1
|
Bhilare KD, Dobariya P, Hanak F, Rothwell PE, More SS. Current understanding of the link between angiotensin-converting enzyme and pain perception. Drug Discov Today 2024; 29:104089. [PMID: 38977123 PMCID: PMC11368640 DOI: 10.1016/j.drudis.2024.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
The renin-angiotensin system (RAS) is known to affect diverse physiological processes that affect the functioning of many key organs. Angiotensin-converting enzyme (ACE) modulates a variety of bioactive peptides associated with pain. ACE inhibitors (ACEis) have found applications in the treatment of cardiovascular, kidney, neurological and metabolic disorders. However, ACEis also tend to display undesirable effects, resulting in increased pain sensitization and mechanical allodynia. In this review, we provide comprehensive discussion of preclinical and clinical studies involving the evaluation of various clinically approved ACEis. With the emerging knowledge of additional factors involved in RAS signaling and the indistinct pharmacological role of ACE substrates in pain, extensive studies are still required to elucidate the mechanistic role of ACE in pain perception.
Collapse
Affiliation(s)
- Kiran D Bhilare
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Prakashkumar Dobariya
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Filip Hanak
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Patrick E Rothwell
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Swati S More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Villapol S, Janatpour ZC, Affram KO, Symes AJ. The Renin Angiotensin System as a Therapeutic Target in Traumatic Brain Injury. Neurotherapeutics 2023; 20:1565-1591. [PMID: 37759139 PMCID: PMC10684482 DOI: 10.1007/s13311-023-01435-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem, with limited pharmacological options available beyond symptomatic relief. The renin angiotensin system (RAS) is primarily known as a systemic endocrine regulatory system, with major roles controlling blood pressure and fluid homeostasis. Drugs that target the RAS are used to treat hypertension, heart failure and kidney disorders. They have now been used chronically by millions of people and have a favorable safety profile. In addition to the systemic RAS, it is now appreciated that many different organ systems, including the brain, have their own local RAS. The major ligand of the classic RAS, Angiotensin II (Ang II) acts predominantly through the Ang II Type 1 receptor (AT1R), leading to vasoconstriction, inflammation, and heightened oxidative stress. These processes can exacerbate brain injuries. Ang II receptor blockers (ARBs) are AT1R antagonists. They have been shown in several preclinical studies to enhance recovery from TBI in rodents through improvements in molecular, cellular and behavioral correlates of injury. ARBs are now under consideration for clinical trials in TBI. Several different RAS peptides that signal through receptors distinct from the AT1R, are also potential therapeutic targets for TBI. The counter regulatory RAS pathway has actions that oppose those stimulated by AT1R signaling. This alternative pathway has many beneficial effects on cells in the central nervous system, bringing about vasodilation, and having anti-inflammatory and anti-oxidative stress actions. Stimulation of this pathway also has potential therapeutic value for the treatment of TBI. This comprehensive review will provide an overview of the various components of the RAS, with a focus on their direct relevance to TBI pathology. It will explore different therapeutic agents that modulate this system and assess their potential efficacy in treating TBI patients.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Zachary C Janatpour
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kwame O Affram
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
3
|
Safwat A, Helmy A, Gupta A. The Role of Substance P Within Traumatic Brain Injury and Implications for Therapy. J Neurotrauma 2023; 40:1567-1583. [PMID: 37132595 DOI: 10.1089/neu.2022.0510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
This review examines the role of the neuropeptide substance P within the neuroinflammation that follows traumatic brain injury. It examines it in reference to its preferential receptor, the neurokinin-1 receptor, and explores the evidence for antagonism of this receptor in traumatic brain injury with therapeutic intent. Expression of substance P increases following traumatic brain injury. Subsequent binding to the neurokinin-1 receptor results in neurogenic inflammation, a cause of deleterious secondary effects that include an increased intracranial pressure and poor clinical outcome. In several animal models of TBI, neurokinin-1 receptor antagonism has been shown to reduce brain edema and the resultant rise in intracranial pressure. A brief overview of the history of substance P is presented, alongside an exploration into the chemistry of the neuropeptide with a relevance to its functions within the central nervous system. This review summarizes the scientific and clinical rationale for substance P antagonism as a promising therapy for human TBI.
Collapse
Affiliation(s)
- Adam Safwat
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Adel Helmy
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Arun Gupta
- Neurosciences Critical Care Unit, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
4
|
Nemoto W, Yamagata R, Nakagawasai O, Tan-No K. Angiotensin-Related Peptides and Their Role in Pain Regulation. BIOLOGY 2023; 12:biology12050755. [PMID: 37237567 DOI: 10.3390/biology12050755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Angiotensin (Ang)-generating system has been confirmed to play an important role in the regulation of fluid balance and blood pressure and is essential for the maintenance of biological functions. Ang-related peptides and their receptors are found throughout the body and exhibit diverse physiological effects. Accordingly, elucidating novel physiological roles of Ang-generating system has attracted considerable research attention worldwide. Ang-generating system consists of the classical Ang-converting enzyme (ACE)/Ang II/AT1 or AT2 receptor axis and the ACE2/Ang (1-7)/MAS1 receptor axis, which negatively regulates AT1 receptor-mediated responses. These Ang system components are expressed in various tissues and organs, forming a local Ang-generating system. Recent findings indicate that changes in the expression of Ang system components under pathological conditions are involved in the development of neuropathy, inflammation, and their associated pain. Here, we summarized the effects of changes in the Ang system on pain transmission in various organs and tissues involved in pain development process.
Collapse
Affiliation(s)
- Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Ryota Yamagata
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| |
Collapse
|
5
|
Premorbid Use of Beta-Blockers or Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers in Patients with Acute Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7733857. [PMID: 36778208 PMCID: PMC9908343 DOI: 10.1155/2023/7733857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 02/05/2023]
Abstract
This study was designed to investigate the impact of the preexisting use of beta-blockers, angiotensin-converting enzyme inhibitors (ACEIs), or angiotensin receptor blockers (ARBs) on the cellular immune response in peripheral blood and the clinical outcomes of patients with acute ischemic stroke. We retrospectively collected clinical data from a cohort of 69 patients with premorbid beta-blockers and 56 patients with premorbid ACEIs/ARBs. Additionally, we selected a cohort of 107 patients with acute ischemic stroke to be the control of the same age and sex. We analyzed cellular immune parameters in peripheral blood 1 day after the appearance of symptoms, including the frequencies of circulating white blood cell subpopulations, the neutrophil-to-lymphocyte ratio (NLR), and the lymphocyte-to-monocyte ratio (LMR). We found that the count of lymphocytes and the lymphocyte-to-monocyte ratio were significantly higher in the peripheral blood of patients treated with beta-blockers before stroke than in matched controls. However, the premorbid use of ACEIs/ARBs did not considerably impact the circulating immune parameters listed above in patients with acute ischemic stroke. Furthermore, we found that premorbid use of beta-blockers or ACEIs/ARBs did not significantly change functional outcomes in patients 3 months after the onset of stroke. These results suggest that premorbid use of beta-blockers, but not ACEIs/ARBs, reversed lymphopenia associated with acute ischemic stroke. As cellular immune changes in peripheral blood could be an independent predictor of stroke prognosis, more large-scale studies are warranted to further verify the impact of premorbid use of beta-blockers or ACEIs/ARBs on the prognosis of patients with ischemic stroke. Our research is beneficial to understanding the mechanism of the systemic immune response induced by stroke and has the potential for a therapeutic strategy in stroke interventions and treatment.
