1
|
Wu W, Xu C, Liang Q, Zheng X, Xiao Q, Zhong H, Chen N, Lan Y, Huang X, Xie Q. Olfactory response is a potential sign of consciousness: electroencephalogram findings. Front Neurosci 2023; 17:1187471. [PMID: 37274218 PMCID: PMC10233028 DOI: 10.3389/fnins.2023.1187471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Objective This study aimed to explore whether olfactory response can be a sign of consciousness and represent higher cognitive processing in patients with disorders of consciousness (DoC) using clinical and electroencephalogram data. Methods Twenty-eight patients with DoC [13 vegetative states (VS)/unresponsive wakefulness syndrome (UWS) and 15 minimally conscious states (MCS)] were divided into two groups: the presence of olfactory response (ORES) group and the absence of olfactory response (N-ORES) group according to behavioral signs from different odors, i.e., vanillin, decanoic acid, and blank stimuli. We recorded an olfactory task-related electroencephalogram (EEG) and analyzed the relative power and functional connectivity at the whole-brain level in patients with DoC and healthy controls (HCs). After three months, the outcomes of DoC patients were followed up using the coma recovery scale-revised (CRS-R). Results A significant relationship was found between olfactory responses and the level of consciousness (χ2(1) = 6.892, p = 0.020). For olfactory EEG, N-ORES patients showed higher theta functional connectivity than ORES patients after stimulation with vanillin (p = 0.029; p = 0.027). Patients with N-ORES showed lower alpha and beta relative powers than HCs at the group level (p = 0.019; p = 0.033). After three months, 62.5% (10/16) of the ORES patients recovered consciousness compared to 16.7% (2/12) in the N-ORES group. The presence of olfactory response was significantly associated with an improvement in consciousness (χ2(1) = 5.882, p = 0.023). Conclusion Olfactory responses should be considered signs of consciousness. The differences in olfactory processing between DoC patients with and without olfactory responses may be a way to explore the neural correlates of olfactory consciousness in these patients. The olfactory response may help in the assessment of consciousness and may contribute to therapeutic orientation.
Collapse
Affiliation(s)
- Wanchun Wu
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chengwei Xu
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qimei Liang
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaochun Zheng
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiuyi Xiao
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Haili Zhong
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Na Chen
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yue Lan
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiyan Huang
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiuyou Xie
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hyperbaric Oxygen, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Kosenko PO, Smolikov AB, Voynov VB, Shaposhnikov PD, Saevskiy AI, Kiroy VN. Effect of Xylazine-Tiletamine-Zolazepam on the Local Field Potential of the Rat Olfactory Bulb. Comp Med 2020; 70:492-498. [PMID: 33168131 DOI: 10.30802/aalas-cm-20-990015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neural oscillations of the mammalian olfactory system have been studied for decades. This research suggests they are linked to various processes involved in odor information analysis, depending on the vigilance state and presentation of stimuli. In addition, the effects of various anesthetics, including commonly used ones like chloral hydrate, pentobarbital, ketamine, and urethane, on the local field potential (LFP) in the olfactory bulb (OB) have been studied. In particular, the combination of xylazine and tiletamine-zolazepam has been shown to produce steady anesthesia for an extended period and relatively few adverse effects; however, their effects on the LFP in the OB remain unknown. To study those effects, we recorded the LFP in the OB of rats under xylazine-tiletamine-zolazepam anesthesia. During the period of anesthesia, the spectral powers of the 1-4, 9-16, 31-64, 65-90 frequency bands increased significantly, and that of 91-170 Hz frequency band decreased significantly, whereas no significant changes were observed in the 5-8 and 17-30 Hz ranges. These results reveal dynamic changes in the time and frequency characteristics of the LFP in the OB of rats under xylazine-tiletamine- zolazepam anesthesia and suggest that this combination of anesthetics could be used for studying oscillatory processes in the OB of rats.
