1
|
Efficient training approaches for optimizing behavioral performance and reducing head fixation time. PLoS One 2022; 17:e0276531. [DOI: 10.1371/journal.pone.0276531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
The use of head fixation has become routine in systems neuroscience. However, whether the behavior changes with head fixation, whether animals can learn aspects of a task while freely moving and transfer this knowledge to the head fixed condition, has not been examined in much detail. Here, we used a novel floating platform, the “Air-Track”, which simulates free movement in a real-world environment to address the effect of head fixation and developed methods to accelerate training of behavioral tasks for head fixed mice. We trained mice in a Y maze two choice discrimination task. One group was trained while head fixed and compared to a separate group that was pre-trained while freely moving and then trained on the same task while head fixed. Pre-training significantly reduced the time needed to relearn the discrimination task while head fixed. Freely moving and head fixed mice displayed similar behavioral patterns, however, head fixation significantly slowed movement speed. The speed of movement in the head fixed mice depended on the weight of the platform. We conclude that home-cage pre-training improves learning performance of head fixed mice and that while head fixation obviously limits some aspects of movement, the patterns of behavior observed in head fixed and freely moving mice are similar.
Collapse
|
2
|
Wei X, Ni X, Zhao S, Chi A. Influence of Exposure at Different Altitudes on the Executive Function of Plateau Soldiers-Evidence From ERPs and Neural Oscillations. Front Physiol 2021; 12:632058. [PMID: 33935798 PMCID: PMC8085325 DOI: 10.3389/fphys.2021.632058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/02/2021] [Indexed: 11/18/2022] Open
Abstract
This study investigates the changes in soldiers' brain executive function at different altitude environments and their relationship with blood oxygen saturation. Stratified sampling was conducted in different altitude 133 active-duty soldiers who were stationed in Weinan (347 m, n = 34), Nyingchi (2,950 m, n = 32), Lhasa (3,860 m, n = 33), and Nagqu (4,890 m, n = 34) for 2 years. The Go/NoGo paradigm with event-related potentials (ERPs) and event-related oscillations (EROs) was used to explore the time and neural oscillation courses of response inhibition. Behavioral results revealed that at the 4,890-m altitude area, the soldiers had the highest false alarm rate, the longest reaction time, and the slowest information transmission rate. The electrophysiological results revealed that NoGo-N2 and N2d decreased with increasing altitude, with significant changes at 3,860 m; the amplitudes of NoGo-P3 and P3d in plateau groups were significantly more negative than the plain and changed significantly at 2,950 m. The results of correlation analysis showed that NoGo-P3 was negatively correlated with altitude (r = −0.358, p = 0.000), positively correlated with SpO2 (r = 0.197, p = 0.041) and information translation rate (ITR) (r = 0.202, p = 0.036). P3d was negatively correlated with altitude (r = −0.276, p = 0.004) and positively correlated with ITR (r = 0.228, p = 0.018). N2d was negatively correlated with ITR (r = 0.204, p = 0.034). The power spectrum analysis of NoGo-N2 and NoGo-P3 showed that the power of δ and θ bands at the plateau area was significantly lower than the plain area and showed a significant step-by-step decrease; the α-band power increases significantly only in the area of 4,890 m. The effect of chronic hypoxia exposure at different altitudes of the plateau on the response inhibition of soldiers was manifested: 3,860 m was the altitude at which the brain response inhibition function decreased during the conflict monitoring stage, and 2,950 m was the altitude at which it dropped during the response inhibition stage. In addition, the soldier's brain's executive function was closely related to SpO2, and a reduction in SpO2 may lead to a decline in response inhibition.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Social Psychology, School of Humanities and Social Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Ni
- Institute of Social Psychology, School of Humanities and Social Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Shanguang Zhao
- Centre for Sport and Exercise Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Aiping Chi
- School of Sports, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
3
|
Whisking Asymmetry Signals Motor Preparation and the Behavioral State of Mice. J Neurosci 2019; 39:9818-9830. [PMID: 31666357 DOI: 10.1523/jneurosci.1809-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
A central function of the brain is to plan, predict, and imagine the effect of movement in a dynamically changing environment. Here we show that in mice head-fixed in a plus-maze, floating on air, and trained to pick lanes based on visual stimuli, the asymmetric movement, and position of whiskers on the two sides of the face signals whether the animal is moving, turning, expecting reward, or licking. We show that (1) whisking asymmetry is coordinated with behavioral state, and that behavioral state can be decoded and predicted based on asymmetry, (2) even in the absence of tactile input, whisker positioning and asymmetry nevertheless relate to behavioral state, and (3) movement of the nose correlates with asymmetry, indicating that facial expression of the mouse is itself correlated with behavioral state. These results indicate that the movement of whiskers, a behavior that is not instructed or necessary in the task, can inform an observer about what a mouse is doing in the maze. Thus, the position of these mobile tactile sensors reflects a behavioral and movement-preparation state of the mouse.SIGNIFICANCE STATEMENT Behavior is a sequence of movements, where each movement can be related to or can trigger a set of other actions. Here we show that, in mice, the movement of whiskers (tactile sensors used to extract information about texture and location of objects) is coordinated with and predicts the behavioral state of mice: that is, what mice are doing, where they are in space, and where they are in the sequence of behaviors.
