1
|
Liao Y, Li Y, Wang L, Zhang Y, Sang L, Wang Q, Li P, Xiong K, Qiu M, Zhang J. The Injury Progression in Acute Blast-Induced Mild Traumatic Brain Injury in Rats Reflected by Diffusion Tensor Imaging and Immunohistochemical Examination. J Neurotrauma 2024; 41:2478-2492. [PMID: 38877821 DOI: 10.1089/neu.2023.0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
Diffusion tensor imaging (DTI) has emerged as a promising neuroimaging tool for detecting blast-induced mild traumatic brain injury (bmTBI). However, lack of refined acute-phase monitoring and reliable imaging biomarkers hindered its clinical application in early diagnosis of bmTBI, leading to potential long-term disability of patients. In this study, we used DTI in a rat model of bmTBI generated by exposing to single lateral blast waves (151.16 and 349.75 kPa, lasting 47.48 ms) released in a confined bioshock tube, to investigate whole-brain DTI changes at 1, 3, and 7 days after injury. Combined assessment of immunohistochemical analysis, transmission electron microscopy, and behavioral readouts allowed for linking DTI changes to synchronous cellular damages and identifying stable imaging biomarkers. The corpus callosum (CC) and brainstem were identified as predominantly affected regions, in which reduced fractional anisotropy (FA) was detected as early as the first day after injury, with a maximum decline occurring at 3 days post-injury before returning to near normal levels by 7 days. Axial diffusivity (AD) values within the CC and brainstem also significantly reduced at 3 days post-injury. In contrast, the radial diffusivity (RD) in the CC showed acute elevation, peaking at 3 days after injury before normalizing by the 7-day time point. Damages to nerve fibers, including demyelination and axonal degeneration, progressed in lines with changes in DTI parameters, supporting a real-time macroscopic reflection of microscopic neuronal fiber injury by DTI. The most sensitive biomarker was identified as a decrease in FA, AD, and an increase in RD within the CC on the third day after injury, supporting the diagnostic utility of DTI in cases of bmTBI in the acute phase.
Collapse
Affiliation(s)
- Yalan Liao
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Yang Li
- Department of Medical Imaging, Air Force Hospital of Western Theater Command, Chengdu, China
| | - Li Wang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Ye Zhang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Linqiong Sang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Qiannan Wang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Pengyue Li
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Kunlin Xiong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingguo Qiu
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Jingna Zhang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Urbanik A, Guz W, Brożyna M, Ostrogórska M. Changes in the central nervous system in football players: an MRI study. Acta Radiol 2024; 65:967-974. [PMID: 38767036 DOI: 10.1177/02841851241248410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND Football (soccer) is the world's most popular team sport. PURPOSE To comprehensively examine the brain in football (soccer) players, with the use of magnetic resonance imaging (MRI) techniques. MATERIAL AND METHODS The study involved 65 football players and 62 controls. The MR examinations were performed using MR 1.5-T system (Optima MR 360; GE Medical Systems). The examinations were carried out in the 3D Bravo, CUBE, FSEpropeller, and diffusion-weighted imaging (DWI) sequences. The 1HMRS signal was obtained from the volume of interest in the frontal and occipital lobes on both sides. RESULTS The present study, based on structural MRI, shows some changes in the brains of the group of football players. The findings show asymmetry of the ventricular system in four football players, arachnoid cysts in the parieto-occipital region, and pineal cysts. NAA/Cr concentration in the right frontal lobe was lower in the football players than in the controls, and the Glx/Cr concentration in the right occipital lobe was higher. The apparent diffusion coefficient value is lower in football players in the occipital lobes. CONCLUSION Playing football can cause measurable changes in the brain, known to occur in patients diagnosed with traumatic brain injury. The present findings fill the gap in the literature by contributing evidence showing that playing football may lead to changes in the brain, without clinical symptoms of concussion.