Collapse
|
6
|
Kocheril PA, Moore SC, Lenz KD, Mukundan H, Lilley LM. Progress Toward a Multiomic Understanding of Traumatic Brain Injury: A Review. Biomark Insights 2022; 17:11772719221105145. [PMID: 35719705 PMCID: PMC9201320 DOI: 10.1177/11772719221105145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is not a single disease state but describes an array
of conditions associated with insult or injury to the brain. While some
individuals with TBI recover within a few days or months, others present with
persistent symptoms that can cause disability, neuropsychological trauma, and
even death. Understanding, diagnosing, and treating TBI is extremely complex for
many reasons, including the variable biomechanics of head impact, differences in
severity and location of injury, and individual patient characteristics. Because
of these confounding factors, the development of reliable diagnostics and
targeted treatments for brain injury remains elusive. We argue that the
development of effective diagnostic and therapeutic strategies for TBI requires
a deep understanding of human neurophysiology at the molecular level and that
the framework of multiomics may provide some effective solutions for the
diagnosis and treatment of this challenging condition. To this end, we present
here a comprehensive review of TBI biomarker candidates from across the
multiomic disciplines and compare them with known signatures associated with
other neuropsychological conditions, including Alzheimer’s disease and
Parkinson’s disease. We believe that this integrated view will facilitate a
deeper understanding of the pathophysiology of TBI and its potential links to
other neurological diseases.
Collapse
Affiliation(s)
- Philip A Kocheril
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shepard C Moore
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kiersten D Lenz
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Laura M Lilley
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
7
|
Correcting a widespread error: Neuroprotectant N-acetyl-L-tryptophan does not bind to the neurokinin-1 receptor. Mol Cell Neurosci 2022; 120:103728. [PMID: 35421568 DOI: 10.1016/j.mcn.2022.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
|
8
|
Baron DH, Skrobot OA, Palmer JC, Sharma K, Kehoe P. The Renin Angiotensin System as a potential treatment target for Traumatic Brain Injury. J Neurotrauma 2022; 39:473-486. [PMID: 35029131 DOI: 10.1089/neu.2021.0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health concern and leading cause of death and disability in young adults in the UK and worldwide, however, there is a paucity of disease modifying therapies for the treatment of TBI. This review investigates the potential of the renin-angiotensin system (RAS) as a treatment pathway for traumatic brain injury (TBI) in adults. Relevant electronic databases were searched on 18 December 2019, updated 16 May 2021. All English language articles with adult human or animal populations investigating RAS drugs as an intervention for TBI or reporting genetic evidence relevant to the RAS and TBI were screened. Eighteen preclinical RCTs (n=2269) and 2 clinical cohort studies (n=771) were included. Meta-analyses of 6 preclinical randomised-controlled trials (n=99) indicated candesartan improved neurological function short-term (<7 days: standardised mean difference (SMD) 0.61, 95% confidence interval (CI) 0.19 - 1.03, I2=0%) and long-term (≥7 days: SMD 1.06, 95% CI 0.38; 1.73, I2=0%) post-TBI. Findings were similar for most secondary outcomes. There was a suggestion of benefit from other RAS-targeting drugs, although evidence was limited due to few small studies. There was insufficient evidence to enable strong assessment of these drugs on mortality post-TBI. We conclude that angiotensin-receptor blockers, especially candesartan, show positive outcomes post-TBI in preclinical studies with moderate quality of evidence (GRADE). More research into the effect of regulatory-RAS targeting drugs is needed. Clinical trials of candesartan following TBI are recommended, due to strong and consistent evidence of neuroprotection shown by these preclinical studies.
Collapse
Affiliation(s)
- Daniel Hendrik Baron
- University of Bristol, 1980, Dementia Research Group, Clinical Neurosciences, School of Clinical Sciences, Bristol, United Kingdom of Great Britain and Northern Ireland;
| | - Olivia A Skrobot
- University of Bristol, 1980, Translational Health Sciences, Dementia Research Group, Clinical Neurosciences, School of Clinical Sciences, Bristol, Bristol, United Kingdom of Great Britain and Northern Ireland;
| | - Jennifer C Palmer
- University of Bristol, 1980, Population Health Sciences, Bristol Medical School, Bristol, Bristol, United Kingdom of Great Britain and Northern Ireland.,University of Bristol, 1980, MRC Integrative Epidemiology Unit, Bristol, Bristol, United Kingdom of Great Britain and Northern Ireland;
| | - Kanchan Sharma
- University of Bristol, 1980, Translational Health Sciences, Bristol, Bristol, United Kingdom of Great Britain and Northern Ireland.,North Bristol NHS Trust, 1982, Neurology, Westbury on Trym, Bristol, United Kingdom of Great Britain and Northern Ireland;
| | - Patrick Kehoe
- University of Bristol, 1980, Translational Health Sciences, Dementia Research Group,, Clinical Neurosciences, School of Clinical Sciences, Bristol, - None -, United Kingdom of Great Britain and Northern Ireland, BS10 5NB.,University of Bristol;
| |
Collapse
|
9
|
Inhibition of angiotensin converting enzyme induces mechanical allodynia through increasing substance P expression in mice. Neurochem Int 2021; 146:105020. [PMID: 33744374 DOI: 10.1016/j.neuint.2021.105020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 11/20/2022]
Abstract
Although emerging evidence shows that angiotensin converting enzyme (ACE) is associated with pain, it is not clear whether inhibition of ACE could affect to nociceptive transmission and which mediators are involved in this process. Here we investigated whether administration of the ACE inhibitors, captopril and enalapril increases the expression of substance P (SP) and whether this increase contributes to the induction of mechanical allodynia in mice. ACE was expressed in the lumbar dorsal root ganglion (DRG) and the superficial dorsal horn (SDH) region of the spinal cord in mice. Either intraperitoneal or intrathecal administration of the ACE inhibitors, captopril and enalapril for 10 days significantly increased the paw withdrawal frequency to innocuous mechanical stimuli and the levels of SP in both the lumbar DRG and the SDH region of the spinal cord dorsal horn. In addition, intraperitoneal administration of the SP receptor (neurokinin-1 receptor) antagonist, L-733,060 suppressed mechanical allodynia that was induced by pretreatment of captopril and enalapril. Intraplantar administration of SP for 3 days induces mechanical allodynia, and this effect was reduced by exogenous ACE administration. These findings demonstrate that inhibition of ACE increases the levels of SP in both the lumbar DRG and spinal cord dorsal horn, ultimately contributing to the induction of mechanical allodynia in mice.