Collapse
|
4
|
Zahr NM, Pohl KM, Pfefferbaum A, Sullivan EV. Central Nervous System Correlates of "Objective" Neuropathy in Alcohol Use Disorder. Alcohol Clin Exp Res 2019; 43:2144-2152. [PMID: 31386216 PMCID: PMC6779503 DOI: 10.1111/acer.14162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/24/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Among the neurological consequences of alcoholism is peripheral neuropathy. Relative to human immunodeficiency virus (HIV) or diabetes-related neuropathies, neuropathy associated with alcohol use disorders (AUD) is understudied. In both the diabetes and HIV literature, emerging evidence supports a central nervous system (CNS) component to peripheral neuropathy. METHODS In seeking a central substrate for AUD-related neuropathy, the current study was conducted in 154 individuals with AUD (43 women, age 21 to 74 years) and 99 healthy controls (41 women, age 21 to 77 years) and explored subjective symptoms (self-report) and objective signs (perception of vibration, deep tendon ankle reflex, position sense, 2-point discrimination) of neuropathy separately. In addition to regional brain volumes, risk factors for AUD-related neuropathy, including age, sex, total lifetime ethanol consumed, nutritional indices (i.e., thiamine, folate), and measures of liver integrity (i.e., γ-glutamyltransferase), were evaluated. RESULTS The AUD group described more subjective symptoms of neuropathy and was more frequently impaired on bilateral perception of vibration. From 5 correlates, the number of AUD-related seizures was most significantly associated with subjective symptoms of neuropathy. There were 15 correlates of impaired perception of vibration among the AUD participants: Of these, age and volume of frontal precentral cortex were the most robust predictors. CONCLUSIONS This study supports CNS involvement in objective signs of neuropathy in AUD.
Collapse
Affiliation(s)
- Natalie M Zahr
- Neuroscience Program, (NMZ, KMP, AP), SRI International, Menlo Park, California
- Department of Psychiatry and Behavioral Sciences, (NMZ, KMP, AP, EVS), Stanford University School of Medicine, Stanford, California
| | - Kilian M Pohl
- Neuroscience Program, (NMZ, KMP, AP), SRI International, Menlo Park, California
- Department of Psychiatry and Behavioral Sciences, (NMZ, KMP, AP, EVS), Stanford University School of Medicine, Stanford, California
| | - Adolf Pfefferbaum
- Neuroscience Program, (NMZ, KMP, AP), SRI International, Menlo Park, California
- Department of Psychiatry and Behavioral Sciences, (NMZ, KMP, AP, EVS), Stanford University School of Medicine, Stanford, California
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, (NMZ, KMP, AP, EVS), Stanford University School of Medicine, Stanford, California
| |
Collapse
|
5
|
Gollo LL, Karim M, Harris JA, Morley JW, Breakspear M. Hierarchical and Nonlinear Dynamics in Prefrontal Cortex Regulate the Precision of Perceptual Beliefs. Front Neural Circuits 2019; 13:27. [PMID: 31068794 PMCID: PMC6491505 DOI: 10.3389/fncir.2019.00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/29/2019] [Indexed: 11/13/2022] Open
Abstract
Actions are shaped not only by the content of our percepts but also by our confidence in them. To study the cortical representation of perceptual precision in decision making, we acquired functional imaging data whilst participants performed two vibrotactile forced-choice discrimination tasks: a fast-slow judgment, and a same-different judgment. The first task requires a comparison of the perceived vibrotactile frequencies to decide which one is faster. However, the second task requires that the estimated difference between those frequencies is weighed against the precision of each percept-if both stimuli are very precisely perceived, then any slight difference is more likely to be identified than if the percepts are uncertain. We additionally presented either pure sinusoidal or temporally degraded "noisy" stimuli, whose frequency/period differed slightly from cycle to cycle. In this way, we were able to manipulate the perceptual precision. We report a constellation of cortical regions in the rostral prefrontal cortex (PFC), dorsolateral PFC (DLPFC) and superior frontal gyrus (SFG) associated with the perception of stimulus difference, the presence of stimulus noise and the interaction between these factors. Dynamic causal modeling (DCM) of these data suggested a nonlinear, hierarchical model, whereby activity in the rostral PFC (evoked by the presence of stimulus noise) mutually interacts with activity in the DLPFC (evoked by stimulus differences). This model of effective connectivity outperformed competing models with serial and parallel interactions, hence providing a unique insight into the hierarchical architecture underlying the representation and appraisal of perceptual belief and precision in the PFC.