Collapse
Affiliation(s)
- Andrzej Urbanik
- Department of Radiology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Wiesław Guz
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Maciej Brożyna
- Institute of Physical Culture Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Monika Ostrogórska
- Department of Radiology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| |
Collapse
|
3
|
Laporte JP, Faulkner ME, Gong Z, Akhonda MA, Ferrucci L, Egan JM, Bouhrara M. Hypertensive Adults Exhibit Lower Myelin Content: A Multicomponent Relaxometry and Diffusion Magnetic Resonance Imaging Study. Hypertension 2023; 80:1728-1738. [PMID: 37283066 PMCID: PMC10355798 DOI: 10.1161/hypertensionaha.123.21012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND It is unknown whether hypertension plays any role in cerebral myelination. To fill this knowledge gap, we studied 90 cognitively unimpaired adults, age range 40 to 94 years, who are participants in the Baltimore Longitudinal Study of Aging and the Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing to look for potential associations between hypertension and cerebral myelin content across 14 white matter brain regions. METHODS Myelin content was probed using our advanced multicomponent magnetic resonance relaxometry method of myelin water fraction, a direct and specific magnetic resonance imaging measure of myelin content, and longitudinal and transverse relaxation rates (R1 and R2), 2 highly sensitive magnetic resonance imaging metrics of myelin content. We also applied diffusion tensor imaging magnetic resonance imaging to measure fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity values, which are metrics of cerebral microstructural tissue integrity, to provide context with previous magnetic resonance imaging findings. RESULTS After adjustment of age, sex, systolic blood pressure, smoking status, diabetes status, and cholesterol level, our results indicated that participants with hypertension exhibited lower myelin water fraction, fractional anisotropy, R1 and R2 values and higher mean diffusivity, radial diffusivity, and axial diffusivity values, indicating lower myelin content and higher impairment to the brain microstructure. These associations were significant across several white matter regions, particularly in the corpus callosum, fronto-occipital fasciculus, temporal lobes, internal capsules, and corona radiata. CONCLUSIONS These original findings suggest a direct association between myelin content and hypertension and form the basis for further investigations including longitudinal assessments of this relationship.
Collapse
Affiliation(s)
- John P. Laporte
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Mary E. Faulkner
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Mohammad A.B.S. Akhonda
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Luigi Ferrucci
- Translational Gerontology Branch (L.F.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Josephine M. Egan
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| |
Collapse
|
4
|
La PL, Joyce JM, Bell TK, Mauthner M, Craig W, Doan Q, Beauchamp MH, Zemek R, Yeates KO, Harris AD. Brain metabolites measured with magnetic resonance spectroscopy in pediatric concussion and orthopedic injury: An Advancing Concussion Assessment in Pediatrics (A-CAP) study. Hum Brain Mapp 2023; 44:2493-2508. [PMID: 36763547 PMCID: PMC10028643 DOI: 10.1002/hbm.26226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/18/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Millions of children sustain a concussion annually. Concussion disrupts cellular signaling and neural pathways within the brain but the resulting metabolic disruptions are not well characterized. Magnetic resonance spectroscopy (MRS) can examine key brain metabolites (e.g., N-acetyl Aspartate (tNAA), glutamate (Glx), creatine (tCr), choline (tCho), and myo-Inositol (mI)) to better understand these disruptions. In this study, we used MRS to examine differences in brain metabolites between children and adolescents with concussion versus orthopedic injury. Children and adolescents with concussion (n = 361) or orthopedic injury (OI) (n = 184) aged 8 to 17 years were recruited from five emergency departments across Canada. MRS data were collected from the left dorsolateral prefrontal cortex (L-DLPFC) using point resolved spectroscopy (PRESS) at 3 T at a mean of 12 days post-injury (median 10 days post-injury, range 2-33 days). Univariate analyses for each metabolite found no statistically significant metabolite differences between groups. Within each analysis, several covariates were statistically significant. Follow-up analyses designed to account for possible confounding factors including age, site, scanner, vendor, time since injury, and tissue type (and interactions as appropriate) did not find any metabolite group differences. In the largest sample of pediatric concussion studied with MRS to date, we found no metabolite differences between concussion and OI groups in the L-DLPFC. We suggest that at 2 weeks post-injury in a general pediatric concussion population, brain metabolites in the L-DLPFC are not specifically affected by brain injury.