Collapse
|
3
|
Arabkheradmand G, Zhou G, Noto T, Yang Q, Schuele SU, Parvizi J, Gottfried JA, Wu S, Rosenow JM, Koubeissi MZ, Lane G, Zelano C. Anticipation-induced delta phase reset improves human olfactory perception. PLoS Biol 2020; 18:e3000724. [PMID: 32453719 PMCID: PMC7250403 DOI: 10.1371/journal.pbio.3000724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Abstract
Anticipating an odor improves detection and perception, yet the underlying neural mechanisms of olfactory anticipation are not well understood. In this study, we used human intracranial electroencephalography (iEEG) to show that anticipation resets the phase of delta oscillations in piriform cortex prior to odor arrival. Anticipatory phase reset correlates with ensuing odor-evoked theta power and improvements in perceptual accuracy. These effects were consistently present in each individual subject and were not driven by potential confounds of pre-inhale motor preparation or power changes. Together, these findings suggest that states of anticipation enhance olfactory perception through phase resetting of delta oscillations in piriform cortex. Use of human intracranial electroencephalography methods, including rare direct recordings from human olfactory cortex, shows that anticipation of odor resets the phase of delta oscillations prior to the arrival of an odor.
Collapse
Affiliation(s)
- Ghazaleh Arabkheradmand
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Guangyu Zhou
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
- * E-mail:
| | - Torben Noto
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Qiaohan Yang
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Stephan U. Schuele
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Department of Neurology and Neurological Sciences, Stanford University Palo Alto, Stanford, California, United States of America
| | - Jay A. Gottfried
- University of Pennsylvania, Perelman School of Medicine, Department of Neurology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania, School of Arts and Sciences, Department of Psychology, Philadelphia, Pennsylvania, United States of America
| | - Shasha Wu
- University of Chicago, Department of Neurology, Chicago, Illinois, United States of America
| | - Joshua M. Rosenow
- Northwestern University Feinberg School of Medicine, Department of Neurosurgery, Illinois, United States of America
| | - Mohamad Z. Koubeissi
- George Washington University, Department of Neurology, Washington DC, United States of America
| | - Gregory Lane
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Christina Zelano
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| |
Collapse
|
4
|
Salimi M, Ghazvineh S, Zare M, Parsazadegan T, Dehdar K, Nazari M, Mirnajafi-Zadeh J, Jamaati H, Raoufy MR. Distraction of olfactory bulb-medial prefrontal cortex circuit may induce anxiety-like behavior in allergic rhinitis. PLoS One 2019; 14:e0221978. [PMID: 31509547 PMCID: PMC6738655 DOI: 10.1371/journal.pone.0221978] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/18/2019] [Indexed: 12/12/2022] Open
Abstract
Allergic rhinitis is a chronic inflammatory disease of the upper respiratory tract, which is associated with high incidence of anxiety symptom. There is evidence that medial prefrontal cortex modulates anxiety-related behaviors and receives projections from olfactory bulb. Since olfactory dysfunction has been reported in allergic rhinitis, we aimed to evaluate anxiety-like behavior and oscillations of olfactory bulb-medial prefrontal cortex circuit in an animal model of allergic rhinitis. The number of open arm entries in elevated zero maze was significantly reduced in sensitized rats exposed to intranasal ovalbumin compared to the control group, which was indicating the enhancement of anxiety-like behavior in allergic rhinitis animals. Analysis of local field potentials in olfactory bulb and medial prefrontal cortex during immobility and exploration state showed that anxiety-like behavior induced by allergic rhinitis was in association with increased activity of medial prefrontal cortex and enhancement of olfactory bulb-medial prefrontal cortex coupling in delta and theta bands. Moreover, in allergic rhinitis animals, theta strongly coordinates local gamma activity in olfactory bulb and medial prefrontal cortex, which means to have a strong local theta/gamma coupling. We suggested that disruption of olfactory bulb-medial prefrontal cortex circuit due to allergic reactions might have a governing role for inducing anxiety-like behavior in the allergic rhinitis experimental model.
Collapse
Affiliation(s)
- Morteza Salimi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Ghazvineh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Meysam Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Tannaz Parsazadegan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kolsum Dehdar
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Milad Nazari
- Faculty of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Sudden Intrabulbar Amyloid Increase Simultaneously Disrupts Olfactory Bulb Oscillations and Odor Detection. Neural Plast 2019; 2019:3424906. [PMID: 31531013 PMCID: PMC6721117 DOI: 10.1155/2019/3424906] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023] Open
Abstract
There seems to be a correlation between soluble amyloid beta protein (Aβ) accumulation in the main olfactory bulb (OB) and smell deterioration in both Alzheimer's disease (AD) patients and animal models. Moreover, this loss of smell appears to be related to alterations in neural network activity in several olfactory-related circuits, including the OB, as has been observed in anesthetized animals and brain slices. It is possible that there is a correlation between these two pathological phenomena, but a direct and simultaneous evaluation of the acute and direct effect of Aβ on OB activity while animals are actually smelling has not been performed. Thus, here, we tested the effects of acute intrabulbar injection of Aβ at a low dose (200 pmol) on the OB local field potential before and during the presence of a hidden piece of smelly food. Our results show that Aβ decreases the power of OB network activity while impairing the animal's ability to reach the hidden food. We found a strong relationship between the power of the OB oscillations and the correlation between OBs and the olfactory detection test scores. These findings provide a direct link between Aβ-induced OB network dysfunction and smell loss in rodents, which could be extrapolated to AD patients.
