1
|
Shoae-Hagh P, Razavi BM, Sadeghnia HR, Mehri S, Karimi G, Hosseinzadeh H. Molecular and Behavioral Neuroprotective Effects of Clavulanic Acid and Crocin in Haloperidol-Induced Tardive Dyskinesia in Rats. Mol Neurobiol 2025; 62:5156-5182. [PMID: 39520654 DOI: 10.1007/s12035-024-04566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Clavulanic acid (ClvA), a beta-lactamase inhibitor, is being explored for its significant neuroprotective potential. The effects of ClvA were assessed both individually and in combination with crocin (Cr), an antioxidant derived from saffron, in the context of tardive dyskinesia (TD). In rat haloperidol (Hp)-induced-TD (1 mg/kg, i.p. 21 days), the effects of ClvA (50, 100, 150 mg/kg) and Cr (10, 20, 40 mg/kg) were assessed via vacuous chewing movements (VCM) and tongue protrusion (TP). Striatal malondialdehyde (MDA) and glutathione (GSH) were measured spectrophotometrically. Based on the results, ClvA (100 mg/kg) and Cr (10 mg/kg) were determined with sub-effective doses. Glutamate transporter-subtype1 (GLT1), dopamine active transporter (DAT), vesicular monoamine transporter-type2 (VMAT2), Bax/Bcl2, cleaved Caspase3, phosphorylated AKT/AKT, IL1β, and TNFα levels were quantified using western blotting in sub-effective doses and their combination. The behavioral results of catalepsy and orofacial dyskinesia demonstrated model establishment. Hp decreased GLT1 (p < 0.05), DAT (p < 0.01), VMAT2 (p < 0.001), GSH and pAKT/AKT (p < 0.0001); increased TNFα (p < 0.05), IL1β, cleaved Caspase3 (p < 0.001); MDA and Bax/Bcl2 (p < 0.0001). ClvA 100 mg/kg reversed the decreased GLT1 and VMAT2 (p < 0.01), alongside the increased MDA (p < 0.0001) and VCM (p < 0.05). It also increased AKT phosphorylation (p < 0.05). No effects were noted on DAT, GSH, Bax/Bcl2, or inflammatory factors. However, the combination with Cr at 10 mg/kg influenced ClvA on DAT (p < 0.01) and resulted in a significant increase in GSH (p < 0.0001). Additionally, there was a marked decrease in TNFα (p < 0.0001) and IL1β (p < 0.001), enhancing its effects on reducing MDA and increasing pAKT/AKT (p < 0.0001). The combination adversely affected GLT1. ClvA protects against TD via GLT1 and VMAT2; combined with Cr, it enhances antioxidant effects, improves DAT, and requires dose optimization for GLT1 disruption.
Collapse
Affiliation(s)
- Parisa Shoae-Hagh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Balcazar-Ochoa LG, Ángeles-López GE, Chavarría A, Ramírez-Carreto RJ, González-Hernández A, Guzmán-Ruiz MA, Segovia-Mendoza M, Ochoa-Aguilar A, Ventura-Martínez R. Clavulanic acid prevents paclitaxel-induced neuropathic pain through a systemic and central anti-inflammatory effect in mice. Neurotherapeutics 2025; 22:e00522. [PMID: 39794241 PMCID: PMC12014412 DOI: 10.1016/j.neurot.2024.e00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Paclitaxel (PCX) based treatments, commonly used to treat breast, ovarian and lung cancers, have the highest incidence of chemotherapy-induced neuropathic pain, affecting from 38 to 94 % of patients. Unfortunately, analgesic treatments are not always effective for PCX-induced neuropathic pain (PINP). This study aimed to evaluate the antinociceptive effect of clavulanic acid (CLAV), a clinically used β-lactam molecule, in both therapeutic and preventive contexts in mice with PINP. A single dose of CLAV administered after the onset of PINP significantly reduced mechanical hyperalgesia. Interestingly, preventive administration of CLAV prevented PINP development. The effect of preventive CLAV on PINP was associated with increased levels of IL-10 and IFN-β in serum, and decreased levels of IL-1β and TNF-α in both the serum and CNS. Immunostaining experiments revelated that CLAV increased the levels of glutamate transporter type 1 (GLT-1) and toll-like receptor type 4 (TLR4) in the spinal cord, while reducing levels of the astrocytic marker the glial fibrillary acidic protein (GFAP). Notably, co-incubation with CLAV and PCX in triple-negative breast cancer cells did not interfere with PCX-induced cytotoxic effects. Hence, these findings suggest that CLAV could be employed as a clinical treatment aimed at preventing PINP without compromission the cytotoxic efficacy of PCX.
Collapse
Affiliation(s)
- Luis Gerardo Balcazar-Ochoa
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | | | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Ricardo Jair Ramírez-Carreto
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | | | - Mara Alaide Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | | | - Rosa Ventura-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| |
Collapse
|
3
|
Wei J, Liu C, Qin D, Ren F, Duan J, Chen T, Wu A. Targeting inflammation and gut microbiota with antibacterial therapy: Implications for central nervous system health. Ageing Res Rev 2024; 102:102544. [PMID: 39419400 DOI: 10.1016/j.arr.2024.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The complex symbiotic relationship between inflammation, the gut microbiota, and the central nervous system (CNS) has become a pivotal focus of contemporary biomedical research. Inflammation, as a physiological defense mechanism, plays a dual role as both a protective and pathological factor, and is intricately associated with gut microbiota homeostasis, often termed the "second brain." The gutbrain axis (GBA) exemplifies this multifaceted interaction, where gut health exerts significantly regulatory effects on CNS functions. Antibacterial therapies represent both promising and challenging strategies for modulating inflammation and gut microbiota composition to confer CNS benefits. However, while such therapies may exert positive modulatory effects on the gut microbiota, they also carry the potential to disrupt microbial equilibrium, potentially exacerbating neurological dysfunction. Recent advances have provided critical insights into the therapeutic implications of antibacterial interventions; nevertheless, the application of these therapies in the context of CNS health warrants a judicious and evidence-based approach. As research progresses, deeper investigation into the microbial-neural interface is essential to fully realize the potential of therapies targeting inflammation and the gut microbiota for CNS health. Future efforts should focus on refining antibacterial interventions to modulate the gut microbiota while minimizing disruption to microbial balance, thereby reducing risks and enhancing efficacy in CNS-related conditions. In conclusion, despite challenges, a more comprehensive understanding of the GBA, along with precise modulation through targeted antibacterial therapies, offers significant promise for advancing CNS disorder treatment. Continued research in this area will lead to innovative interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Jing Wei
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China; School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Chunmeng Liu
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China.