Collapse
Affiliation(s)
- Parker L La
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Julie M Joyce
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany K Bell
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Micaela Mauthner
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - William Craig
- Department of Pediatrics, University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal and Ste Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
- Childrens' Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Keith Owen Yeates
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Joyce JM, La PL, Walker R, Harris A. Magnetic resonance spectroscopy of traumatic brain injury and subconcussive hits: A systematic review and meta-analysis. J Neurotrauma 2022; 39:1455-1476. [PMID: 35838132 DOI: 10.1089/neu.2022.0125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive technique used to study metabolites in the brain. MRS findings in traumatic brain injury (TBI) and subconcussive hit literature have been mixed. The most common observation is a decrease in N-acetyl-aspartate (NAA), traditionally considered a marker of neuronal integrity. Other metabolites, however, such as creatine (Cr), choline (Cho), glutamate+glutamine (Glx) and myo-inositol (mI) have shown inconsistent changes in these populations. The objective of this systematic review and meta-analysis was to synthesize MRS literature in head injury and explore factors (brain region, injury severity, time since injury, demographic, technical imaging factors, etc.) that may contribute to differential findings. One hundred and thirty-eight studies met inclusion criteria for the systematic review and of those, 62 NAA, 24 Cr, 49 Cho, 18 Glx and 21 mI studies met inclusion criteria for meta-analysis. A random effects model was used for meta-analyses with brain region as a subgroup for each of the five metabolites studied. Meta-regression was used to examine the influence of potential moderators including injury severity, time since injury, age, sex, tissue composition and methodological factors. In this analysis of 1428 unique head-injured subjects and 1132 controls, the corpus callosum was identified as a brain region highly susceptible to metabolite alteration. NAA was consistently decreased in TBI of all severity, but not in subconcussive hits. Cho and mI were found to be increased in moderate-to-severe TBI but not mild TBI. Glx and Cr were largely unaffected, however did show alterations in certain conditions.
Collapse
Affiliation(s)
- Julie Michele Joyce
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Parker L La
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Robyn Walker
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Ashley Harris
- University of Calgary, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| |
Collapse
|
6
|
Associations Between Neurochemistry and Gait Performance Following Concussion in Collegiate Athletes. J Head Trauma Rehabil 2021; 35:342-353. [PMID: 32881768 DOI: 10.1097/htr.0000000000000616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To evaluate the strength of associations between single-task and dual-task gait measures and posterior cingulate gyrus (PCG) neurochemicals in acutely concussed collegiate athletes. SETTING Participants were recruited from an NCAA Division 1 University. PARTICIPANTS Nineteen collegiate athletes acutely (<4 days) following sports-related concussion. DESIGN We acquired magnetic resonance spectroscopy (MRS) in the PCG and gait performance measurements in the participants, acutely following concussion. Linear mixed-effects models were constructed to measure the effect of gait performance, in the single- and dual-task settings, and sex on the 6 neurochemicals quantified with MRS in mmol. Correlation coefficients were also calculated to determine the direction and strength of the relationship between MRS neurochemicals and gait performance, postconcussion symptom score, and number of previous concussions. MAIN MEASURES Average gait speed, average cadence, N-acetyl aspartate, choline, myo-inositol, glutathione, glutamate plus glutamine, and creatine. RESULTS Single-task gait speed (P = .0056) and cadence (P = .0065) had significant effects on myo-inositol concentrations in the PCG, independent of sex, in concussed collegiate athletes. Single-task cadence (P = .047) also had a significant effect on glutathione in the PCG. No significant effects were observed between dual-task gait performance and PCG neurochemistry. CONCLUSIONS These findings indicate that increased concentrations of neuroinflammatory markers in the PCG are associated with slower single-task gait performance within 4 days of sports-related concussion.
Collapse
|
7
|
Bartnik-Olson BL, Alger JR, Babikian T, Harris AD, Holshouser B, Kirov II, Maudsley AA, Thompson PM, Dennis EL, Tate DF, Wilde EA, Lin A. The clinical utility of proton magnetic resonance spectroscopy in traumatic brain injury: recommendations from the ENIGMA MRS working group. Brain Imaging Behav 2021; 15:504-525. [PMID: 32797399 PMCID: PMC7882010 DOI: 10.1007/s11682-020-00330-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proton (1H) magnetic resonance spectroscopy provides a non-invasive and quantitative measure of brain metabolites. Traumatic brain injury impacts cerebral metabolism and a number of research groups have successfully used this technique as a biomarker of injury and/or outcome in both pediatric and adult TBI populations. However, this technique is underutilized, with studies being performed primarily at centers with access to MR research support. In this paper we present a technical introduction to the acquisition and analysis of in vivo 1H magnetic resonance spectroscopy and review 1H magnetic resonance spectroscopy findings in different injury populations. In addition, we propose a basic 1H magnetic resonance spectroscopy data acquisition scheme (Supplemental Information) that can be added to any imaging protocol, regardless of clinical magnetic resonance platform. We outline a number of considerations for study design as a way of encouraging the use of 1H magnetic resonance spectroscopy in the study of traumatic brain injury, as well as recommendations to improve data harmonization across groups already using this technique.
