1
|
Zhang J, Li C, Ren K, Hong M, Cui J, Liu J. Cytotoxicity of alkaline serine protease (ASPNJ) on Jurkat cells and its correlation with changes in the expression of membrane-associated proteins. J Biochem Mol Toxicol 2023; 37:e23456. [PMID: 37439684 DOI: 10.1002/jbt.23456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/15/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
We aim to study the inhibitory effect of alkaline serine protease (ASPNJ) on lymphocytic leukemia Jurkat cells and its related mechanism through examining the expression of membrane proteins or membrane-associated proteins. MTT assay and trypan blue staining were used to detect the inhibitory effect of ASPNJ on the proliferation and growth of Jurkat cells. Wright-Giemsa staining was used to observe the effect of ASPNJ on the morphology of Jurkat cells. The effect of ASPNJ on Jurkat cell apoptosis was detected by flow cytometry. Two-dimensional electrophoresis-mass spectrometry (2-DE-MS) was used to detect and identify the differentially expressed proteins of Jurkat cells treated with ASPNJ (4 μg/mL, 3 h), of which three were selected and verified by Western blot. ASPNJ significantly inhibited the proliferation of leukemia cells (Raji, U937, and Jurkat), caused obvious morphological changes, and induced apoptosis of Jurkat cells. ASPNJ also increased the sensitivity of Jurkat cells to vincristine (VCR). Seven differentially expressed proteins were obtained through 2DE-MS, of which Peroxiredoxin-6 (PRDX6), Calcium-binding protein (CHP1), and 40S ribosomal protein SA (RPSA) were validated. ASPNJ can cause significant toxic effects on Jurkat cells and enhance the effects of VCR. The mechanism of action of ASPNJ on Jurkat cells may be related to differentially expressed proteins such as PRDX6. This study provides a new experimental basis and direction for antileukemia research.
Collapse
Affiliation(s)
- Jianyi Zhang
- Biochemistry Department, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
- Functional Science Experiment Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Chunhua Li
- Biochemistry Department, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Kai Ren
- Blood Transfusion Department, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Min Hong
- Biochemistry Department, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jiayue Cui
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jiankai Liu
- Biochemistry Department, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Liu J, Kan M, Zhang L, Yue Y, Wang S, Hong M, Hong X. Rapid Degradation of SARS-CoV-2 Spike S Protein by A Specific Serine Protease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061882. [PMID: 35335246 PMCID: PMC8954242 DOI: 10.3390/molecules27061882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022]
Abstract
The S protein of SARS-CoV-2 is a crucial structural and functional component for virus entry. Due to the constant mutation of the virus, there are very limited ways to prevent and control COVID-19. This experiment used a macroscopic SDS-PAGE method and proved that the S protein of wild-type SARS-CoV-2 virus, especially the S1 subunit, is very sensitive to alkaline serine protease with acidic pI (ASPNJ), NJ represents Neanthes japonica (Izuka) from which ASP is purified). ASPNJ cleaves proteins when the carbonyl group of the peptide bond is contributed by arginine or lysine. ASPNJ can degrade the S protein very quickly and effectively in vitro with relative selectivity. It can be inferred that the S, S1 and RBD of SARS-CoV-2 variants can also be easily degraded by ASPNJ. This rapid and strong degradation of the S protein by ASPNJ may become a potential new treatment strategy.
Collapse
Affiliation(s)
- Jiankai Liu
- Biochemistry Department, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (M.K.); (L.Z.); (M.H.)
| | - Mujie Kan
- Biochemistry Department, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (M.K.); (L.Z.); (M.H.)
| | - Lianzhi Zhang
- Biochemistry Department, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (M.K.); (L.Z.); (M.H.)
| | - Yuan Yue
- Laboratory of Medical Biology Center, College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Shaohua Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun 130021, China;
| | - Min Hong
- Biochemistry Department, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (M.K.); (L.Z.); (M.H.)