Collapse
Affiliation(s)
- Leonardo L Gollo
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Centre of Excellence for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Muhsin Karim
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,The Black Dog Institute, Sydney, NSW, Australia
| | - Justin A Harris
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - John W Morley
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Centre of Excellence for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,The Black Dog Institute, Sydney, NSW, Australia.,Metro North Mental Health Service, Brisbane, QLD, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| |
Collapse
|
6
|
Lamp G, Goodin P, Palmer S, Low E, Barutchu A, Carey LM. Activation of Bilateral Secondary Somatosensory Cortex With Right Hand Touch Stimulation: A Meta-Analysis of Functional Neuroimaging Studies. Front Neurol 2019; 9:1129. [PMID: 30687211 PMCID: PMC6335946 DOI: 10.3389/fneur.2018.01129] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Brain regions involved in processing somatosensory information have been well documented through lesion, post-mortem, animal, and more recently, structural and functional neuroimaging studies. Functional neuroimaging studies characterize brain activation related to somatosensory processing; yet a meta-analysis synthesis of these findings is currently lacking and in-depth knowledge of the regions involved in somatosensory-related tasks may also be confounded by motor influences. Objectives: Our Activation Likelihood Estimate (ALE) meta-analysis sought to quantify brain regions that are involved in the tactile processing of the right (RH) and left hands (LH) separately, with the exclusion of motor related activity. Methods: The majority of studies (n = 41) measured activation associated with RH tactile stimulation. RH activation studies were grouped into those which conducted whole-brain analyses (n = 29) and those which examined specific regions of interest (ROI; n = 12). Few studies examined LH activation, though all were whole-brain studies (N = 7). Results: Meta-analysis of brain activation associated with RH tactile stimulation (whole-brain studies) revealed large clusters of activation in the left primary somatosensory cortex (S1) and bilaterally in the secondary somatosensory cortex (S2; including parietal operculum) and supramarginal gyrus (SMG), as well as the left anterior cingulate. Comparison between findings from RH whole-brain and ROI studies revealed activation as expected, but restricted primarily to S1 and S2 regions. Further, preliminary analyses of LH stimulation studies only, revealed two small clusters within the right S1 and S2 regions, likely limited due to the small number of studies. Contrast analyses revealed the one area of overlap for RH and LH, was right secondary somatosensory region. Conclusions: Findings from the whole-brain meta-analysis of right hand tactile stimulation emphasize the importance of taking into consideration bilateral activation, particularly in secondary somatosensory cortex. Further, the right parietal operculum/S2 region was commonly activated for right and left hand tactile stimulation, suggesting a lateralized pattern of somatosensory activation in right secondary somatosensory region. Implications for further research and for possible differences in right and left hemispheric stroke lesions are discussed.
Collapse
Affiliation(s)
- Gemma Lamp
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Occupational Therapy, School of Allied Health, La Trobe University, Bundoora, VIC, Australia
| | - Peter Goodin
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
| | - Susan Palmer
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
| | - Essie Low
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Department of Neurology, Sunshine Hospital, Western Health, Melbourne, VIC, Australia
- Department of Psychology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Ayla Barutchu
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Balliol College, University of Oxford, Oxford, United Kingdom
| | - Leeanne M. Carey
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Occupational Therapy, School of Allied Health, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
7
|
Godde B, Bruns P, Wendel V, Trautmann M. Effects of age and individual experiences on tactile perception over the life span in women. Acta Psychol (Amst) 2018; 190:135-141. [PMID: 30114672 DOI: 10.1016/j.actpsy.2018.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/29/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022] Open
Abstract
Tactile perception results from the interplay of peripheral and central mechanisms for detection and sensation of objects and the discrimination and evaluation of their size, shapes, and surface characteristics. For different tasks, we investigated this interaction between more bottom-up stimulus-driven and rather top-down attention-related and cognitive processes in tactile perception. Moreover, we were interested in effects of age and tactile experiences on this interaction. 299 right-handed women participated in our study and were divided into five age groups: 18-25 years (N = 77), 30-45 years (N = 76), 50-65 years (N = 62), 66-75 years (N = 63) and older than 75 years (N = 21). They filled a questionnaire on tactile experiences and rated their skin as either very dry, dry, normal, or oily. Further they performed three tactile tests with the left and right index fingers. Sensitivity for touch stimuli was assessed with von Frey filaments. A sand paper test was used to examine texture discrimination performance. Spatial discrimination was investigated with a tactile Landolt ring test. Multivariate ANOVA confirmed a linear decline in tactile perceptual skills with age (F(3, 279) = 76.740; p < .000; pEta2 = 0.452), starting in early adulthood. Largest age effects were found for the Landolt ring test and smallest age effects for the Sand paper test, indicating different aging slopes. Tactile experiences had a positive effect on tactile performance (F (3,279) = 4.450; p = .005; pEta2 = 0.046) and univariate ANOVA confirmed this effect for the sand paper and the Landolt ring test, but not for the von Frey test. Using structural equation modelling, we confirmed two dimensions of tactile performance; one related to more peripheral or early sensory cortical (bottom-up) processes (i.e., sensitivity) and one more associated with cognitive or evaluative (top-down) processes (i.e., perception). Interestingly, the top-down processes were stronger influenced by age than bottom-up ones, suggesting that age-related deficits in tactile performance are mainly caused by a decline of central perceptive-evaluative capacities rather than by reduced sensitivity.
