1
|
Shoji H, Ohashi M, Hirano T, Watanabe K, Endo N, Baba H, Kohno T. Mechanisms of noradrenergic modulation of synaptic transmission and neuronal excitability in ventral horn neurons of the rat spinal cord. Neuroscience 2019; 408:161-176. [PMID: 30986437 DOI: 10.1016/j.neuroscience.2019.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/17/2019] [Accepted: 03/12/2019] [Indexed: 12/25/2022]
Abstract
Noradrenaline (NA) modulates the spinal motor networks for locomotion and facilitates neuroplasticity, possibly assisting neuronal network activation and neuroplasticity in the recovery phase of spinal cord injuries. However, neither the effects nor the mechanisms of NA on synaptic transmission and neuronal excitability in spinal ventral horn (VH) neurons are well characterized, especially in rats aged 7 postnatal days or older. To gain insight into NA regulation of VH neuronal activity, we used a whole-cell patch-clamp approach in late neonatal rats (postnatal day 7-15). In voltage-clamp recordings at -70 mV, NA increased the frequency and amplitude of excitatory postsynaptic currents via the activation of somatic α1- and β-adrenoceptors of presynaptic neurons. Moreover, NA induced an inward current through the activation of postsynapticα1- and β-adrenoceptors. At a holding potential of 0 mV, NA also increased frequency and amplitude of both GABAergic and glycinergic inhibitory postsynaptic currents via the activation of somatic adrenoceptors in presynaptic neurons. In current-clamp recordings, NA depolarized resting membrane potentials and increased the firing frequency of action potentials in VH neurons, indicating that it enhances the excitability of these neurons. Our findings provide new insights that establish NA-based pharmacological therapy as an effective method to activate neuronal networks of the spinal VH in the recovery phase of spinal cord injuries.
Collapse
Affiliation(s)
- Hirokazu Shoji
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Asahimachidori 1-757, Chuo-ku, Niigata-city, 951-8510, Japan
| | - Masayuki Ohashi
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Asahimachidori 1-757, Chuo-ku, Niigata-city, 951-8510, Japan
| | - Toru Hirano
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Asahimachidori 1-757, Chuo-ku, Niigata-city, 951-8510, Japan
| | - Kei Watanabe
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Asahimachidori 1-757, Chuo-ku, Niigata-city, 951-8510, Japan
| | - Naoto Endo
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Asahimachidori 1-757, Chuo-ku, Niigata-city, 951-8510, Japan
| | - Hiroshi Baba
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Asahimachidori 1-757, Chuo-ku, Niigata-city, 951-8510, Japan
| | - Tatsuro Kohno
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Asahimachidori 1-757, Chuo-ku, Niigata-city, 951-8510, Japan; Department of Anesthesiology, Tohoku Medical and Pharmaceutical University, Fukumuro 1-12-1, Miyagino-ku, Sendai-city, 983-8512, Japan.
| |
Collapse
|
2
|
Ohashi M, Hirano T, Watanabe K, Katsumi K, Ohashi N, Baba H, Endo N, Kohno T. Hydrogen peroxide modulates synaptic transmission in ventral horn neurons of the rat spinal cord. J Physiol 2016; 594:115-34. [PMID: 26510999 PMCID: PMC4704504 DOI: 10.1113/jp271449] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Excessive production of reactive oxygen species (ROS) is implicated in many central nervous system disorders; however, the physiological role of ROS in spinal ventral horn (VH) neurons remains poorly understood. We investigated how pathological levels of H2O2, an abundant ROS, regulate synaptic transmission in VH neurons of rats using a whole-cell patch clamp approach. H2O2 increased the release of glutamate and GABA from presynaptic terminals. The increase in glutamate release involved N-type voltage-gated calcium channels (VGCCs), ryanodine receptors (RyRs), and inositol trisphosphate receptors (IP3 Rs); the increase in GABA release, which inhibited glutamatergic transmission, involved IP3 R. Inhibiting N-type VGCCs and RyRs attenuates excitotoxicity resulting from increased glutamatergic activity while preserving the neuroprotective effects of GABA, and may represent a novel strategy for treating H2O2-induced motor neuron disorders resulting from trauma or ischaemia-reperfusion injury. Excessive production of reactive oxygen species (ROS) is a critical component of the cellular and molecular pathophysiology of many central nervous system (CNS) disorders, including trauma, ischaemia-reperfusion injury, and neurodegenerative