| | - Junguo Duan
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Ting Chen
- School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Walters TH, Wiah S, Shekarabi A, Milton M, Reddy S, Zhao P, Mokkarala PS, Potula R, Rawls SM. Clavulanic acid inhibits methamphetamine locomotor sensitization in mice and normalizes methamphetamine-induced changes in glutaminase mRNA levels in the nucleus accumbens. Physiol Behav 2024; 284:114646. [PMID: 39053627 PMCID: PMC11347075 DOI: 10.1016/j.physbeh.2024.114646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Clavulanic acid (CLAV) is a component of Augmentin® that preserves antibiotic efficacy by inhibiting β-lactamase activity. It also enhances cellular glutamate uptake and is a potential CNS therapeutic. Because increased glutamate transmission in brain reward circuits facilitates methamphetamine (METH) locomotor activation and sensitization, we tested the hypothesis that CLAV inhibits acute and sensitized locomotor responses to METH in mice and investigated effects of CLAV on METH-induced changes in glutaminase, the major glutamate-producing enzyme in the brain. Acute METH (3 mg/kg) produced hyperlocomotion that was reduced by CLAV (20 mg/kg but not 10 mg/kg). Mice injected with METH (3 mg/kg) every other day for 9 d and then challenged with METH 27 d later displayed locomotor sensitization. CLAV (10 mg/kg), when injected 15 min before each METH injection during the 9-d exposure interval, blocked locomotor sensitization induced by METH challenge. In METH-sensitized mice, mRNA levels of both isoforms of glutaminase (GLS and GLS2) were altered in the nucleus accumbens compared to mice exposed to a single injection of METH (i.e., GLS decreased and GLS2 increased). CLAV normalized the METH-induced GLS deficit but not the increase in GLS2. In summary, CLAV reduced acute and sensitized locomotor responses to METH and normalized the METH-induced reduction of GLS gene expression in the NAC. Given that glutaminases belong to the β-lactamase superfamily and CLAV is a β-lactamase inhibitor, our data point toward studying glutaminase as a therapeutic target of CLAV.
Collapse
Affiliation(s)
- Taylor Hawthorne Walters
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Sonita Wiah
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Aryan Shekarabi
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Mia Milton
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Samhitha Reddy
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Pingwei Zhao
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Prateek S Mokkarala
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Raghava Potula
- Department of Pathology and Laboratory Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Balcazar-Ochoa LG, Ventura-Martínez R, Ángeles-López GE, Gómez-Acevedo C, Carrasco OF, Sampieri-Cabrera R, Chavarría A, González-Hernández A. Clavulanic Acid and its Potential Therapeutic Effects on the Central Nervous System. Arch Med Res 2024; 55:102916. [PMID: 38039802 DOI: 10.1016/j.arcmed.2023.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Abstract
Clavulanic acid (CLAV) is a non-antibiotic β-lactam that has been used since the late 1970s as a β-lactamase inhibitor in combination with amoxicillin, another ß-lactam with antibiotic activity. Its long-observed adverse reaction profile allows it to say that CLAV is a well-tolerated drug with mainly mild adverse reactions. Interestingly, in 2005, it was discovered that β-lactams enhance the astrocytic expression of GLT-1, a glutamate transporter essential for maintaining synaptic glutamate homeostasis involved in several pathologies of the central nervous system (CNS). This finding, along with a favorable pharmacokinetic profile, prompted the appearance of several studies that intended to evaluate the effect of CLAV in preclinical disease models. Studies have revealed that CLAV can increase GLT-1 expression in the nucleus accumbens (NAcc), medial prefrontal cortex (PFC), and spinal cord of rodents, to affect glutamate and dopaminergic neurotransmission, and exert an anti-inflammatory effect by modulating the levels of the cytokines TNF-α and interleukin 10 (IL-10). CLAV has been tested with positive results in preclinical models of epilepsy, addiction, stroke, neuropathic and inflammatory pain, dementia, Parkinson's disease, and sexual and anxiety behavior. These properties make CLAV a potential therapeutic drug if repurposed. Therefore, this review aims to gather information on CLAV's effect on preclinical neurological disease models and to give some perspectives on its potential therapeutic use in some diseases of the CNS.
Collapse
Affiliation(s)
| | - Rosa Ventura-Martínez
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | - Claudia Gómez-Acevedo
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Omar Francisco Carrasco
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Raúl Sampieri-Cabrera
- Phyisiology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Experimental Medicine Research Unit, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
6
|
Esmaili-Shahzade-Ali-Akbari P, Ghaderi A, Hosseini SMM, Nejat F, Saeedi-Mofrad M, Karimi-Houyeh M, Ghattan A, Etemadi A, Rasoulian E, Khezri A. β_lactam antibiotics against drug addiction: A novel therapeutic option. Drug Dev Res 2023; 84:1411-1426. [PMID: 37602907 DOI: 10.1002/ddr.22110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023]
Abstract
Drug addiction as a problem for the health of the individual and the society is the result of a complex process in which there is an interaction between brain nuclei and neurotransmitters (such as glutamate). β-lactam antibiotics, due to their enhancing properties on the glutamate transporter glutamate transporter-1, can affect and counteract the addictive mechanisms of drugs through the regulation of extracellular glutamate. Since glutamate is a key neurotransmitter in the development of drug addiction, it seems that β-lactams can be considered as a promising treatment for addiction. However, more research in this field is necessary to identify other mechanisms involved in their effectiveness. This article is a review of the studies conducted on the effect of β-lactam administration in preventing the development of drug addiction, as well as their possible cellular and molecular mechanisms. This review suggests the clinical use of β-lactam antibiotics that have weak antimicrobial properties (such as clavulanic acid) in the treatment of drug dependence.
