLA2-targeting drug candidates.
Collapse
Affiliation(s)
- Seyed R Tabaei
- Department of Applied Physics, Chalmers University of Technology , Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
18
|
Siroos B, Balood M, Zahednasab H, Mesbah-Namin SA, Pourgholy F, Harirchian MH. Secretory Phospholipase A2 activity in serum and cerebrospinal fluid of patients with relapsing-remitting multiple sclerosis. J Neuroimmunol 2013; 262:125-7. [DOI: 10.1016/j.jneuroim.2013.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 02/01/2023]
|
19
|
Intrathecal oligoclonal IgG synthesis in multiple sclerosis. J Neuroimmunol 2013; 262:1-10. [PMID: 23890808 DOI: 10.1016/j.jneuroim.2013.06.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/02/2013] [Accepted: 06/30/2013] [Indexed: 12/20/2022]
Abstract
The diagnosis of multiple sclerosis is based on dissemination in time and space. Before 2010 lack of evidence for dissemination in space could be substituted by a paraclinical test, cerebrospinal fluid (CSF) oligoclonal bands (OCBs). The present meta-analysis (13,467 patients) shows that the diagnostic specificity of OCB drops from 94% to 61% if inflammatory etiologies are considered. Importantly, this was not caused by poor laboratory practice. This review on CSF OCB further illustrates the conceptional problem of substituting dissemination in space with a biomarker. The potential prognostic value of intrathecal OCB will need to be tested prospectively.
Collapse
|
20
|
Choline-containing phospholipids in microdissected human Alzheimer's disease brain senile plaque versus neuropil. Bioanalysis 2013; 4:2153-5159. [PMID: 23013397 DOI: 10.4155/bio.12.189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lipidomic studies related to Alzheimer's disease have been reported on either biological fluids or large human brain samples. For a better understanding of the role of lipids, especially during the amyloid-β peptide aggregation, it is crucial to determine the composition of the senile plaque versus the surrounding tissue, that is, the neuropil. RESULTS A laser microdissection step was added to the analysis by UPLC-MS/MS. Despite the very low amount of sample, two phosphatidylcholines that were significantly depleted in the senile plaque were identified. CONCLUSION Changes in the phospholipid content have been shown between senile plaque versus neuropil. Nano HPLC, allowing a complete lipidomic profile, should further improve the results.
Collapse
|
21
|
Chalbot S, Zetterberg H, Blennow K, Fladby T, Andreasen N, Grundke-Iqbal I, Iqbal K. Blood-cerebrospinal fluid barrier permeability in Alzheimer's disease. J Alzheimers Dis 2011; 25:505-15. [PMID: 21471645 DOI: 10.3233/jad-2011-101959] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The role of blood-cerebrospinal fluid barrier (BCB) dysfunction in Alzheimer's disease (AD) has been addressed but not yet established. We evaluated the BCB integrity in 179 samples of cerebrospinal fluid (CSF) retrospectively collected from AD patients and control cases using both CSF/serum albumin ratio (QAlb) and CSF secretory Ca2+-dependent phospholipase A2 (sPLA2) activity. These analyses were supplemented with the measurement of total tau, amyloid-β1-42 (Aβ1-42), and ubiquitin CSF levels. We found that due to its higher sensitivity, CSF sPLA2 activity could 1) discriminate AD from healthy controls and 2) showed BCB impairment in neurological control cases while QAlb could not. Moreover, the CSF sPLA2 activity measurement showed that around half of the AD patients were characterized by a BCB impairment. The BCB dysfunction observed in AD was independent from Mini-Mental State Examination score as well as CSF levels of total tau, Aβ1-42, and ubiquitin. Finally, the BCB dysfunction was not limited to any of the CSF biomarkers-based previously identified subgroups of AD. These results suggest that the BCB damage occurs independent of and probably precedes both Aβ and tau pathologies in a restricted subgroup of AD patients.
Collapse
Affiliation(s)
- Sonia Chalbot
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY 10314-6399, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Rao JS, Rapoport SI, Kim HW. Altered neuroinflammatory, arachidonic acid cascade and synaptic markers in postmortem Alzheimer's disease brain. Transl Psychiatry 2011; 1:e31. [PMID: 22832605 PMCID: PMC3309508 DOI: 10.1038/tp.2011.27] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/07/2011] [Accepted: 06/16/2011] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the leading cause of dementia in the elderly. A recent positron emission tomography imaging study demonstrated upregulated brain arachidonic acid (AA) metabolism in AD patients. Further, a mouse model of AD shows an increase in AA-releasing cytosolic phospholipase A(2) (cPLA(2)) in brain, and a reduction in cPLA(2) activity ameliorated cognitive deficits. These observations led us to hypothesize that there is an upregulation of AA cascade and neuroinflammatory markers in the brain of AD patients. To test this hypothesis, we measured protein and mRNA levels of AA cascade, neuroinflammatory and synaptic markers in postmortem frontal cortex from 10 AD patients and 10 age-matched controls. Consistent with our hypothesis, AD frontal cortex showed significant increases in protein and mRNA levels of cPLA(2)-IVA, secretory sPLA(2)-IIA, cyclooxygenase-1 and -2, membrane prostaglandin (PG) synthase-1 and lipoxygenase-12 and -15. Calcium-independent iPLA(2)-VIA and cytosolic PGE(2) synthase were decreased. In addition, interleukin-1β, tumor necrosis factor-α, glial fibrillary acidic protein and CD11b were increased. AD postmortem brain also showed signs of cellular injury, including decreased synaptophysin and drebrin, pre- and postsynaptic markers. These results indicate that increased AA cascade and inflammatory markers could contribute to AD pathology. Altered brain AA cascade enzymes could be considered therapeutic targets for future drug development.
Collapse
Affiliation(s)
- J S Rao
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
23
|
Olsson B, Zetterberg H, Hampel H, Blennow K. Biomarker-based dissection of neurodegenerative diseases. Prog Neurobiol 2011; 95:520-34. [PMID: 21524681 DOI: 10.1016/j.pneurobio.2011.04.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/06/2011] [Accepted: 04/10/2011] [Indexed: 12/12/2022]
Abstract
The diagnosis of neurodegenerative diseases within neurology and psychiatry are hampered by the difficulty in getting biopsies and thereby validating the diagnosis by pathological findings. Biomarkers for other types of disease have been readily adopted into the clinical practice where for instance troponins are standard tests when myocardial infarction is suspected. However, the use of biomarkers for neurodegeneration has not been fully incorporated into the clinical routine. With the development of cerebrospinal fluid (CSF) biomarkers that reflect pathological events within the central nervous system (CNS), important clinical diagnostic tools are becoming available. This review summarizes the most promising biomarker candidates that may be used to monitor different types of neurodegeneration and protein inclusions, as well as different types of metabolic changes, in living patients in relation to the clinical phenotype and disease progression over time. Our aim is to provide the reader with an updated lexicon on currently available biomarker candidates, how far they have come in development and how well they reflect pathogenic processes in different neurodegenerative diseases. Biomarkers for specific pathogenetic processes would also be valuable tools both to study disease pathogenesis directly in patients and to identify and monitor the effect of novel treatment strategies.
Collapse
Affiliation(s)
- Bob Olsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, S-431 80 Mölndal, Sweden.
| | | | | | | |
Collapse
|