diseases. Hydrogen peroxide (H2O2), an abundant ROS, modulates synaptic transmission and contributes to neuronal damage in the CNS; however, the pathophysiological role of H2O2 in spinal cord ventral horn (VH) neurons remains poorly understood, despite reports that these neurons are highly vulnerable to oxidative stress and ischaemia. This was investigated in the present study using a whole-cell patch clamp approach in rats. We found that exogenous application of H2O2 increased the release of glutamate from excitatory presynaptic terminals and γ-aminobutyric acid (GABA) from inhibitory presynaptic terminals. The increase of glutamate release was induced in part by an increase in Ca(2+) influx through N-type voltage-gated calcium channels (VGCCs) as well as by ryanodine receptor (RyR)- and inositol trisphosphate receptor-mediated Ca(2+) release from the endoplasmic reticulum (ER). In inhibitory presynaptic neurons, increased IP3 R-mediated Ca(2+) release from the ER increased GABAergic transmission, which served to rescue VH neurons from excessive release of glutamate from presynaptic terminals. These findings indicate that inhibiting N-type VGCCs or RyRs may attenuate excitotoxicity resulting from increased glutamatergic activity while preserving the neuroprotective effects of GABA, and may therefore represent a novel and targeted strategy for preventing and treating H2O2-induced motor neuron disorders.
Collapse
Affiliation(s)
- Masayuki Ohashi
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City 951-8510, Japan
| | - Toru Hirano
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City 951-8510, Japan
| | - Kei Watanabe
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City 951-8510, Japan
| | - Keiichi Katsumi
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City 951-8510, Japan
| | - Nobuko Ohashi
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City 951-8510, Japan
| | - Hiroshi Baba
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City 951-8510, Japan
| | - Naoto Endo
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City 951-8510, Japan
| | - Tatsuro Kohno
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City 951-8510, Japan
| |
Collapse
|
3
|
The mu opioid receptor activation does not affect ischemia-induced agonal currents in rat spinal ventral horn. J Anesth 2014; 28:839-45. [DOI: 10.1007/s00540-014-1829-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/27/2014] [Indexed: 11/26/2022]
|
4
|
Honda H, Kawasaki Y, Baba H, Kohno T. The mu opioid receptor modulates neurotransmission in the rat spinal ventral horn. Anesth Analg 2012; 115:703-12. [PMID: 22584545 DOI: 10.1213/ane.0b013e318259393d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Opioids inhibit excitatory neurotransmission and produce antinociception through μ opioid receptors (MORs). Although MORs are expressed in the spinal ventral horn, their functions and effects are largely unknown. Therefore, we examined the neuromodulatory effects of μ opioids in spinal lamina IX neurons at the cellular level. METHODS The effects of the selective μ agonist [D-Ala(2),-N-Me-Phe(4), Gly(5)-ol]enkephalin (DAMGO) on synaptic transmission were examined in spinal lamina IX neurons of neonatal rats using the whole-cell patch-clamp technique. RESULTS DAMGO produced outward currents in 56% of the lamina IX neurons recorded, with a 50% effective concentration of 0.1 μM. Analysis of the current-voltage relationship revealed a reversal potential of approximately -86 mV. These currents were not blocked by tetrodotoxin but were inhibited by Ba(2+) or a selective μ antagonist. Moreover, the currents were suppressed by the addition of Cs(+) and tetraethylammonium or guanosine 5'-[β-thio]diphosphate trilithium salt to the pipette solution. In addition, DAMGO decreased the frequency of spontaneous excitatory and inhibitory postsynaptic currents, and these effects were unaltered by treatment with tetrodotoxin. CONCLUSION Our results suggest that DAMGO hyperpolarizes spinal lamina IX neurons by G protein-mediated activation of K(+) channels after activation of MORs. Furthermore, activation of MORs on presynaptic terminals reduces both excitatory and inhibitory transmitter release. Although traditionally opioids are not thought to affect motor function, the present study documents neuromodulatory effects of μ opioids in spinal lamina IX neurons, suggesting that MORs can influence motor activity.
Collapse
Affiliation(s)
- Hiroyuki Honda
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | |
Collapse
|