Collapse
Affiliation(s)
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Fatemeh Nejat
- Department of Biology and Health Sciences, Meredith College, Raleigh, North Carolina, USA
| | | | | | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Etemadi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Rasoulian
- Department of Medical-Surgical Nursing, School of Nursing Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arina Khezri
- Department of Anesthesia, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Guo LK, Su Y, Zhang YYN, Yu H, Lu Z, Li WQ, Yang YF, Xiao X, Yan H, Lu TL, Li J, Liao YD, Kang ZW, Wang LF, Li Y, Li M, Liu B, Huang HL, Lv LX, Yao Y, Tan YL, Breen G, Everall I, Wang HX, Huang Z, Zhang D, Yue WH. Prediction of treatment response to antipsychotic drugs for precision medicine approach to schizophrenia: randomized trials and multiomics analysis. Mil Med Res 2023; 10:24. [PMID: 37269009 PMCID: PMC10236828 DOI: 10.1186/s40779-023-00459-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/05/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Choosing the appropriate antipsychotic drug (APD) treatment for patients with schizophrenia (SCZ) can be challenging, as the treatment response to APD is highly variable and difficult to predict due to the lack of effective biomarkers. Previous studies have indicated the association between treatment response and genetic and epigenetic factors, but no effective biomarkers have been identified. Hence, further research is imperative to enhance precision medicine in SCZ treatment. METHODS Participants with SCZ were recruited from two randomized trials. The discovery cohort was recruited from the CAPOC trial (n = 2307) involved 6 weeks of treatment and equally randomized the participants to the Olanzapine, Risperidone, Quetiapine, Aripiprazole, Ziprasidone, and Haloperidol/Perphenazine (subsequently equally assigned to one or the other) groups. The external validation cohort was recruited from the CAPEC trial (n = 1379), which involved 8 weeks of treatment and equally randomized the participants to the Olanzapine, Risperidone, and Aripiprazole groups. Additionally, healthy controls (n = 275) from the local community were utilized as a genetic/epigenetic reference. The genetic and epigenetic (DNA methylation) risks of SCZ were assessed using the polygenic risk score (PRS) and polymethylation score, respectively. The study also examined the genetic-epigenetic interactions with treatment response through differential methylation analysis, methylation quantitative trait loci, colocalization, and promoter-anchored chromatin interaction. Machine learning was used to develop a prediction model for treatment response, which was evaluated for accuracy and clinical benefit using the area under curve (AUC) for classification, R2 for regression, and decision curve analysis. RESULTS Six risk genes for SCZ (LINC01795, DDHD2, SBNO1, KCNG2, SEMA7A, and RUFY1) involved in cortical morphology were identified as having a genetic-epigenetic interaction associated with treatment response. The developed and externally validated prediction model, which incorporated clinical information, PRS, genetic risk score (GRS), and proxy methylation level (proxyDNAm), demonstrated positive benefits for a wide range of patients receiving different APDs, regardless of sex [discovery cohort: AUC = 0.874 (95% CI 0.867-0.881), R2 = 0.478; external validation cohort: AUC = 0.851 (95% CI 0.841-0.861), R2 = 0.507]. CONCLUSIONS This study presents a promising precision medicine approach to evaluate treatment response, which has the potential to aid clinicians in making informed decisions about APD treatment for patients with SCZ. Trial registration Chinese Clinical Trial Registry ( https://www.chictr.org.cn/ ), 18. Aug 2009 retrospectively registered: CAPOC-ChiCTR-RNC-09000521 ( https://www.chictr.org.cn/showproj.aspx?proj=9014 ), CAPEC-ChiCTR-RNC-09000522 ( https://www.chictr.org.cn/showproj.aspx?proj=9013 ).
Collapse
Affiliation(s)
- Liang-Kun Guo
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191 China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191 China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Yi Su
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, 100096 China
| | - Yu-Ya-Nan Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191 China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191 China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jining, 272067 Shandong China
| | - Zhe Lu
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191 China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191 China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Wen-Qiang Li
- Henan Key Lab of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 435001 Henan China
| | - Yong-Feng Yang
- Henan Key Lab of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 435001 Henan China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Hao Yan
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191 China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191 China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Tian-Lan Lu
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191 China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191 China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Jun Li
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191 China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191 China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Yun-Dan Liao
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191 China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191 China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Zhe-Wei Kang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191 China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191 China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Li-Fang Wang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191 China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191 China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Yue Li
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, WC2R 2LS UK
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 China
| | - Hai-Liang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114 USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA 02141 USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
| | - Lu-Xian Lv
- Henan Key Lab of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 435001 Henan China
| | - Yin Yao
- Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yun-Long Tan
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, 100096 China
| | - Gerome Breen
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, WC2R 2LS UK
| | - Ian Everall
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, WC2R 2LS UK
| | - Hong-Xing Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory for Neuroscience for Ministry of Education, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Dai Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191 China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191 China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| | - Wei-Hua Yue
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191 China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191 China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
- Chinese Institute for Brain Research, Beijing, 102206 China
| |
Collapse
|
8
|
Temmermand R, Barrett JE, Fontana ACK. Glutamatergic systems in neuropathic pain and emerging non-opioid therapies. Pharmacol Res 2022; 185:106492. [PMID: 36228868 PMCID: PMC10413816 DOI: 10.1016/j.phrs.2022.106492] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/14/2023]
Abstract
Neuropathic pain, a disease of the somatosensory nervous system, afflicts many individuals and adequate management with current pharmacotherapies remains elusive. The glutamatergic system of neurons, receptors and transporters are intimately involved in pain but, to date, there have been few drugs developed that therapeutically modulate this system. Glutamate transporters, or excitatory amino acid transporters (EAATs), remove excess glutamate around pain transmitting neurons to decrease nociception suggesting that the modulation of glutamate transporters may represent a novel approach to the treatment of pain. This review highlights and summarizes (1) the physiology of the glutamatergic system in neuropathic pain, (2) the preclinical evidence for dysregulation of glutamate transport in animal pain models, and (3) emerging novel therapies that modulate glutamate transporters. Successful drug discovery requires continuous focus on basic and translational methods to fully elucidate the etiologies of this disease to enable the development of targeted therapies. Increasing the efficacy of astrocytic EAATs may serve as a new way to successfully treat those suffering from this devastating disease.