Collapse
|
6
|
Thompson GJ, Sanganahalli BG, Baker KL, Herman P, Shepherd GM, Verhagen JV, Hyder F. Spontaneous activity forms a foundation for odor-evoked activation maps in the rat olfactory bulb. Neuroimage 2018; 172:586-596. [PMID: 29374582 DOI: 10.1016/j.neuroimage.2018.01.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/16/2018] [Accepted: 01/20/2018] [Indexed: 12/12/2022] Open
Abstract
Fluctuations in spontaneous activity have been observed by many neuroimaging techniques, but because these resting-state changes are not evoked by stimuli, it is difficult to determine how they relate to task-evoked activations. We conducted multi-modal neuroimaging scans of the rat olfactory bulb, both with and without odor, to examine interaction between spontaneous and evoked activities. Independent component analysis of spontaneous fluctuations revealed resting-state networks, and odor-evoked changes revealed activation maps. We constructed simulated activation maps using resting-state networks that were highly correlated to evoked activation maps. Simulated activation maps derived by intrinsic optical signal (IOS), which covers the dorsal portion of the glomerular sheet, significantly differentiated one odor's evoked activation map from the other two. To test the hypothesis that spontaneous activity of the entire glomerular sheet is relevant for representing odor-evoked activations, we used functional magnetic resonance imaging (fMRI) to map the entire glomerular sheet. In contrast to the IOS results, the fMRI-derived simulated activation maps significantly differentiated all three odors' evoked activation maps. Importantly, no evoked activation maps could be significantly differentiated using simulated activation maps produced using phase-randomized resting-state networks. Given that some highly organized resting-state networks did not correlate with any odors' evoked activation maps, we posit that these resting-state networks may characterize evoked activation maps associated with odors not studied. These results emphasize that fluctuations in spontaneous activity form a foundation for active processing, signifying the relevance of resting-state mapping to functional neuroimaging.
Collapse
Affiliation(s)
- Garth J Thompson
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Basavaraju G Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA
| | - Keeley L Baker
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT USA
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA
| | | | - Justus V Verhagen
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Gong L, Li B, Wu R, Li A, Xu F. Brain-state dependent uncoupling of BOLD and local field potentials in laminar olfactory bulb. Neurosci Lett 2014; 580:1-6. [PMID: 25079901 DOI: 10.1016/j.neulet.2014.07.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/23/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
Abstract
The neural activities of the olfactory bulb (OB) can be modulated significantly by internal brain states. While blood oxygenation level dependent functional MRI (BOLD-fMRI) has been extensively applied to study OB in small animals, the relationship between BOLD signals and electrophysiological signals remains to be elucidated. Our recent study has revealed a complex relationship between BOLD and local field potentials (LFP) signals in different OB layers during odor stimulation. However, no study has been performed to compare these two types of signals under global brain states. Here, the changes of BOLD and LFP signals in the glomerular, mitral cell, and granular cell layers of the OB under different brain states, which were induced by different concentrations of isoflurane, were sequentially acquired using electrode array and high-resolution MRI. It was found that under deeper anesthesia, the LFP powers in all layers were decreased but the BOLD signals were unexpectedly increased. Furthermore, the decreases of LFP powers were layer-independent, but the increases of BOLD signal were layer-specific, with the order of glomerular>mitral cell>granular cell layer. The results provide new evidence that the direct neural activity levels might not be correlated well with BOLD signals in some cases, and remind us that cautions should be taken to use BOLD signals as the index of neural activities.