Collapse
Affiliation(s)
| | - Jeffry R Alger
- Departments of Neurology and Radiology, University of California Los Angeles, Los Angeles, CA, USA
- NeuroSpectroScopics LLC, Sherman Oaks, Los Angeles, CA, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Canada
- Child and Adolescent Imaging Research Program, Alberta Children's Hospital Research Institute and the Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Barbara Holshouser
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Ivan I Kirov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Andrew A Maudsley
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Emily L Dennis
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, MA, USA
| | - David F Tate
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Alexander Lin
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Wiegand TLT, Sollmann N, Bonke EM, Umeasalugo KE, Sobolewski KR, Plesnila N, Shenton ME, Lin AP, Koerte IK. Translational neuroimaging in mild traumatic brain injury. J Neurosci Res 2021; 100:1201-1217. [PMID: 33789358 DOI: 10.1002/jnr.24840] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 01/26/2023]
Abstract
Traumatic brain injuries (TBIs) are common with an estimated 27.1 million cases per year. Approximately 80% of TBIs are categorized as mild TBI (mTBI) based on initial symptom presentation. While in most individuals, symptoms resolve within days to weeks, in some, symptoms become chronic. Advanced neuroimaging has the potential to characterize brain morphometric, microstructural, biochemical, and metabolic abnormalities following mTBI. However, translational studies are needed for the interpretation of neuroimaging findings in humans with respect to the underlying pathophysiological processes, and, ultimately, for developing novel and more targeted treatment options. In this review, we introduce the most commonly used animal models for the study of mTBI. We then summarize the neuroimaging findings in humans and animals after mTBI and, wherever applicable, the translational aspects of studies available today. Finally, we highlight the importance of translational approaches and outline future perspectives in the field of translational neuroimaging in mTBI.
Collapse
Affiliation(s)
- Tim L T Wiegand
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Nico Sollmann
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Elena M Bonke
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Kosisochukwu E Umeasalugo
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Kristen R Sobolewski
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität, Munich, Germany
- Munich Cluster for Systems Neurology (Synergy), Munich, Germany
| | - Martha E Shenton
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander P Lin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Inga K Koerte
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Champagne AA, Peponoulas E, Terem I, Ross A, Tayebi M, Chen Y, Coverdale NS, Nielsen PMF, Wang A, Shim V, Holdsworth SJ, Cook DJ. Novel strain analysis informs about injury susceptibility of the corpus callosum to repeated impacts. Brain Commun 2019; 1:fcz021. [PMID: 32954264 PMCID: PMC7425391 DOI: 10.1093/braincomms/fcz021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023] Open
Abstract
Increasing evidence for the cumulative effects of head trauma on structural integrity of the brain has emphasized the need to understand the relationship between tissue mechanic properties and injury susceptibility. Here, diffusion tensor imaging, helmet accelerometers and amplified magnetic resonance imaging were combined to gather insight about the region-specific vulnerability of the corpus callosum to microstructural changes in white-matter integrity upon exposure to sub-concussive impacts. A total of 33 male Canadian football players (meanage = 20.3 ± 1.4 years) were assessed at three time points during a football season (baseline pre-season, mid-season and post-season). The athletes were split into a LOW (N = 16) and HIGH (N = 17) exposure group based on the frequency of sub-concussive impacts sustained on a per-session basis, measured using the helmet-mounted accelerometers. Longitudinal decreases in fractional anisotropy were observed in anterior and posterior regions of the corpus callosum (average cluster size = 40.0 ± 4.4 voxels; P < 0.05, corrected) for athletes from the HIGH exposure group. These results suggest that the white-matter tract may be vulnerable to repetitive sub-concussive collisions sustained over the course of a football season. Using these findings as a basis for further investigation, a novel exploratory analysis of strain derived from sub-voxel motion of brain tissues in response to cardiac impulses was developed using amplified magnetic resonance imaging. This approach revealed specific differences in strain (and thus possibly stiffness) along the white-matter tract (P < 0.0001) suggesting a possible signature relationship between changes in white-matter integrity and tissue mechanical properties. In light of these findings, additional information about the viscoelastic behaviour of white-matter tissues may be imperative in elucidating the mechanisms responsible for region-specific differences in injury susceptibility observed, for instance, through changes in microstructural integrity following exposure to sub-concussive head impacts.