Collapse
Affiliation(s)
- Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
9
|
Philogene-Khalid HL, Morrison MF, Darbinian N, Selzer ME, Schroeder J, Rawls SM. The GLT-1 enhancer clavulanic acid suppresses cocaine place preference behavior and reduces GCPII activity and protein levels in the rat nucleus accumbens. Drug Alcohol Depend 2022; 232:109306. [PMID: 35051699 PMCID: PMC8885893 DOI: 10.1016/j.drugalcdep.2022.109306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022]
Abstract
The β-lactam antibiotic ceftriaxone (CTX) is a glutamate transporter subtype 1 (GLT-1) enhancer that reduces cocaine reinforcing efficacy and relapse in rats, but pharmacokinetic liabilities limit translational utility. An attractive alternative is clavulanic acid (CLAV), a structurally related β-lactamase inhibitor and component of FDA-approved Augmentin. CLAV retains the GLT-1 enhancing effects of CTX but displays greater oral bioavailability, brain penetrability and negligible antibacterial activity. CLAV reduces morphine conditioned place preference (CPP) and ethanol consumption in rats, but knowledge about the efficacy of CLAV in preclinical models of drug addiction remains sparse. Here, we investigated effects of CLAV (10 mg/kg, IP) on the acquisition, expression, and maintenance of cocaine CPP in rats, and on two glutamate biomarkers associated with cocaine dependence, GLT-1 and glutamate carboxypeptidase II (GCPII). CLAV administered during cocaine conditioning (10 mg/kg, IP x 4 d) did not affect the development of cocaine CPP. However, a single CLAV injection, administered after the conditioning phase, reduced the expression of cocaine CPP. In rats with established cocaine preference, repeated CLAV administration facilitated extinction of cocaine CPP. In the nucleus accumbens, acute CLAV exposure reduced GCPII protein levels and activity, and a 10-d CLAV treatment regimen enhanced GLT-1 levels. These results suggest that CLAV reduces expression and maintenance of cocaine CPP but lacks effect against development of CPP. Moreover, the ability of a single injection of CLAV to reduce both GCPII activity and protein levels, as well as expression of cocaine CPP, points toward studying GCPII as a therapeutic target of CLAV.
Collapse
Affiliation(s)
- Helene L. Philogene-Khalid
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Corresponding author at: Department of Psychiatry, Medical Arts Building Suite 305, Temple University, 100 East Lehigh Ave., Philadelphia, PA 19125-1012, United States.
| | - Mary F. Morrison
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Department of Psychiatry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Nune Darbinian
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Michael E. Selzer
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Joseph Schroeder
- Behavioral Neuroscience Program, Connecticut College, New London, CT, USA
| | - Scott M. Rawls
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
10
|
Kolahdouz M, Jafari F, Falanji F, Nazemi S, Mohammadzadeh M, Molavi M, Amin B. Clavulanic Acid Attenuating Effect on the Diabetic Neuropathic Pain in Rats. Neurochem Res 2021; 46:1759-1770. [PMID: 33846883 DOI: 10.1007/s11064-021-03308-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/24/2020] [Accepted: 03/18/2021] [Indexed: 12/27/2022]
Abstract
Diabetic neuropathy is one of the most common complications of diabetes mellitus. Excess glutamate release and oxidative stress are hypothesized to be involved in the pathophysiology of diabetes-induced neuropathy. This study was designed to investigate the effect of clavulanic acid (CLAV), a competitive beta-lactamase inhibitor, on the streptozocin (STZ)-induced neuropathic pain and possible mechanisms in the spinal cord of rats. Male Wistar rats were divided into naive group; control group which got a single dose of STZ (50 mg/kg, i.p.), as a model of diabetic neuropathic pain; prophylactic groups: animals received CLAV (10, 20 and 40 mg/kg, i.p.) 1 week after STZ for 10 days; and therapeutic group: animals received 20 mg/kg CLAV, 21 days after STZ for 10 days. Study of pain behaviors was started on days 0, 7, 14, 21, 28, 35 and 42 after STZ. The expression of the glutamate transport 1 (GLT1), genes of oxidative stress including inducible nitric oxide synthase (iNOS), proinflammatory cytokine, tumor necrosis factor alpha (TNF-α), as well as genes involved in the apoptosis including bcl2, bcl2-associated x (bax) were measured in the spinal cord tissue by Real Time PCR, on day 42. On day 21 post injection of STZ, diabetic animals showed significant mechanical allodynia, cold allodynia and thermal hyperalgesia. CLAV in all doses of 10, 20 and 40 mg/kg reduced symptoms of allodynia and hyperalgesia, in both prophylactic and therapeutic regimens. While iNOS, TNF-α, bax/bcl2 were found significantly overexpressed in spinal cord of diabetic animals, their expression in animals received CLAV had been reduced. In contrast, GLT1 that had decreased in the spinal cord of diabetic animals, significantly increased in those received CLAV. CLAV was found a promising candidate for reliving neuropathic pain in diabetes mellitus. Such beneficial effect of CLAV could be, in part, attributed to the increased expression of GLT 1, inhibition of nitrosative stress, anti-inflammation, and inhibition of some apoptotic mediators followed by administration into diabetic animals.