Collapse
|
10
|
Vadhan JD, Speth RC. The role of the brain renin-angiotensin system (RAS) in mild traumatic brain injury (TBI). Pharmacol Ther 2020; 218:107684. [PMID: 32956721 DOI: 10.1016/j.pharmthera.2020.107684] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
There is considerable interest in traumatic brain injury (TBI) induced by repeated concussions suffered by athletes in sports, military personnel from combat-and non-combat related activities, and civilian populations who suffer head injuries from accidents and domestic violence. Although the renin-angiotensin system (RAS) is primarily a systemic cardiovascular regulatory system that, when dysregulated, causes hypertension and cardiovascular pathology, the brain contains a local RAS that plays a critical role in the pathophysiology of several neurodegenerative diseases. This local RAS includes receptors for angiotensin (Ang) II within the brain parenchyma, as well as on circumventricular organs outside the blood-brain-barrier. The brain RAS acts primarily via the type 1 Ang II receptor (AT1R), exacerbating insults and pathology. With TBI, the brain RAS may contribute to permanent brain damage, especially when a second TBI occurs before the brain recovers from an initial injury. Agents are needed that minimize the extent of injury from an acute TBI, reducing TBI-mediated permanent brain damage. This review discusses how activation of the brain RAS following TBI contributes to this damage, and how drugs that counteract activation of the AT1R including AT1R blockers (ARBs), renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors, and agonists at type 2 Ang II receptors (AT2) and at Ang (1-7) receptors (Mas) can potentially ameliorate TBI-induced brain damage.
Collapse
Affiliation(s)
- Jason D Vadhan
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States of America; School of Medicine, Georgetown University, Washington, DC, United States of America.
| |
Collapse
|
11
|
Catapano JS, Chapman AJ, Dull M, Abbatematteo JM, Horner LP, Godzik J, Brigeman S, Morgan CD, Whiting AC, Lu M, Zabramski JM, Fraser DR. Association of Angiotensin-Converting Enzyme Inhibitors with Increased Mortality Among Patients with Isolated Severe Traumatic Brain Injury. Neurocrit Care 2019; 31:507-513. [PMID: 31187434 DOI: 10.1007/s12028-019-00755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is associated with one-third of all deaths from trauma. Preinjury exposure to cardiovascular drugs may affect TBI outcomes. Angiotensin-converting enzyme inhibitors (ACEIs) exacerbate brain cell damage and worsen functional outcomes in the laboratory setting. β-blockers (BBs), however, appear to be associated with reduced mortality among patients with isolated TBI. OBJECTIVE Examine the association between preinjury ACEI and BB use and clinical outcome among patients with isolated TBI. METHODS A retrospective cohort study of patients age ≥ 40 years admitted to an academic level 1 trauma center with isolated TBI between January 2010 and December 2014 was performed. Isolated TBI was defined as a head Abbreviated Injury Scale (AIS) score ≥ 3, with chest, abdomen, and extremity AIS scores ≤ 2. Preinjury medication use was determined through chart review. All patients with concurrent BB use were initially excluded. In-hospital mortality was the primary measured outcome. RESULTS Over the 5-year study period, 600 patients were identified with isolated TBI who were naive to BB use. There was significantly higher mortality (P = .04) among patients who received ACEI before injury (10 of 96; 10%) than among those who did not (25 of 504; 5%). A multivariate stepwise logistic regression analysis revealed a threefold increased risk of mortality in the ACEI cohort (P < .001), which was even greater than the twofold increased risk of mortality associated with an Injury Severity Score ≥ 16. A second analysis that included patients who received preinjury BBs (n = 98) demonstrated slightly reduced mortality in the ACEI cohort with only a twofold increased risk in multivariate analysis (P = .05). CONCLUSIONS Preinjury exposure to ACEIs is associated with an increase in mortality among patients with isolated TBI. This effect is ameliorated in patients who receive BBs, which provides evidence that this class of medications may provide a protective benefit.
Collapse
Affiliation(s)
- Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
| | - Alistair J Chapman
- Spectrum Health Hospital, Acute Care Surgery, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Matthew Dull
- Spectrum Health Hospital, Acute Care Surgery, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Joseph M Abbatematteo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
| | - Lance P Horner
- Department of Surgery, University of Nevada Las Vegas School of Medicine, Las Vegas, NV, USA
| | - Jakub Godzik
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
| | - Scott Brigeman
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
| | - Clinton D Morgan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
| | - Alexander C Whiting
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
| | - Minggen Lu
- Department of Community Health Sciences, University of Nevada, Reno, Reno, NV, USA
| | - Joseph M Zabramski
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA.
| | - Douglas R Fraser
- Department of Surgery, University of Nevada Las Vegas School of Medicine, Las Vegas, NV, USA
| |
Collapse
|
12
|
Vink R, Gabrielian L, Thornton E. The Role of Substance P in Secondary Pathophysiology after Traumatic Brain Injury. Front Neurol 2017; 8:304. [PMID: 28701994 PMCID: PMC5487380 DOI: 10.3389/fneur.2017.00304] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022] Open
Abstract
It has recently been shown that substance P (SP) plays a major role in the secondary injury process following traumatic brain injury (TBI), particularly with respect to neuroinflammation, increased blood–brain barrier (BBB) permeability, and edema formation. Edema formation is associated with the development of increased intracranial pressure (ICP) that has been widely associated with increased mortality and morbidity after neurotrauma. However, a pharmacological intervention to specifically reduce ICP is yet to be developed, with current interventions limited to osmotic therapy rather than addressing the cause of increased ICP. Given that previous publications have shown that SP, NK1 receptor antagonists reduce edema after TBI, more recent studies have examined whether these compounds might also reduce ICP and improve brain oxygenation after TBI. We discuss the results of these studies, which demonstrate that NK1 antagonists reduce posttraumatic ICP to near normal levels within 4 h of drug administration, as well as restoring brain oxygenation to near normal levels in the same time frame. The improvements in these parameters occurred in association with an improvement in BBB integrity to serum proteins, suggesting that SP-mediated increases in vascular permeability significantly contribute to the development of increased ICP after acute brain injury. NK1 antagonists may therefore provide a novel, mechanistically targeted approach to the management of increased ICP.