| | - Xinyu Hong
- Neuroscience Research Laboratory, Neurosurgery Department, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
- Correspondence: ; Tel.: +86-135-9640-0500
| |
Collapse
|
3
|
A Single-Center Clinical Study to Evaluate Shenxiong Glucose Injection Combined with Edaravone in the Treatment of Acute Large-Area Cerebral Infarction. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9935752. [PMID: 34307676 PMCID: PMC8263277 DOI: 10.1155/2021/9935752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/27/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022]
Abstract
Objectives To investigate the clinical efficacy and safety of Shenxiong glucose injection combined with edaravone in the treatment of acute large-area cerebral infarction. Methods 156 patients with acute large-area cerebral infarction admitted to our hospital from July 2015 to January 2017 were included in the analysis. The patients were randomly divided into experimental (78 cases) and control (78 cases) groups. Patients in the experimental group were given a 30 mg injection of edaravone in 100 ml of 0.9% sodium chloride solution by intravenous drip, twice a day within 30 minutes and a daily 200 ml injection of Shenxiong glucose by intravenous drip. Patients in the control group were given a 30 mg edaravone injection in 100 ml of 0.9% sodium chloride solution by intravenous drip, twice a day, and the drip was completed within 30 minutes. Patients in both groups were treated for 2 weeks. The levels of fibrinogen (FIB), D-dimer, interleukin 6 (IL-6), P-selectin (CD62P), and hypersensitive C-reactive protein (hs-CRP) were evaluated in the two groups of patients. Neurological disability was evaluated using the modified Rankin scale (mRS) and the neurological deficit score (National Institute of Health Stroke Scale, NIHSS). Adverse reactions to the treatments were also recorded. Results No significant differences in age, gender, medical histories, and blood biochemical indices were observed between the two groups before treatment (P > 0.05). After treatment, the levels of FIB, D-dimer, IL-6, CD62P, and hs-CRP were significantly lower following treatment and compared to the control group (P < 0.05). Also, the mRS and NIHSS scores were significantly lower after treatment and compared with the control group (P < 0.05). The total effective rate of the treatment in the experimental group was significantly higher compared to the control group (P < 0.05). During the treatment period, no obvious adverse reactions were observed in the two groups of patients. Conclusions In addition to the routine basic treatment of acute large-area cerebral infarction, the addition of Shenxiong glucose injection combined with edaravone injection can improve platelet aggregation and reduce inflammation by affecting P-selectin, D-dimer, and FIB. This treatment approach promotes the recovery of nerve defect function without obvious adverse reactions in patients with acute large-area cerebral infarction.
Collapse
|
4
|
Ge X, Bo Q, Hong X, Cui J, Jiang X, Hong M, Liu J. A novel acidic serine protease, ASPNJ inhibits proliferation, induces apoptosis and enhances chemo-susceptibility of acute promyelocytic leukemia cell. Leuk Res 2013; 37:1697-703. [DOI: 10.1016/j.leukres.2013.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/13/2013] [Accepted: 09/14/2013] [Indexed: 11/26/2022]
|
5
|
Ström JO, Ingberg E, Theodorsson A, Theodorsson E. Method parameters' impact on mortality and variability in rat stroke experiments: a meta-analysis. BMC Neurosci 2013; 14:41. [PMID: 23548160 PMCID: PMC3637133 DOI: 10.1186/1471-2202-14-41] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/22/2013] [Indexed: 12/14/2022] Open
Abstract
Background Even though more than 600 stroke treatments have been shown effective in preclinical studies, clinically proven treatment alternatives for cerebral infarction remain scarce. Amongst the reasons for the discrepancy may be methodological shortcomings, such as high mortality and outcome variability, in the preclinical studies. A common approach in animal stroke experiments is that A) focal cerebral ischemia is inflicted, B) some type of treatment is administered and C) the infarct sizes are assessed. However, within this paradigm, the researcher has to make numerous methodological decisions, including choosing rat strain and type of surgical procedure. Even though a few studies have attempted to address the questions experimentally, a lack of consensus regarding the optimal methodology remains. Methods We therefore meta-analyzed data from 502 control groups described in 346 articles to find out how rat strain, procedure for causing focal cerebral ischemia and the type of filament coating affected mortality and infarct size variability. Results The Wistar strain and intraluminal filament procedure using a silicone coated filament was found optimal in lowering infarct size variability. The direct and endothelin methods rendered lower mortality rate, whereas the embolus method increased it compared to the filament method. Conclusions The current article provides means for researchers to adjust their middle cerebral artery occlusion (MCAo) protocols to minimize infarct size variability and mortality.