Collapse
Affiliation(s)
- Allen A Champagne
- Centre for Neuroscience Studies, Room 260, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Emile Peponoulas
- Centre for Neuroscience Studies, Room 260, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Itamar Terem
- Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, CA, USA
| | | | - Maryam Tayebi
- Auckland Bioengineering Institute, University of Auckland, Auckland Bioengineering House, L6, 70 Symonds Street, Auckland 1010, New Zealand
| | - Yining Chen
- Centre for Neuroscience Studies, Room 260, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Nicole S Coverdale
- Centre for Neuroscience Studies, Room 260, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Poul M F Nielsen
- Auckland Bioengineering Institute, University of Auckland, Auckland Bioengineering House, L6, 70 Symonds Street, Auckland 1010, New Zealand.,Department of Engineering Science, Faculty of Engineering, University of Auckland, Auckland 1010, New Zealand
| | - Alan Wang
- Auckland Bioengineering Institute, University of Auckland, Auckland Bioengineering House, L6, 70 Symonds Street, Auckland 1010, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, University of Auckland, Auckland Bioengineering House, L6, 70 Symonds Street, Auckland 1010, New Zealand
| | - Samantha J Holdsworth
- Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Douglas J Cook
- Centre for Neuroscience Studies, Room 260, Queen's University, Kingston, ON K7L 3N6, Canada.,Department of Surgery, Queen's University, Kingston, ON, Canada
| |
Collapse
|
10
|
Maghsudi H, Schütze M, Maudsley AA, Dadak M, Lanfermann H, Ding XQ. Age-related Brain Metabolic Changes up to Seventh Decade in Healthy Humans : Whole-brain Magnetic Resonance Spectroscopic Imaging Study. Clin Neuroradiol 2019; 30:581-589. [PMID: 31350597 DOI: 10.1007/s00062-019-00814-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/03/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE To study brain metabolic changes under normal aging and to collect reference data for the study of neurodegenerative diseases. METHODS A total of 55 healthy subjects aged 20-70 years (n ≥ 5 per age decade for each gender) underwent whole-brain magnetic resonance spectroscopic imaging at 3T after completing a DemTect test and the Beck depressions inventory II to exclude cognitive impairment and mental disorder. Regional concentrations of N-acetylaspartate (NAA), choline-containing compounds (Cho), total creatine (tCr), glutamine and glutamate (Glx), and myo-inositol (mI) were determined in 12 brain regions of interest (ROIs). The two-sided t‑test was used to estimate gender differences and linear regression analysis was carried out to estimate age dependence of brain regional metabolite contents. RESULTS Brain regional metabolite concentrations changed with age in the majority of selected brain regions. The NAA decreased in 8 ROIs with a rate varying from -4.9% to -1.9% per decade, reflecting a general reduction of brain neuronal function or volume and density in older age; Cho increased in 4 ROIs with a rate varying from 4.3% to 6.1%; tCr and mI increased in one ROI (4.2% and 8.2% per decade, respectively), whereas Glx decreased in one ROI (-5.1% per decade), indicating an inhomogeneous increase of cell membrane turnover (Cho) with altered energy metabolism (tCr) and glutamatergic neuronal activity (Glx) as well as function of glia cell (mI) in normal aging brain. CONCLUSION Healthy aging up to the seventh decade of life is associated with regional dependent alterations of brain metabolism. These results provide a reference database for future studies of patients.