Collapse
Affiliation(s)
- Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Levon Gabrielian
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Emma Thornton
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
13
|
López-García I, Gerő D, Szczesny B, Szoleczky P, Olah G, Módis K, Zhang K, Gao J, Wu P, Sowers LC, DeWitt D, Prough DS, Szabo C. Development of a stretch-induced neurotrauma model for medium-throughput screening in vitro: identification of rifampicin as a neuroprotectant. Br J Pharmacol 2016; 175:284-300. [PMID: 27723079 DOI: 10.1111/bph.13642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/19/2016] [Accepted: 09/26/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE We hypothesized that an in vitro, stretch-based model of neural injury may be useful to identify compounds that decrease the cellular damage in neurotrauma. EXPERIMENTAL APPROACH We screened three neural cell lines (B35, RN33B and SH-SY5Y) subjected to two differentiation methods and selected all-trans-retinoic acid-differentiated B35 rat neuroblastoma cells subjected to rapid stretch injury, coupled with a subthreshold concentration of H2 O2 , for the screen. The model induced marked alterations in gene expression and proteomic signature of the cells and culminated in delayed cell death (LDH release) and mitochondrial dysfunction [reduced 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) conversion]. Follow-up studies utilized human stem cell-derived neurons subjected to rapid stretch injury. KEY RESULTS From screening of a composite library of 3500 drugs, five drugs (when applied in a post-treatment regimen relative to stretch injury) improved both LDH and MTT responses. The effects of rifampicin were investigated in further detail. Rifampicin reduced cell necrosis and apoptosis and improved cellular bioenergetics. In a second model (stretch injury in human stem cell-derived neurons), rifampicin pretreatment attenuated LDH release, protected against the loss of neurite length and maintained neuron-specific class III β-tubulin immunoreactivity. CONCLUSIONS AND IMPLICATIONS We conclude that the current model is suitable for medium-throughput screening to identify compounds with neuroprotective potential. Rifampicin, when applied either in pre- or post-treatment, improves the viability of neurons subjected to stretch injury and protects against neurite loss. Rifampicin may be a candidate for repurposing for the therapy of traumatic brain injury. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Isabel López-García
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Domokos Gerő
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Petra Szoleczky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Gabor Olah
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Katalin Módis
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kangling Zhang
- Department of Pharmacology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jungling Gao
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ping Wu
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lawrence C Sowers
- Department of Pharmacology, University of Texas Medical Branch, Galveston, TX, USA
| | - Doug DeWitt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Donald S Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
14
|
Catapano JS, Chapman AJ, Horner LP, Lu M, Fraser DR, Fildes JJ. Pre-injury polypharmacy predicts mortality in isolated severe traumatic brain injury patients. Am J Surg 2016; 213:1104-1108. [PMID: 27596800 DOI: 10.1016/j.amjsurg.2016.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND The use of 5 or more medications is defined as polypharmacy (PPM). The clinical impact of PPM on the isolated severe traumatic brain injury (TBI) patient has not been defined. METHODS A retrospective cohort study was performed at our academic level 1 trauma center examining patients with isolated TBI. Pre-injury medications were reviewed, and inhospital mortality was the primary measured outcome. RESULTS There were 698 patients with an isolated TBI over the 5-year study period; 177 (25.4%) patients reported pre-injury PPM. There were 18 (10.2%) deaths in the PPM cohort and 24 (4.6%) deaths in the non-PPM cohort (P < .0001). Stepwise logistic regression analysis revealed a 2.3 times greater risk of mortality in the PPM patients (P = .019). CONCLUSIONS Pre-injury PPM increases mortality in patients with isolated severe TBI. This knowledge may provide opportunities for intervention in this population.
Collapse
Affiliation(s)
- Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA.
| | - Alistair J Chapman
- Department of Surgery, University of Nevada School of Medicine, Las Vegas, NV, USA
| | - Lance P Horner
- Department of Neurosurgery, University of Nevada School of Medicine, Reno, NV, USA
| | - Minggen Lu
- Department of Community Health Sciences, University of Nevada, Reno, NV, USA
| | - Douglas R Fraser
- Department of Surgery, University of Nevada School of Medicine, Las Vegas, NV, USA
| | - John J Fildes
- Department of Surgery, University of Nevada School of Medicine, Las Vegas, NV, USA
| |
Collapse
|
15
|
Busingye DS, Turner RJ, Vink R. Combined Magnesium/Polyethylene Glycol Facilitates the Neuroprotective Effects of Magnesium in Traumatic Brain Injury at a Reduced Magnesium Dose. CNS Neurosci Ther 2016; 22:854-9. [PMID: 27421816 DOI: 10.1111/cns.12591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/07/2016] [Accepted: 06/19/2016] [Indexed: 11/28/2022] Open
Abstract
AIMS While a number of studies have shown that free magnesium (Mg) decline is a feature of traumatic brain injury (TBI), poor central penetration of Mg has potentially limited clinical translation. This study examines whether polyethylene glycol (PEG) facilitates central penetration of Mg after TBI, increasing neuroprotection while simultaneously reducing the dose requirements for Mg. METHODS Rats were exposed to diffuse TBI and administered intravenous MgCl2 either alone (254 μmol/kg or 25.4 μmol/kg) or in combination with PEG (1 g/kg PEG) at 30-min postinjury. Vehicle-treated (saline or PEG) and sham animals served as controls. All animals were subsequently assessed for blood-brain barrier permeability and edema at 5 h, and functional outcome for 1 week postinjury. RESULTS Optimal dose (254 μmol/kg) MgCl2 or Mg PEG significantly improved all outcome parameters compared to vehicle or PEG controls. Intravenous administration of 10% MgCl2 alone (25.4 μmol/kg) had no beneficial effect on any of the outcome parameters, whereas 10% Mg in PEG had the same beneficial effects as optimal dose Mg administration. CONCLUSION Polyethylene glycol facilitates central penetration of Mg following TBI, reducing the concentration of Mg required to confer neuroprotection while simultaneously reducing the risks associated with high peripheral Mg concentration.
Collapse
Affiliation(s)
- Diana S Busingye
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Renée J Turner
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia.
| |
Collapse
|
16
|
Effect of angiotensin-converting enzyme tag single nucleotide polymorphisms on the outcome of patients with traumatic brain injury. Pharmacogenet Genomics 2016; 25:485-90. [PMID: 26181640 DOI: 10.1097/fpc.0000000000000161] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Genetic variants appear to influence, at least to some degree, the extent of brain injury and the clinical outcome of patients who have sustained a traumatic brain injury (TBI). Angiotensin-converting enzyme (ACE) is a zinc metallopeptidase that is implicated in the regulation of blood pressure and cerebral circulation. ACE gene polymorphisms were found to regulate serum ACE enzyme activity. OBJECTIVE The present study aimed to investigate possible influence of ACE gene region variants on patients' outcome after TBI. PATIENTS AND METHODS In total, 363 TBI patients prospectively enrolled in the study were genotyped for five tag single nucleotide polymorphisms (SNPs) across the ACE gene. Using logistic regression analyses, tag SNPs and their constructed haplotypes were tested for associations with 6-month Glasgow Outcome Scale scores, after adjustment for age, sex, Glasgow Coma Scale scores at admission, and the presence of a hemorrhagic event in the initial computed tomography scan. RESULTS Significant effects on TBI outcome were found for three neighboring tag SNPs in the codominant (genotypic) model of inheritance [rs4461142: odds ratio (OR) 0.26, 95% confidence interval (CI) 0.12-0.57, P = 0.0001; rs7221780: OR 2.67, 95% CI 1.25-5.72, P = 0.0003; and rs8066276: OR 3.82, 95% CI 1.80-8.13, P = 0.0002; for the heterozygous variants compared with the common alleles]. None of the constructed common tag SNPs haplotypes was associated with TBI outcome. CONCLUSION The present study provides evidence of the possible influence of genetic variations in a specific region of the ACE gene on the outcome of TBI patients. This association may have pharmacogenetic implications in identifying those TBI patients who may benefit from ACE inhibition.