Collapse
Affiliation(s)
- Mahnoush Kolahdouz
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Faranak Jafari
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Farahnaz Falanji
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Samad Nazemi
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Mohammadzadeh
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mehdi Molavi
- Department of Internal Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Bahareh Amin
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| |
Collapse
|
11
|
Uridine Prevents Negative Effects of OXPHOS Xenobiotics on Dopaminergic Neuronal Differentiation. Cells 2019; 8:cells8111407. [PMID: 31717322 PMCID: PMC6912777 DOI: 10.3390/cells8111407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022] Open
Abstract
Neuronal differentiation appears to be dependent on oxidative phosphorylation capacity. Several drugs inhibit oxidative phosphorylation and might be detrimental for neuronal differentiation. Some pregnant women take these medications during their first weeks of gestation when fetal nervous system is being developed. These treatments might have later negative consequences on the offspring's health. To analyze a potential negative effect of three widely used medications, we studied in vitro dopaminergic neuronal differentiation of cells exposed to pharmacologic concentrations of azidothymidine for acquired immune deficiency syndrome; linezolid for multidrug-resistant tuberculosis; and atovaquone for malaria. We also analyzed the dopaminergic neuronal differentiation in brains of fetuses from pregnant mice exposed to linezolid. The drugs reduced the in vitro oxidative phosphorylation capacity and dopaminergic neuronal differentiation. This differentiation process does not appear to be affected in the prenatally exposed fetus brain. Nevertheless, the global DNA methylation in fetal brain was significantly altered, perhaps linking an early exposure to a negative effect in older life. Uridine was able to prevent the negative effects on in vitro dopaminergic neuronal differentiation and on in vivo global DNA methylation. Uridine could be used as a protective agent against oxidative phosphorylation-inhibiting pharmaceuticals provided during pregnancy when dopaminergic neuronal differentiation is taking place.
Collapse
|
12
|
Amin B, Avaznia M, Noorani R, Mehri S, Hosseinzadeh H. Upregulation of Glutamate Transporter 1 by Clavulanic Acid Administration and Attenuation of Allodynia and Hyperalgesia in Neuropathic Rats. Basic Clin Neurosci 2019; 10:345-354. [PMID: 32231771 PMCID: PMC7101523 DOI: 10.32598/bcn.10.4.799.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/10/2017] [Accepted: 09/26/2018] [Indexed: 02/02/2023] Open
Abstract
Introduction: Clavulanic acid (CLAV) is structurally similar to ceftriaxone, a potent stimulator of glial GlutamateTransporter-1 (GLT-1) expression. The present study aims at exploring the anti-nociceptive effects of CLAV, a beta-lactamase inhibitor in rats underwent sciatic nerve Chronic Constriction Injury (CCI). Methods: CLAV (12.5, 25, 50 mg/kg) was administered intraperitoneally after the surgery for 14 consecutive days. Behavioral pain parameters were evaluated before and 3, 5, 7, 10 and 14 days after injury. Spinal GLT-1 level was measured via western blotting at days 7 and 14. Results: CCI led to mechanical allodynia, cold allodynia and thermal hyperalgesia which started on postoperative days 3 and continued until the end of study. We found that CLAV (12.5 and 25 mg/kg) significantly attenuated all pain related behaviors as compared to the CCI animals treated with normal saline. Protein level of GLT-1 was down-regulated on day 14 following CCI and this phenomenon was reversed by fourteen days treatment of CLAV at the low doses of 12.5 and 25 mg/kg. Conclusion: These results suggest that CLAV might provide a new therapeutic strategy for neuropathic pain and its effect might be partially associated with the up-regulation of GLT-1.
Collapse
Affiliation(s)
- Bahareh Amin
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mahmoud Avaznia
- Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Noorani
- Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Ochoa-Aguilar A, Ventura-Martinez R, Sotomayor-Sobrino MA, Jaimez R, Coffeen U, Jiménez-González A, Balcázar-Ochoa LG, Pérez-Medina-Carballo R, Rodriguez R, Plancarte-Sánchez R. Ceftriaxone and clavulanic acid induce antiallodynia and anti-inflammatory effects in rats using the carrageenan model. J Pain Res 2018; 11:977-985. [PMID: 29861639 PMCID: PMC5968784 DOI: 10.2147/jpr.s154661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction Ceftriaxone (CFX) and clavulanic acid (CA) are 2 β-lactam molecules widely used as antibiotics. However, several reports of their antiallodynic properties have been published in recent years. Although this effect has been considered mostly due to a GLT1 overexpression, these molecules have also been proven to induce direct immunomodulation. In this work, we determine the acute analgesic effect of CFX and CA in an inflammatory pain model and assess if their administration may induce anti-inflammatory effects. Methods The carrageenan (Carr) test was used as an inflammatory pain model. Both mechanical and thermal responses were analyzed after CFX and CA administration at different times. A plethysmometer was used to determine inflammation. Also, TNF-α and IL-10 serum concentrations were determined by enzyme-linked immunosorbent assay. Results Both CFX and CA induced a significant thermal antiallodynic effect 3 and 24 h after administration. Furthermore, CA induced a mechanical antiallodynic effect 30, 60, and 90 min after administration. Moreover, a significant anti-inflammatory effect was found for both molecules 24 h after Carr injection. Also, both CA and CFX modulated TNF-α and IL-10 serum concentrations at different times. Conclusion Our results provide evidence that both CFX and CA cause an analgesic effect on a Carr inflammatory pain model and that said analgesic effect differs between each β-lactam molecule. Furthermore, this effect may be related to an anti-inflammatory effect of both molecules and a direct TNF-α and IL-10 serum concentration modulation.