Collapse
|
8
|
Maffei V, Mazzarella E, Piras F, Spalletta G, Caltagirone C, Lacquaniti F, Daprati E. Processing of visual gravitational motion in the peri-sylvian cortex: Evidence from brain-damaged patients. Cortex 2016; 78:55-69. [DOI: 10.1016/j.cortex.2016.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/29/2016] [Accepted: 02/08/2016] [Indexed: 11/30/2022]
|
9
|
Schroeder JB, Ritt JT. Selection of head and whisker coordination strategies during goal-oriented active touch. J Neurophysiol 2016; 115:1797-809. [PMID: 26792880 DOI: 10.1152/jn.00465.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 01/15/2016] [Indexed: 11/22/2022] Open
Abstract
In the rodent whisker system, a key model for neural processing and behavioral choices during active sensing, whisker motion is increasingly recognized as only part of a broader motor repertoire employed by rodents during active touch. In particular, recent studies suggest whisker and head motions are tightly coordinated. However, conditions governing the selection and temporal organization of such coordinated sensing strategies remain poorly understood. We videographically reconstructed head and whisker motions of freely moving mice searching for a randomly located rewarded aperture, focusing on trials in which animals appeared to rapidly "correct" their trajectory under tactile guidance. Mice orienting after unilateral contact repositioned their whiskers similarly to previously reported head-turning asymmetry. However, whisker repositioning preceded head turn onsets and was not bilaterally symmetric. Moreover, mice selectively employed a strategy we term contact maintenance, with whisking modulated to counteract head motion and facilitate repeated contacts on subsequent whisks. Significantly, contact maintenance was not observed following initial contact with an aperture boundary, when the mouse needed to make a large corrective head motion to the front of the aperture, but only following contact by the same whisker field with the opposite aperture boundary, when the mouse needed to precisely align its head with the reward spout. Together these results suggest that mice can select from a diverse range of sensing strategies incorporating both knowledge of the task and whisk-by-whisk sensory information and, moreover, suggest the existence of high level control (not solely reflexive) of sensing motions coordinated between multiple body parts.
Collapse
Affiliation(s)
- Joseph B Schroeder
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Jason T Ritt
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
10
|
Reuter EM, Voelcker-Rehage C, Vieluf S, Godde B. Effects of age and expertise on tactile learning in humans. Eur J Neurosci 2014; 40:2589-99. [DOI: 10.1111/ejn.12629] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/02/2013] [Accepted: 04/22/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Eva-Maria Reuter
- Jacobs Center on Lifelong Learning and Institutional Development; Jacobs University Bremen; Bremen Germany
| | - Claudia Voelcker-Rehage
- Jacobs Center on Lifelong Learning and Institutional Development; Jacobs University Bremen; Bremen Germany
- AGEACT Research Center; Jacobs University Bremen; Bremen Germany
| | - Solveig Vieluf
- Jacobs Center on Lifelong Learning and Institutional Development; Jacobs University Bremen; Bremen Germany
- Aix-Marseille Université; CNRS; ISM UMR; Marseille France
| | - Ben Godde
- Jacobs Center on Lifelong Learning and Institutional Development; Jacobs University Bremen; Bremen Germany
- AGEACT Research Center; Jacobs University Bremen; Bremen Germany
| |
Collapse
|
11
|
Reuter EM, Voelcker-Rehage C, Vieluf S, Godde B. Touch perception throughout working life: effects of age and expertise. Exp Brain Res 2011; 216:287-97. [DOI: 10.1007/s00221-011-2931-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 10/27/2011] [Indexed: 11/30/2022]
|