Collapse
|
17
|
Renin-angiotensin system as a potential therapeutic target in stroke and retinopathy: experimental and clinical evidence. Clin Sci (Lond) 2016; 130:221-38. [PMID: 26769658 DOI: 10.1042/cs20150350] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As our knowledge expands, it is now clear that the renin-angiotensin (Ang) system (RAS) mediates functions other than regulating blood pressure (BP). The RAS plays a central role in the pathophysiology of different neurovascular unit disorders including stroke and retinopathy. Moreover, the beneficial actions of RAS modulation in brain and retina have been documented in experimental research, but not yet exploited clinically. The RAS is a complex system with distinct yet interconnected components. Understanding the different RAS components and their functions under brain and retinal pathological conditions is crucial to reap their benefits. The aim of the present review is to provide an experimental and clinical update on the role of RAS in the pathophysiology and treatment of stroke and retinopathy. Combining the evidence from both these disorders allows a unique opportunity to move both fields forward.
Collapse
|
18
|
Zhang Y, Zhang ZG, Chopp M, Meng Y, Zhang L, Mahmood A, Xiong Y. Treatment of traumatic brain injury in rats with N-acetyl-seryl-aspartyl-lysyl-proline. J Neurosurg 2016; 126:782-795. [PMID: 28245754 DOI: 10.3171/2016.3.jns152699] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The authors' previous studies have suggested that thymosin beta 4 (Tβ4), a major actin-sequestering protein, improves functional recovery after neural injury. N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an active peptide fragment of Tβ4. Its effect as a treatment of traumatic brain injury (TBI) has not been investigated. Thus, this study was designed to determine whether AcSDKP treatment improves functional recovery in rats after TBI. METHODS Young adult male Wistar rats were randomly divided into the following groups: 1) sham group (no injury); 2) TBI + vehicle group (0.01 N acetic acid); and 3) TBI + AcSDKP (0.8 mg/kg/day). TBI was induced by controlled cortical impact over the left parietal cortex. AcSDKP or vehicle was administered subcutaneously starting 1 hour postinjury and continuously for 3 days using an osmotic minipump. Sensorimotor function and spatial learning were assessed using a modified Neurological Severity Score and Morris water maze tests, respectively. Some of the animals were euthanized 1 day after injury, and their brains were processed for measurement of fibrin accumulation and neuroinflammation signaling pathways. The remaining animals were euthanized 35 days after injury, and brain sections were processed for measurement of lesion volume, hippocampal cell loss, angiogenesis, neurogenesis, and dendritic spine remodeling. RESULTS Compared with vehicle treatment, AcSDKP treatment initiated 1 hour postinjury significantly improved sensorimotor functional recovery (Days 7-35, p < 0.05) and spatial learning (Days 33-35, p < 0.05), reduced cortical lesion volume, and hippocampal neuronal cell loss, reduced fibrin accumulation and activation of microglia/macrophages, enhanced angiogenesis and neurogenesis, and increased the number of dendritic spines in the injured brain (p < 0.05). AcSDKP treatment also significantly inhibited the transforming growth factor-β1/nuclear factor-κB signaling pathway. CONCLUSIONS AcSDKP treatment initiated 1 hour postinjury provides neuroprotection and neurorestoration after TBI, indicating that this small tetrapeptide has promising therapeutic potential for treatment of TBI. Further investigation of the optimal dose and therapeutic window of AcSDKP treatment for TBI and the associated underlying mechanisms is therefore warranted.
Collapse
Affiliation(s)
| | | | - Michael Chopp
- Neurology, Henry Ford Hospital, Detroit; and.,Department of Physics, Oakland University, Rochester, Michigan
| | | | - Li Zhang
- Neurology, Henry Ford Hospital, Detroit; and
| | | | - Ye Xiong
- Departments of 1 Neurosurgery and
| |
Collapse
|
19
|
Corrigan F, Vink R, Turner RJ. Inflammation in acute CNS injury: a focus on the role of substance P. Br J Pharmacol 2015; 173:703-15. [PMID: 25827155 DOI: 10.1111/bph.13155] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/02/2015] [Accepted: 03/24/2015] [Indexed: 12/13/2022] Open
Abstract
Recently, a number of reports have shown that neurogenic inflammation may play a role in the secondary injury response following acute injury to the CNS, including traumatic brain injury (TBI) and stroke. In particular substance P (SP) release appears to be critically involved. Specifically, the expression of the neuropeptide SP is increased in acute CNS injury, with the magnitude of SP release being related to both the frequency and magnitude of the insult. SP release is associated with an increase in blood-brain barrier permeability and the development of vasogenic oedema as well as neuronal injury and worse functional outcome. Moreover, inhibiting the actions of SP through use of a NK1 receptor antagonist is highly beneficial in both focal and diffuse models of TBI, as well as in ischaemic stroke, with a therapeutic window of up to 12 h. We propose that NK1 receptor antagonists represent a novel therapeutic option for treatment of neurogenic inflammation following acute CNS injury.
Collapse
Affiliation(s)
- F Corrigan
- Adelaide Centre for Neuroscience Research, The University of Adelaide, Adelaide, SA, Australia
| | - R Vink
- Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - R J Turner
- Adelaide Centre for Neuroscience Research, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
20
|
Angiotensin Inhibition Is Associated with Preservation of T-Cell and Monocyte Function and Decreases Multiple Organ Failure in Obese Trauma Patients. J Am Coll Surg 2015; 221:486-94.e4. [PMID: 26141470 DOI: 10.1016/j.jamcollsurg.2015.03.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Obese patients are more prone to post-injury multiple organ failure (MOF). Obesity pathophysiology includes an adipose-tissue-derived, renin-angiotensin-aldosterone system affecting inflammatory responses via leukocyte angiotensin receptors. We hypothesized that obese patients receiving pre-injury angiotensin-converting enzyme inhibitor (ACE) or angiotensin receptor blocker (ARB) therapy would have decreased MOF and differences in immune cell frequencies. STUDY DESIGN We analyzed the Inflammation and the Host Response to Injury trauma-related database. Patients receiving pre-injury ACE or ARB were stratified as obese (BMI >30 kg/m(2)) or nonobese (BMI <30 kg/m(2)). Groups were age, sex, and Injury Severity Score matched against patients not receiving this therapy. Primary end points were Marshall Multiple Organ Dysfunction Score, Denver-2 Postinjury MOF Score, leukocyte markers on T cells, and monocytes measured by flow cytometry. RESULTS We evaluated 1,932 patients. One hundred and ten were receiving pre-injury ACE/ARB; 94 patients had data available to calculate BMI. Obese patients receiving ACE/ARB showed maximum Marshall (5.83 ± 2.87) and Denver-2 (2.45 ± 2.32) scores similar to nonobese patients receiving or not receiving ACE/ARB, and obese patients not receiving ACE/ARB had significantly higher Marshall (6.49 ± 2.57; p = 0.009) and Denver-2 (3.33 ± 2.21; p = 0.006) scores. Leukocyte analysis suggested improved T-cell function and monocyte maturation in obese patients on ACE/ARB. CONCLUSIONS Obese patients receiving preinjury ACE/ARB therapy demonstrate post-injury MOF scores similar to nonobese patients; obese patients not receiving these medications have greater post-injury MOF. Leukocyte analysis demonstrates improved immune regulation. Modulation of the renin-angiotensin-aldosterone system pathway might represent a novel therapeutic target in severely injured obese patients.