Collapse
Affiliation(s)
- Abraham Ochoa-Aguilar
- Pharmacology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, México.,Research Department, Mexican Faculty of Medicine, La Salle University, Mexico City, México
| | - Rosa Ventura-Martinez
- Pharmacology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, México
| | | | - Ruth Jaimez
- Pharmacology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, México
| | - Ulises Coffeen
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, México
| | | | | | | | - Rodolfo Rodriguez
- Pharmacology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, México
| | | |
Collapse
|
14
|
Ochoa-Aguilar A, Sotomayor-Sobrino MA, Jaimez R, Rodríguez R, Plancarte-Sánchez R, Ventura-Martinez R. Antiallodynic Activity of Ceftriaxone and Clavulanic Acid in Acute Administration is Associated with Serum TNF-α Modulation and Activation of Dopaminergic and Opioidergic Systems. Drug Dev Res 2017; 78:105-115. [PMID: 28345130 DOI: 10.1002/ddr.21381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 01/02/2023]
Abstract
Preclinical Research The aim of this study was to determine the antiallodynic effect of acute administration of the β-lactam antimicrobials, ceftriaxone (CFX) and clavulanic acid (CLAV), for the control of established pain on a model of neuropathic pain (NP). We also investigated the involvement of dopaminergic and opioidergic pathways as well as alterations in serum concentrations of TNF-α in the antiallodynic actions of these drugs. CFX, CLAV, or gabapentin (GAP), a reference drug, were administered i.p. twelve days after constriction of the sciatic nerve in rats. Mechanic and cold allodynia were evaluated for 3 h and alterations in serum concentration of TNF-α determined. Both CFX and CLAV had antiallodynic effects in response to mechanical and cold stimulation, similar to GAP. The antiallodynic effects of CFX and CLAV were blocked by haloperidol (HAL), a D2 receptor antagonist, and by naloxone (NLX), an opioid receptor antagonist. Additionally, serum TNF-α levels were attenuated following CFX and CLAV administration. These results suggest that acute administration of CFX and CLAV may represent a promising approach for treating the acute allodynia of NP, and that the mechanisms involved in these effects involve activation of dopaminergic and opioidergic pathways as well as modulation of TNF-α production. Drug Dev Res 78 : 105-115, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A Ochoa-Aguilar
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, Delegación Coyoacán, Ciudad de México, México
| | - M A Sotomayor-Sobrino
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, Delegación Coyoacán, Ciudad de México, México
| | - R Jaimez
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, Delegación Coyoacán, Ciudad de México, México
| | - R Rodríguez
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, Delegación Coyoacán, Ciudad de México, México
| | | | - R Ventura-Martinez
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, Delegación Coyoacán, Ciudad de México, México
| |
Collapse
|
15
|
Simonsen U, Comerma-Steffensen S, Andersson KE. Modulation of Dopaminergic Pathways to Treat Erectile Dysfunction. Basic Clin Pharmacol Toxicol 2016; 119 Suppl 3:63-74. [DOI: 10.1111/bcpt.12653] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/16/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology; Aarhus University; Aarhus C Denmark
| | - Simon Comerma-Steffensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology; Aarhus University; Aarhus C Denmark
- Department of Biomedical Science; Faculty of Veterinary Science; Central University of Venezuela; Maracay Bolivarian Republic of Venezuela
| | - Karl-Erik Andersson
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology; Aarhus University; Aarhus C Denmark
| |
Collapse
|
16
|
Viana Marques DA, Santos-Ebinuma VC, Pessoa-Júnior A, Porto ALF, Torres BR, Converti A. Effect of aeration and agitation on extractive fermentation of clavulanic acid by using aqueous two-phase system. Biotechnol Prog 2016; 32:1444-1452. [PMID: 27451982 DOI: 10.1002/btpr.2333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/15/2016] [Indexed: 11/08/2022]
Abstract
In this work, the effects of agitation and aeration rates on aqueous two-phase system (ATPS)-based extractive fermentation of clavulanic acid (CA) by Streptomyces variabilis DAUFPE 3060 were investigated through a 22 full factorial design, where oxygen transfer rate (OTR) and oxygen uptake rate (OUR) were selected as the responses. Aeration rates significantly influenced cell growth, OUR, and CA yield, while OTR was practically the same in all the runs. Under the intermediate agitation (950 rpm) and aeration conditions (3.5 vvm) of the central point runs, it was achieved OTR of 1.617 ± 0.049 mmol L-1 h-1 , OUR of 0.132 ± 0.030 mmol L-1 h-1 , maximum CA production of 434 ± 4 mg L-1 , oxygen mass transfer coefficient of 33.40 ± 2.01 s-1 , partition coefficient of 66.5 ± 1.5, CA yield in the top and bottom phases of 75% ± 2% and 19% ± 1%, respectively, mass balance of 95% ± 4% and purification factor of 3.8 ± 0.1. These results not only confirmed the paramount role of O2 supply, broth composition and operational conditions in CA ATPS-extractive fermentation, but also demonstrated the possibility of effectively using this technology as a cheap tool to simultaneously produce and recover CA. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1444-1452, 2016.
Collapse
Affiliation(s)
- Daniela A Viana Marques
- Serra Talhada Campus, University of Pernambuco, Serra Talhada-PE, Brazil, Serra Talhada, PE, Brazil
| | - Valéria C Santos-Ebinuma
- Dept. of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, UNESP-Univ. Estadual Paulista, Rodovia Araraquara-Jaú Km 1, Araraquara-SP, 14801-902, Brazil
| | - Adalberto Pessoa-Júnior
- Dept. of Biochemical and Pharmaceutical Technology, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bloco 16, Cidade Universitária, São Paulo-SP, 05508-000, Brazil
| | - Ana L F Porto
- Dept. of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel De Medeiros, S/N, Dois Irmãos-PE, 52171-900, Brazil
| | - Beatriz Rivas Torres
- Dept. of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, via Opera Pia 15, Genoa, 16145, Italy
| | - Attilio Converti
- Dept. of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, via Opera Pia 15, Genoa, 16145, Italy
| |
Collapse
|
17
|
Kim J, John J, Langford D, Walker E, Ward S, Rawls SM. Clavulanic acid enhances glutamate transporter subtype I (GLT-1) expression and decreases reinforcing efficacy of cocaine in mice. Amino Acids 2015; 48:689-696. [PMID: 26543027 DOI: 10.1007/s00726-015-2117-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/09/2015] [Indexed: 01/11/2023]
Abstract
The β-lactam antibiotic ceftriaxone (CTX) reduces cocaine reinforcement and relapse in preclinical assays through a mechanism involving activation of glutamate transporter subtype 1 (GLT-1). However, its poor brain penetrability and intravenous administration route may limit its therapeutic utility for indications related to CNS diseases. An alternative is clavulanic acid (CA), a structural analog of CTX that retains the β-lactam core required for GLT-1 activity but displays enhanced brain penetrability and oral activity relative to CTX. Here, we tested the hypothesis that CA (1, 10 mg/kg ip) would enhance GLT-1 expression and decrease cocaine self-administration (SA) in mice, but at lower doses than CTX. Experiments revealed that GLT-1 transporter expression in the nucleus accumbens of mice treated with repeated CA (1, 10 mg/kg) was enhanced relative to saline-treated mice. Repeated CA treatment (1 mg/kg) reduced the reinforcing efficacy of cocaine (0.56 mg/kg/inf) in mice maintained on a progressive-ratio (PR) schedule of reinforcement but did not affect acquisition of cocaine SA under fixed-ratio responding or acquisition or retention of learning. These findings suggest that the β-lactamase inhibitor CA can activate the cellular glutamate reuptake system in the brain reward circuit and reduce cocaine's reinforcing efficacy at 100-fold lower doses than CTX.