Collapse
Affiliation(s)
- Ling Gong
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Li
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqi Wu
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anan Li
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China.
| |
Collapse
|
8
|
Li B, Gong L, Wu R, Li A, Xu F. Complex relationship between BOLD-fMRI and electrophysiological signals in different olfactory bulb layers. Neuroimage 2014; 95:29-38. [DOI: 10.1016/j.neuroimage.2014.03.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/06/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023] Open
|
9
|
Role of cardiorespiratory synchronization and sleep physiology: effects on membrane potential in the restorative functions of sleep. Sleep Med 2014; 15:279-88. [DOI: 10.1016/j.sleep.2013.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 01/26/2023]
|
10
|
Liu Q, Li A, Gong L, Zhang L, Wu N, Xu F. Decreased coherence between the two olfactory bulbs in Alzheimer's disease model mice. Neurosci Lett 2013; 545:81-5. [DOI: 10.1016/j.neulet.2013.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 10/26/2022]
|
11
|
Lang J, Li A, Luo W, Wu R, Li P, Xu F. Odor representation in the olfactory bulb under different brain states revealed by intrinsic optical signals imaging. Neuroscience 2013; 243:54-63. [PMID: 23567814 DOI: 10.1016/j.neuroscience.2013.03.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/17/2013] [Accepted: 03/23/2013] [Indexed: 10/27/2022]
Abstract
The olfactory system responds to the same stimulus with great variability according to the current state of the brain. At the levels of multi-unit activity and local field potentials, the response of the olfactory bulb (OB) to a given olfactory stimulus during a state of lower background activity is stronger than the response that occurs during higher background activity, but the distribution pattern of activity remains similar. However, these results have only been established at the individual neuron and neuron cluster scales in previous studies. It remains unclear whether these results are consistent at a larger scale (e.g., OB regions); therefore, intrinsic optical signals imaging was employed in the present study to clarify this issue. The basal brain states of rats were manipulated by using different levels of anesthesia. Under a state of low basal brain activity, the intensity of the activity pattern elicited in the dorsal OB by a given odorant was significantly higher than that under high basal brain activity, but the topography was highly similar across different brain states. These results were consistent across the levels of individual neurons, neuron clusters, glomeruli, and the OB regions, which suggest that the OB contains as yet unknown neural mechanisms that ensure the high-fidelity representation of the same olfactory stimulation under different brain states.
Collapse
Affiliation(s)
- J Lang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Barnes DC, Chapuis J, Chaudhury D, Wilson DA. Odor fear conditioning modifies piriform cortex local field potentials both during conditioning and during post-conditioning sleep. PLoS One 2011; 6:e18130. [PMID: 21448432 PMCID: PMC3063180 DOI: 10.1371/journal.pone.0018130] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 02/22/2011] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Sleep plays an active role in memory consolidation. Sleep structure (REM/Slow wave activity [SWS]) can be modified after learning, and in some cortical circuits, sleep is associated with replay of the learned experience. While the majority of this work has focused on neocortical and hippocampal circuits, the olfactory system may offer unique advantages as a model system for exploring sleep and memory, given the short, non-thalamic pathway from nose to primary olfactory (piriform cortex), and rapid cortex-dependent odor learning. METHODOLOGY/PRINCIPAL FINDINGS We examined piriform cortical odor responses using local field potentials (LFPs) from freely behaving Long-Evans hooded rats over the sleep-wake cycle, and the neuronal modifications that occurred within the piriform cortex both during and after odor-fear conditioning. We also recorded LFPs from naïve animals to characterize sleep activity in the piriform cortex and to analyze transient odor-evoked cortical responses during different sleep stages. Naïve rats in their home cages spent 40% of their time in SWS, during which the piriform cortex was significantly hypo-responsive to odor stimulation compared to awake and REM sleep states. Rats trained in the paired odor-shock conditioning paradigm developed enhanced conditioned odor evoked gamma frequency activity in the piriform cortex over the course of training compared to pseudo-conditioned rats. Furthermore, conditioned rats spent significantly more time in SWS immediately post-training both compared to pre-training days and compared to pseudo-conditioned rats. The increase in SWS immediately after training significantly correlated with the duration of odor-evoked freezing the following day. CONCLUSIONS/SIGNIFICANCE The rat piriform cortex is hypo-responsive to odors during SWS which accounts for nearly 40% of each 24 hour period. The duration of slow-wave activity in the piriform cortex is enhanced immediately post-conditioning, and this increase is significantly correlated with subsequent memory performance. Together, these results suggest the piriform cortex may go offline during SWS to facilitate consolidation of learned odors with reduced external interference.
Collapse
Affiliation(s)
- Dylan C Barnes
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, United States of America.
| | | | | | | |
Collapse
|