Collapse
|
21
|
Albert-Weissenberger C, Mencl S, Hopp S, Kleinschnitz C, Sirén AL. Role of the kallikrein-kinin system in traumatic brain injury. Front Cell Neurosci 2014; 8:345. [PMID: 25404891 PMCID: PMC4217500 DOI: 10.3389/fncel.2014.00345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/06/2014] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Despite improvements in acute intensive care, there are currently no specific therapies to ameliorate the effects of TBI. Successful therapeutic strategies for TBI should target multiple pathophysiologic mechanisms that occur at different stages of brain injury. The kallikrein-kinin system is a promising therapeutic target for TBI as it mediates key pathologic events of traumatic brain damage, such as edema formation, inflammation, and thrombosis. Selective and specific kinin receptor antagonists and inhibitors of plasma kallikrein and coagulation factor XII have been developed, and have already shown therapeutic efficacy in animal models of stroke and TBI. However, conflicting preclinical evaluation, as well as limited and inconclusive data from clinical trials in TBI, suggests that caution should be taken before transferring observations made in animals to humans. This review summarizes current evidence on the pathologic significance of the kallikrein-kinin system during TBI in animal models and, where available, the experimental findings are compared with human data.
Collapse
Affiliation(s)
| | - Stine Mencl
- Department of Neurology, University Hospital of Würzburg Würzburg, Germany
| | - Sarah Hopp
- Department of Neurology, University Hospital of Würzburg Würzburg, Germany
| | | | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital of Würzburg Würzburg, Germany
| |
Collapse
|
22
|
Leonard AV, Thornton E, Vink R. NK1 receptor blockade is ineffective in improving outcome following a balloon compression model of spinal cord injury. PLoS One 2014; 9:e98364. [PMID: 24859234 PMCID: PMC4032275 DOI: 10.1371/journal.pone.0098364] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/01/2014] [Indexed: 11/21/2022] Open
Abstract
The neuropeptide substance P (SP) is a well-known mediator of neurogenic inflammation following a variety of CNS disorders. Indeed, inhibition of SP through antagonism of its receptor, the tachykinin NK1 receptor, has been shown to be beneficial following both traumatic brain injury and stroke. Such studies demonstrated that administration of an NK1 receptor antagonist reduced blood-brain-barrier permeability, edema development and improved functional outcome. Furthermore, our recent studies have demonstrated a potential role for SP in mediating neurogenic inflammation following traumatic spinal cord injury (SCI). Accordingly, the present study investigates whether inhibition of SP may similarly play a neuroprotective role following traumatic SCI. A closed balloon compression injury was induced at T10 in New Zealand White rabbits. At 30 minutes post-injury an NK1 receptor antagonist was administered intravenously. Animals were thereafter assessed for blood spinal cord barrier (BSCB) permeability, spinal water content (edema), intrathecal pressure (ITP), and histological and functional outcome from 5 hours to 2 weeks post-SCI. Administration of an NK1 receptor antagonist was not effective in reducing BSCB permeability, edema, ITP, or functional deficits following SCI. We conclude that SP mediated neurogenic inflammation does not seem to play a major role in BSCB disruption, edema development and consequential tissue damage seen in acute traumatic SCI. Rather it is likely that the severe primary insult and subsequent hemorrhage may be the key contributing factors to ongoing SCI injury.
Collapse
Affiliation(s)
- Anna Victoria Leonard
- School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| | - Emma Thornton
- School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert Vink
- Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
23
|
Harford-Wright E, Lewis KM, Ghabriel MN, Vink R. Treatment with the NK1 antagonist emend reduces blood brain barrier dysfunction and edema formation in an experimental model of brain tumors. PLoS One 2014; 9:e97002. [PMID: 24818961 PMCID: PMC4018359 DOI: 10.1371/journal.pone.0097002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/15/2014] [Indexed: 11/30/2022] Open
Abstract
The neuropeptide substance P (SP) has been implicated in the disruption of the blood-brain barrier (BBB) and development of cerebral edema in acute brain injury. Cerebral edema accumulates rapidly around brain tumors and has been linked to several tumor-associated deficits. Currently, the standard treatment for peritumoral edema is the corticosteroid dexamethasone, prolonged use of which is associated with a number of deleterious side effects. As SP is reported to increase in many cancer types, this study examined whether SP plays a role in the genesis of brain peritumoral edema. A-375 human melanoma cells were injected into the right striatum of male Balb/c nude mice to induce brain tumor growth, with culture medium injected in animals serving as controls. At 2, 3 or 4 weeks following tumor cell inoculation, non-treated animals were perfusion fixed for immunohistochemical detection of Albumin, SP and NK1 receptor. A further subgroup of animals was treated with a daily injection of the NK1 antagonist Emend (3 mg/kg), dexamethasone (8 mg/kg) or saline vehicle at 3 weeks post-inoculation. Animals were sacrificed a week later to determine BBB permeability using Evan's Blue and brain water content. Non-treated animals demonstrated a significant increase in albumin, SP and NK1 receptor immunoreactivity in the peritumoral area as well as increased perivascular staining in the surrounding brain tissue. Brain water content and BBB permeability was significantly increased in tumor-inoculated animals when compared to controls (p<0.05). Treatment with Emend and dexamethasone reduced BBB permeability and brain water content when compared to vehicle-treated tumor-inoculated mice. The increase in peritumoral staining for both SP and the NK1 receptor, coupled with the reduction in brain water content and BBB permeability seen following treatment with the NK1 antagonist Emend, suggests that SP plays a role in the genesis of peritumoral edema, and thus warrants further investigation as a potential anti-edematous treatment.