Collapse
Affiliation(s)
- Jae Kim
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Joel John
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Dianne Langford
- Department of Neurosciences, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ellen Walker
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Sara Ward
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Scott M Rawls
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA.
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Schroeder JA, Tolman NG, McKenna FF, Watkins KL, Passeri SM, Hsu AH, Shinn BR, Rawls SM. Clavulanic acid reduces rewarding, hyperthermic and locomotor-sensitizing effects of morphine in rats: a new indication for an old drug? Drug Alcohol Depend 2014; 142:41-5. [PMID: 24998018 PMCID: PMC4127119 DOI: 10.1016/j.drugalcdep.2014.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/17/2014] [Accepted: 05/12/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Despite the efficacy of ceftriaxone (CTX) in animal models of CNS diseases, including drug addiction, its utility as a CNS-active therapeutic may be limited by poor brain penetrability and cumbersome parenteral administration. An alternative is the β-lactamase inhibitor clavulanic acid (CA), a constituent of Augmentin that prevents antibiotic degradation. CA possesses the β-lactam core necessary for CNS activity but, relative to CTX, possesses: (1) oral activity; (2) 2.5-fold greater brain penetrability; and (3) negligible antibiotic activity. METHODS To compare the effectiveness of CA (10mg/kg) and CTX (200mg/kg) against centrally-mediated endpoints, we investigated their effects against morphine's rewarding, hyperthermic, and locomotor-sensitizing actions. Endpoints were based on prior evidence that CTX attenuates morphine-induced physical dependence, tolerance, and hyperthermia. RESULTS As expected, rats treated with morphine (4 mg/kg) displayed hyperthermia and conditioned place preference (CPP). Co-treatment with CTX or CA inhibited development of morphine-induced CPP by approximately 70%. Morphine's hyperthermic effect was also suppressed, with CTX and CA producing 57% and 47% inhibition, respectively. Locomotor sensitization induced by repeated morphine exposures was inhibited by CA but not CTX. CONCLUSIONS The present findings are the first to suggest that CA disrupts the in vivo actions of morphine and point toward further studying CA as a potential therapy for drug addiction. Further, its ability to disrupt morphine's rewarding effects at 20-fold lower doses than CTX identifies CA as an existing, orally-active alternative to direct CTX therapy for CNS diseases.
Collapse
Affiliation(s)
- Joseph A. Schroeder
- Department of Psychology, Behavioral Neuroscience Program, Connecticut College, New London, CT
| | - Nicholas G. Tolman
- Department of Psychology, Behavioral Neuroscience Program, Connecticut College, New London, CT
| | - Faye F. McKenna
- Department of Psychology, Behavioral Neuroscience Program, Connecticut College, New London, CT
| | - Kelly L. Watkins
- Department of Psychology, Behavioral Neuroscience Program, Connecticut College, New London, CT
| | - Sara M. Passeri
- Department of Psychology, Behavioral Neuroscience Program, Connecticut College, New London, CT
| | - Alexander H. Hsu
- Department of Psychology, Behavioral Neuroscience Program, Connecticut College, New London, CT
| | - Brittany R. Shinn
- Department of Psychology, Behavioral Neuroscience Program, Connecticut College, New London, CT
| | - Scott M. Rawls
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA
,Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA
| |
Collapse
|
19
|
Hajhashemi V, Dehdashti K. Antinociceptive effect of clavulanic acid and its preventive activity against development of morphine tolerance and dependence in animal models. Res Pharm Sci 2014; 9:315-21. [PMID: 25657803 PMCID: PMC4317999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamate has a key role in pain perception and also development of tolerance and dependence to morphine. It has been reported that clavulanic acid affects glutamatergic transmission via activation of glutamate transporter. Therefore the present study was aimed to evaluate the possible antinociceptive effect of clavulanic acid and its preventive activity against development of morphine tolerance and dependence in animal models. Male Swiss mice (25-30 g) were used in this study. Acetic acid-induced writhing, formalin test and hot plate method were used to assess the antinociceptive effect of clavulanic acid. Morphine (30 mg/kg, s.c.) was administered to the mice two times a day (8 AM and 4 PM) for 3 days in order to produce tolerance. To develop morphine dependence, morphine sulfate (50, 50 and 75 mg/kg) was injected at 8 and 12 AM and 16 PM respectively and for 3 consecutive days. Naloxone (5 mg/kg, i.p) was used to induce morphine withdrawal syndrome and the number of jumps and presence of ptosis, piloerection, tremor, sniffing and diarrhea were recorded and compared with control group. Clavulanic acid at doses of 10, 20 and 40 mg/kg inhibited abdominal constriction and licking behavior of acetic acid and formalin-induced pain respectively. Clavulanic acid was not able to show any antinociception in hot plate model and could not prevent development of tolerance and dependence to morphine. Clavulanic acid has considerable antinociceptive activity and further studies are needed to clarify its exact mechanism.
Collapse
Affiliation(s)
- V. Hajhashemi
- Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,
Corresponding author: V. Hajhashemi, this paper is extracted from the Pharm.D thesis No. 391172 Tel. 0098 311 7922630, Fax. 0098 311 6680011
| | - Kh. Dehdashti
- Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
20
|
Ustione A, Piston DW, Harris PE. Minireview: Dopaminergic regulation of insulin secretion from the pancreatic islet. Mol Endocrinol 2013; 27:1198-207. [PMID: 23744894 DOI: 10.1210/me.2013-1083] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Exogenous dopamine inhibits insulin secretion from pancreatic β-cells, but the lack of dopaminergic neurons in pancreatic islets has led to controversy regarding the importance of this effect. Recent data, however, suggest a plausible physiologic role for dopamine in the regulation of insulin secretion. We review the literature underlying our current understanding of dopaminergic signaling that can down-regulate glucose-stimulated insulin secretion from pancreatic islets. In this negative feedback loop, dopamine is synthesized in the β-cells from circulating L-dopa, serves as an autocrine signal that is cosecreted with insulin, and causes a tonic inhibition on glucose-stimulated insulin secretion. On the whole animal scale, L-dopa is produced by cells in the gastrointestinal tract, and its concentration in the blood plasma increases following a mixed meal. By reviewing the outcome of certain types of bariatric surgery that result in rapid amelioration of glucose tolerance, we hypothesize that dopamine serves as an "antiincretin" signal that counterbalances the stimulatory effect of glucagon-like peptide 1.