Collapse
Affiliation(s)
- Jakob O Ström
- Department of Clinical and Experimental Medicine, Clinical Chemistry, Faculty of Health Sciences, Linköping University, County Council of Östergötland, Linköping, Sweden.
| | | | | | | |
Collapse
|
6
|
Song Y, Zou H, Wang G, Yang H, Xie Z, Bi J. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 expression in early focal cerebral infarction following urokinase thrombolysis in rats. Neural Regen Res 2012; 7:1325-30. [PMID: 25657663 PMCID: PMC4308803 DOI: 10.3969/j.issn.1673-5374.2012.17.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/15/2012] [Indexed: 11/18/2022] Open
Abstract
Activity of matrix metalloproteinase-9 increases following cerebral ischemia/reperfusion, and is associated with cerebral microvascular permeability, blood-brain barrier destruction, inflammatory cell infiltration and brain edema. Matrix metalloproteinase-9 also likely participates in thrombolysis. A rat model of middle cerebral artery infarction was established by injecting autologous blood clots into the internal carotid artery. At 3 hours following model induction, urokinase was injected into the caudal vein. Decreased neurological severity score, reduced infarct volume, and increased expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 were observed in the cerebral cortex 24 hours after urokinase thrombolysis. These results suggest that urokinase can suppress damage in the acute-early stage of cerebral infarction.
Collapse
Affiliation(s)
- Yuqiang Song
- Department of Neurology, the Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China
| | - Hongli Zou
- Qingdao Central Hospital, Qingdao 266042, Shandong Province, China
| | - Guofeng Wang
- Qingdao No. 9 People's Hospital, Qingdao 266003, Shandong Province, China
| | - Hongxia Yang
- The Second Hospital of Shandong University, Jinan 255000, Shandong Province, China
| | - Zhaohong Xie
- The Second Hospital of Shandong University, Jinan 255000, Shandong Province, China
| | - Jianzhong Bi
- The Second Hospital of Shandong University, Jinan 255000, Shandong Province, China
| |
Collapse
|
7
|
Wang S, Deng Z, Li Q, Ge X, Bo Q, Liu J, Cui J, Jiang X, Liu J, Zhang L, Hong M. A novel alkaline serine protease with fibrinolytic activity from the polychaete, Neanthes japonica. Comp Biochem Physiol B Biochem Mol Biol 2011; 159:18-25. [PMID: 21276864 DOI: 10.1016/j.cbpb.2011.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/20/2011] [Accepted: 01/22/2011] [Indexed: 11/29/2022]
Abstract
A new protease named NJP with fibrinolytic activity was isolated from Neanthes japonica (Izuka), by a combination of ammonium sulfate fractionation, hydrophobic chromatography, ion-exchange chromatography and gel filtration. The molecular mass of NJP was approximately 28.6-33.5kDa as estimated by MALDI-TOF mass spectrometry and SDS-PAGE, which revealed a monomeric form of the protease. The isoelectric point of NJP determined by 2-DE was 9.2. NJP was stable in the range of pH 7.0-11.0 with a maximum enzymatic activity at 40°C and pH 9.0. The hydrolyzing activity of NJP on fibrinogen started from the Aα-chain, followed by the Bβ-chain, and the γ-chain at last. NJP had also a higher specificity for the chromogenic substrate S-2238 for thrombin. NJP activity was completely inhibited by PMSF. Analysis of partial amino acid sequences showed that NJP had very low homology with other known fibrinolytic enzymes. These results indicate that NJP is a novel alkaline thrombin-like serine protease. Thus NJP may have potential applications in the prevention and treatment of thrombosis.
Collapse
Affiliation(s)
- Shaohua Wang
- Department of Biochemistry and Molecular Biology, Norman Bethune College of Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|