Collapse
Affiliation(s)
- Elizabeth Harford-Wright
- Adelaide Centre for Neuroscience Research, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| | - Kate M. Lewis
- Adelaide Centre for Neuroscience Research, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Mounir N. Ghabriel
- Adelaide Centre for Neuroscience Research, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert Vink
- Adelaide Centre for Neuroscience Research, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
24
|
Leonard AV, Thornton E, Vink R. Substance P as a mediator of neurogenic inflammation after balloon compression induced spinal cord injury. J Neurotrauma 2013; 30:1812-23. [PMID: 23924052 DOI: 10.1089/neu.2013.2993] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although clinical spinal cord injury (SCI) occurs within a closed environment, most experimental models of SCI create an open injury. Such an open environment precludes the measurement of intrathecal pressure (ITP), whose increase after SCI has been linked to the development of greater tissue damage and functional deficits. Raised ITP may be potentiated by edema, which we have recently shown to be associated with substance P (SP) induced neurogenic inflammation in both traumatic brain injury and stroke. The present study investigates whether SP plays a similar role as a mediator of neurogenic inflammation after SCI. A closed balloon compression injury was induced at T10 in New Zealand white rabbits. Animals were thereafter assessed for blood spinal cord barrier (BSCB) permeability, edema, ITP, histological outcome, and functional outcome from 5 h to 2 weeks post-SCI. The balloon compression model produced significant increases in BSCB permeability, edema, and ITP along with significant functional deficits that persisted for 2 weeks. Histological assessment demonstrated decreased SP immunoreactivity in the injured spinal cord while NK1 receptor immunoreactivity initially increased before returning to sham levels. In addition, aquaporin 4 immunoreactivity increased early post-SCI, implicating this water channel in the development of edema after SCI. The changes described in the present study support a role for SP as a mediator of neurogenic inflammation after SCI.
Collapse
Affiliation(s)
- Anna V Leonard
- The School of Medical Sciences, Level 4, Medical School South, The University of Adelaide , Adelaide, South Australia, Australia
| | | | | |
Collapse
|
25
|
Lewis KM, Harford-Wright E, Vink R, Ghabriel MN. NK1 receptor antagonists and dexamethasone as anticancer agents in vitro and in a model of brain tumours secondary to breast cancer. Anticancer Drugs 2013; 24:344-54. [PMID: 23407059 DOI: 10.1097/cad.0b013e32835ef440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Emend, an NK1 antagonist, and dexamethasone are used to treat complications associated with metastatic brain tumours and their treatment. It has been suggested that these agents exert anticancer effects apart from their current use. The effects of the NK1 antagonists, Emend and N-acetyl-L-tryptophan, and dexamethasone on tumour growth were investigated in vitro and in vivo at clinically relevant doses. For animal experiments, a stereotaxic injection model of Walker 256 rat breast carcinoma cells into the striatum of Wistar rats was used. Emend treatment led to a decrease in tumour cell viability in vitro, although this effect was not replicated by N-acetyl-L-tryptophan. Dexamethasone did not decrease tumour cell viability in vitro but decreased tumour volume in vivo, likely to be through a reduction in tumour oedema, as indicated by the increase in tumour cell density. None of the agents investigated altered tumour cell replication or apoptosis in vivo. Inoculated animals showed increased glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1 immunoreactivity indicative of astrocytes and microglia in the peritumoral area, whereas treatment with Emend and dexamethasone reduced the labelling for both glial cells. These results do not support the hypothesis that NK1 antagonists or dexamethasone exert a cytotoxic action on tumour cells, although these conclusions may be specific to this model and cell line.
Collapse
Affiliation(s)
- Kate M Lewis
- Adelaide Centre for Neuroscience Research, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
26
|
Blocking neurogenic inflammation for the treatment of acute disorders of the central nervous system. Int J Inflam 2013; 2013:578480. [PMID: 23819099 PMCID: PMC3681302 DOI: 10.1155/2013/578480] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/08/2013] [Indexed: 01/11/2023] Open
Abstract
Classical inflammation is a well-characterized secondary response to many acute disorders of the central nervous system. However, in recent years, the role of neurogenic inflammation in the pathogenesis of neurological diseases has gained increasing attention, with a particular focus on its effects on modulation of the blood-brain barrier BBB. The neuropeptide substance P has been shown to increase blood-brain barrier permeability following acute injury to the brain and is associated with marked cerebral edema. Its release has also been shown to modulate classical inflammation. Accordingly, blocking substance P NK1 receptors may provide a novel alternative treatment to ameliorate the deleterious effects of neurogenic inflammation in the central nervous system. The purpose of this paper is to provide an overview of the role of substance P and neurogenic inflammation in acute injury to the central nervous system following traumatic brain injury, spinal cord injury, stroke, and meningitis.
Collapse
|
27
|
Lewis KM, Harford-Wright E, Vink R, Ghabriel MN. Characterisation of Walker 256 breast carcinoma cells from two tumour cell banks as assessed using two models of secondary brain tumours. Cancer Cell Int 2013; 13:5. [PMID: 23374226 PMCID: PMC3576291 DOI: 10.1186/1475-2867-13-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 01/29/2013] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Metastatic brain tumours are a common end stage of breast cancer progression, with significant associated morbidity and high mortality. Walker 256 is a rat breast carcinoma cell line syngeneic to Wistar rats and commonly used to induce secondary brain tumours. Previously there has been the assumption that the same cancer cell line from different cell banks behave in a similar manner, although recent studies have suggested that cell lines may change their characteristics over time in vitro. METHODS In this study internal carotid artery injection and direct cerebral inoculation models of secondary brain tumours were used to determine the tumorigenicity of Walker 256 cells obtained from two cell banks, the American Type Culture Collection (ATCC), and the Cell Resource Centre for Medical Research at Tohoku University (CRCTU). RESULTS Tumour incidence and volume, plus immunoreactivity to albumin, IBA1 and GFAP, were used as indicators of tumorigenicity and tumour interaction with the host brain microenvironment. CRCTU Walker 256 cells showed greater incidence, larger tumour volume, pronounced blood-brain barrier disruption and prominent glial response when compared to ATCC cell line. CONCLUSIONS These findings indicate that immortalised cancer cell lines obtained from different cell banks may have diverse characteristics and behaviour in vivo.
Collapse
Affiliation(s)
- Kate M Lewis
- Adelaide Centre for Neuroscience Research, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
28
|
The role of substance p in ischaemic brain injury. Brain Sci 2013; 3:123-42. [PMID: 24961310 PMCID: PMC4061838 DOI: 10.3390/brainsci3010123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 12/27/2022] Open
Abstract
Stroke is a leading cause of death, disability and dementia worldwide. Despite extensive pre-clinical investigation, few therapeutic treatment options are available to patients, meaning that death, severe disability and the requirement for long-term rehabilitation are common outcomes. Cell loss and tissue injury following stroke occurs through a number of diverse secondary injury pathways, whose delayed nature provides an opportunity for pharmacological intervention. Amongst these secondary injury factors, increased blood-brain barrier permeability and cerebral oedema are well-documented complications of cerebral ischaemia, whose severity has been shown to be associated with final outcome. Whilst the mechanisms of increased blood-brain barrier permeability and cerebral oedema are largely unknown, recent evidence suggests that the neuropeptide substance P (SP) plays a central role. The aim of this review is to examine the role of SP in ischaemic stroke and report on the potential utility of NK1 tachykinin receptor antagonists as therapeutic agents.