Collapse
Affiliation(s)
- Alessandro Ustione
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, Tennessee 37232-0615, USA
| | | | | |
Collapse
|
21
|
Sanna F, Melis MR, Angioni L, Argiolas A. Clavulanic acid induces penile erection and yawning in male rats: comparison with apomorphine. Pharmacol Biochem Behav 2012; 103:750-5. [PMID: 23234836 DOI: 10.1016/j.pbb.2012.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/16/2012] [Accepted: 12/01/2012] [Indexed: 12/24/2022]
Abstract
The beta-lactamase inhibitor clavulanic acid induced penile erection and yawning in a dose dependent manner when given intraperitoneally (IP, 0.05-5mg/kg), perorally (OS, 0.1-5mg/kg) and intracereboventricularly (ICV, 0.01-5 μg/rat) to male rats. The effect resembles that of the dopamine receptor agonist apomorphine given subcutaneously (SC) (0.02-0.25mg/kg), although the responses of the latter followed a U inverted dose-response curve, disappearing at doses higher than 0.1mg/kg. Clavulanic acid responses were reduced by about 55% by haloperidol, a dopamine D2 receptor antagonist (0.1mg/kg IP), and by d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin, an oxytocin receptor antagonist (2 μg/rat ICV), both given 15 min before clavulanic acid. A higher reduction of clavulanic acid responses (more than 80%) was also found with morphine, an opioid receptor agonist (5mg/kg IP), and with mianserin, a serotonin 5HT(2c) receptor antagonist (0.2mg/kg SC). In contrast, no reduction was found with naloxone, an opioid receptor antagonist (1mg/kg IP). The ability of haloperidol, d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin and morphine to reduce clavulanic acid induced penile erection and yawning suggests that clavulanic acid induces these responses, at least in part, by increasing central dopaminergic neurotransmission. Dopamine in turn activates oxytocinergic neurotransmission and centrally released oxytocin induces penile erection and yawning. However, since both penile erection and yawning episodes were reduced not only by the blockade of central dopamine and oxytocin receptors and by the stimulation of opioid receptors, which inhibits oxytocinergic neurotransmission, but also by mianserin, an increase of central serotonin neurotransmission is also likely to participate in these clavulanic acid responses.
Collapse
Affiliation(s)
- Fabrizio Sanna
- Department of Biomedical Sciences, Neuroscience and Clinical Pharmacology Section, University of Cagliari, Italy
| | | | | | | |
Collapse
|
22
|
A stable liquid–liquid extraction system for clavulanic acid using polymer-based aqueous two-phase systems. Sep Purif Technol 2012. [DOI: 10.1016/j.seppur.2012.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Obregon D, Parker-Athill EC, Tan J, Murphy T. Psychotropic effects of antimicrobials and immune modulation by psychotropics: implications for neuroimmune disorders. ACTA ACUST UNITED AC 2012; 2:331-343. [PMID: 23148142 DOI: 10.2217/npy.12.41] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antimicrobial compounds and psychotropic medications often share overlapping mechanisms of actions and pharmacological effects. The immune system appears to be an important site of interaction as several antimicrobials display neurological and, at times, direct psychotropic effects, while psychotropics have shown significant immunomodulatory properties. The isoniazid class of antibiotics for example has been shown to possess monoamine oxidase activity, while selective serotonin reuptake inhibitors have shown significant effects on leukocyte populations. As the importance of the immune system's role in CNS homeostasis and disease continues to move to the forefront of neuropsychiatric research, these shared pharmacological effects may provide an important insight, elucidating the complexities in neuroimmune pathophysiology and guiding the development of potential treatments.
Collapse
Affiliation(s)
- Demian Obregon
- Department of Psychiatry & Behavioral Neurosciences, University of South Florida, Morsani College of Medicine, Tampa, FL, USA ; Silver Child Development Center, Department of Psychiatry & Behavioral Neurosciences, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | | | | | | |
Collapse
|
24
|
Results of a proof-of-concept, dose-finding, double-blind, placebo-controlled study of RX-10100 (Serdaxin®) in subjects with major depressive disorder. Psychopharmacology (Berl) 2012; 221:601-10. [PMID: 22203317 DOI: 10.1007/s00213-011-2604-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 11/28/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND RX-10100 (Serdaxin®), a nonantibiotic small molecule beta-lactam compound, has shown potent antidepressant and anxiolytic activities in preclinical models. RX-10100 does not bind to the serotonin transporter or other receptors associated with monoamine activity. In microdialysis studies with rats, RX-10100 increased the release of dopamine and serotonin metabolites. A clinical proof-of-concept study was conducted to determine the clinical effectiveness of RX-10100 in treating depression. METHODS This was a multicenter, randomized, double-blind, placebo-controlled, parallel group study of people with depression (n = 77; HAM-D-17 baseline score ≥ 20). Eligible subjects were randomly assigned to receive RX-10100 (5, 10, or 15 mg twice daily) or placebo for 8 weeks. Change from baseline in the MADRS total score was the primary endpoint. RESULTS Mean changes in MADRS scores were -46.0%, -37.9%, and -41.4%, for 5, 10, and 15 mg RX-10100, respectively, as compared with 43.1% for placebo. In subjects with severe depression (baseline MADRS ≥ 29; n = 28) scores improved 55.6% with 5 mg RX-10100 but only 34% with placebo (p = 0.041). In an analysis of responders (i.e., subjects with 50% change from baseline score), 64.3% of subjects treated with 5 mg RX-10100 responded. All doses of RX-10100 were well-tolerated. CONCLUSION In this proof-of-concept study, RX-10100 treatment (5 mg twice daily) improved MADRS scores in subjects with severe depression. RX-10100 does not appear to have many of the typical side effects of other antidepressants. These results indicate a need for larger studies further evaluating RX-10100 at 5 mg and lower doses.
Collapse
|