Collapse
|
29
|
Gabrielian L, Helps SC, Thornton E, Turner RJ, Leonard AV, Vink R. Substance P antagonists as a novel intervention for brain edema and raised intracranial pressure. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 118:201-4. [PMID: 23564132 DOI: 10.1007/978-3-7091-1434-6_37] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increased intracranial pressure (ICP) following acute brain injury requires the accumulation of additional water in the intracranial vault. One source of such water is the vasculature, although the mechanisms associated with control of blood-brain barrier permeability are unclear. We have recently shown that acute brain injury, such as neurotrauma and stroke, results in perivascular accumulation of the neuropeptide, substance P. This accumulation is associated with increased blood-brain barrier permeability and formation of vasogenic edema. Administration of a substance P antagonist targeting the tachykinin NK1 receptor profoundly reduced the increased blood-brain barrier permeability and edema formation, and in small animal models of acute brain injury, improved functional outcome. In a large, ovine model of experimental traumatic brain injury, trauma resulted in a significant increase in ICP. Administration of an NK1 antagonist caused a profound reduction in post--traumatic ICP, with levels returning to normal within 4 h of drug administration. Substance P NK1 antagonists offer a novel therapeutic approach to the treatment of acute brain injury.
Collapse
Affiliation(s)
- Levon Gabrielian
- School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Corrigan F, Leonard A, Ghabriel M, Van Den Heuvel C, Vink R. A substance P antagonist improves outcome in female Sprague Dawley rats following diffuse traumatic brain injury. CNS Neurosci Ther 2012; 18:513-5. [PMID: 22672307 DOI: 10.1111/j.1755-5949.2012.00332.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
31
|
Lewis KM, Harford-Wright E, Vink R, Ghabriel MN. Targeting classical but not neurogenic inflammation reduces peritumoral oedema in secondary brain tumours. J Neuroimmunol 2012; 250:59-65. [PMID: 22722013 DOI: 10.1016/j.jneuroim.2012.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/03/2012] [Accepted: 06/04/2012] [Indexed: 01/26/2023]
Abstract
Dexamethasone, the standard treatment for peritumoral brain oedema, inhibits classical inflammation. Neurogenic inflammation, which acts via substance P (SP), has been implicated in vasogenic oedema in animal models of CNS injury. SP is elevated within and outside CNS tumours. This study investigated the efficacy of NK1 receptor antagonists, which block SP, compared with dexamethasone treatment, in a rat model of tumorigenesis. Dexamethasone reverted normal brain water content and reduced Evans blue and albumin extravasation, while NK1 antagonists did not ameliorate oedema formation. We conclude that classical inflammation rather than neurogenic inflammation drives peritumoral oedema in this brain tumour model.
Collapse
Affiliation(s)
- Kate M Lewis
- Adelaide Centre for Neuroscience Research, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | |
Collapse
|
32
|
Lewis KM, Harford-Wright E, Vink R, Nimmo AJ, Ghabriel MN. Walker 256 tumour cells increase substance P immunoreactivity locally and modify the properties of the blood-brain barrier during extravasation and brain invasion. Clin Exp Metastasis 2012; 30:1-12. [PMID: 22610781 DOI: 10.1007/s10585-012-9487-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 05/08/2012] [Indexed: 01/15/2023]
Abstract
It is not yet known how tumour cells traverse the blood-brain barrier (BBB) to form brain metastases. Substance P (SP) release is a key component of neurogenic inflammation which has been recently shown to increase the permeability of the BBB following CNS insults, making it a possible candidate as a mediator of tumour cell extravasation into the brain. This study investigated the properties of the BBB in the early stages of tumour cell invasion into the brain, and the possible involvement of SP. Male Wistar rats were injected with Walker 256 breast carcinoma cells via the internal carotid artery and euthanised at 1, 3, 6 and 9 days post tumour inoculation. Culture medium-injected animals served as controls at 1 and 9 days. Evidence of tumour cell extravasation across the BBB was first observed at 3 days post-inoculation, which corresponded with significantly increased albumin (p < 0.05) and SP immunoreactivity (p < 0.01) and significantly reduced endothelial barrier antigen labelling of microvessels when compared to culture medium control animals (p < 0.001). By day 9 after tumour cell inoculation, 100 % of animals developed large intracranial neoplasms that had significantly increased albumin in the peri-tumoral area (p < 0.001). The increased SP immunoreactivity and altered BBB properties at 3 days post-inoculation that coincided with early tumour invasion may be indicative of a mechanism for tumour cell extravasation into the brain. Thus, extravasation of tumour cells into the brain to form cerebral metastases may be a SP-mediated process.
Collapse
Affiliation(s)
- Kate M Lewis
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | | | | | |
Collapse
|
33
|
Marklund N, Hillered L. Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? Br J Pharmacol 2011; 164:1207-29. [PMID: 21175576 PMCID: PMC3229758 DOI: 10.1111/j.1476-5381.2010.01163.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/02/2010] [Accepted: 12/06/2010] [Indexed: 11/26/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability in young adults. Survivors of TBI frequently suffer from long-term personality changes and deficits in cognitive and motor performance, urgently calling for novel pharmacological treatment options. To date, all clinical trials evaluating neuroprotective compounds have failed in demonstrating clinical efficacy in cohorts of severely injured TBI patients. The purpose of the present review is to describe the utility of animal models of TBI for preclinical evaluation of pharmacological compounds. No single animal model can adequately mimic all aspects of human TBI owing to the heterogeneity of clinical TBI. To successfully develop compounds for clinical TBI, a thorough evaluation in several TBI models and injury severities is crucial. Additionally, brain pharmacokinetics and the time window must be carefully evaluated. Although the search for a single-compound, 'silver bullet' therapy is ongoing, a combination of drugs targeting various aspects of neuroprotection, neuroinflammation and regeneration may be needed. In summary, finding drugs and prove clinical efficacy in TBI is a major challenge ahead for the research community and the drug industry. For a successful translation of basic science knowledge to the clinic to occur we believe that a further refinement of animal models and functional outcome methods is important. In the clinical setting, improved patient classification, more homogenous patient cohorts in clinical trials, standardized treatment strategies, improved central nervous system drug delivery systems and monitoring of target drug levels and drug effects is warranted.
Collapse
Affiliation(s)
- Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala University Hospital, Uppsala, Sweden.
| | | |
Collapse
|
34
|
|
35
|
Kinin receptor antagonists as potential neuroprotective agents in central nervous system injury. Molecules 2010; 15:6598-618. [PMID: 20877247 PMCID: PMC6257767 DOI: 10.3390/molecules15096598] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/10/2010] [Accepted: 09/14/2010] [Indexed: 11/17/2022] Open
Abstract
Injury to the central nervous system initiates complex physiological, cellular and molecular processes that can result in neuronal cell death. Of interest to this review is the activation of the kinin family of neuropeptides, in particular bradykinin and substance P. These neuropeptides are known to have a potent pro-inflammatory role and can initiate neurogenic inflammation resulting in vasodilation, plasma extravasation and the subsequent development of edema. As inflammation and edema play an integral role in the progressive secondary injury that causes neurological deficits, this review critically examines kinin receptor antagonists as a potential neuroprotective intervention for acute brain injury, and more specifically, traumatic brain and spinal cord injury and stroke.
Collapse
|