Collapse
Affiliation(s)
- Helen Maghsudi
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Martin Schütze
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Andrew A Maudsley
- Department of Radiology, University of Miami School of Medicine, Miami, FL, USA
| | - Mete Dadak
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Heinrich Lanfermann
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Xiao-Qi Ding
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
11
|
Lawrence TP, Steel A, Ezra M, Speirs M, Pretorius PM, Douaud G, Sotiropoulos S, Cadoux-Hudson T, Emir UE, Voets NL. MRS and DTI evidence of progressive posterior cingulate cortex and corpus callosum injury in the hyper-acute phase after Traumatic Brain Injury. Brain Inj 2019; 33:854-868. [PMID: 30848964 PMCID: PMC6619394 DOI: 10.1080/02699052.2019.1584332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The posterior cingulate cortex (PCC) and corpus callosum (CC) are susceptible to trauma, but injury often evades detection. PCC Metabolic disruption may predict CC white matter tract injury and the secondary cascade responsible for progression. While the time frame for the secondary cascade remains unclear in humans, the first 24 h (hyper-acute phase) are crucial for life-saving interventions. Objectives: To test whether Magnetic Resonance Imaging (MRI) markers are detectable in the hyper-acute phase and progress after traumatic brain injury (TBI) and whether alterations in these parameters reflect injury severity. Methods: Spectroscopic and diffusion-weighted MRI data were collected in 18 patients with TBI (within 24 h and repeated 7–15 days following injury) and 18 healthy controls (scanned once). Results: Within 24 h of TBI N-acetylaspartate was reduced (F = 11.43, p = 0.002) and choline increased (F = 10.67, p = 0.003), the latter driven by moderate-severe injury (F = 5.54, p = 0.03). Alterations in fractional anisotropy (FA) and axial diffusivity (AD) progressed between the two time-points in the splenium of the CC (p = 0.029 and p = 0.013). Gradual reductions in FA correlated with progressive increases in choline (p = 0.029). Conclusions: Metabolic disruption and structural injury can be detected within hours of trauma. Metabolic and diffusion parameters allow identification of severity and provide evidence of injury progression.
Collapse
Affiliation(s)
- Tim P Lawrence
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| | - Adam Steel
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,c Laboratory of Brain and Cognition , National Institute of Mental Health, National Institutes of Health , Bethesda , MD , USA
| | - Martyn Ezra
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom
| | - Mhairi Speirs
- b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| | - Pieter M Pretorius
- b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| | - Gwenaelle Douaud
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom
| | - Stamatios Sotiropoulos
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,d Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham , Nottingham , UK.,e National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre , Nottingham , UK
| | - Tom Cadoux-Hudson
- b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| | - Uzay E Emir
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,f School of Health Sciences , Purdue University , West Lafayette , IN , USA
| | - Natalie L Voets
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| |
Collapse
|
12
|
Panchal H, Sollmann N, Pasternak O, Alosco ML, Kinzel P, Kaufmann D, Hartl E, Forwell LA, Johnson AM, Skopelja EN, Shenton ME, Koerte IK, Echlin PS, Lin AP. Neuro-Metabolite Changes in a Single Season of University Ice Hockey Using Magnetic Resonance Spectroscopy. Front Neurol 2018; 9:616. [PMID: 30177905 PMCID: PMC6109794 DOI: 10.3389/fneur.2018.00616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/09/2018] [Indexed: 01/13/2023] Open
Abstract
Background: Previous research has shown evidence for transient neuronal loss after repetitive head impacts (RHI) as demonstrated by a decrease in N-acetylaspartate (NAA). However, few studies have investigated other neuro-metabolites that may be altered in the presence of RHI; furthermore, the relationship of neuro-metabolite changes to neurocognitive outcome and potential sex differences remain largely unknown. Objective: The aim of this study was to identify alterations in brain metabolites and their potential association with neurocognitive performance over time as well as to characterize sex-specific differences in response to RHI. Methods: 33 collegiate ice hockey players (17 males and 16 females) underwent 3T magnetic resonance spectroscopy (MRS) and neurocognitive evaluation before and after the Canadian Interuniversity Sports (CIS) ice hockey season 2011–2012. The MRS voxel was placed in the corpus callosum. Pre- and postseason neurocognitive performances were assessed using the Immediate Post-Concussion Assessment and Cognitive Test (ImPACT). Absolute neuro-metabolite concentrations were then compared between pre- and postseason MRS were (level of statistical significance after correction for multiple comparisons: p < 0.007) and correlated to ImPACT scores for both sexes. Results: A significant decrease in NAA was observed from preseason to postseason (p = 0.001). Furthermore, a trend toward a decrease in total choline (Cho) was observed (p = 0.044). Although no overall effect was observed for glutamate (Glu) over the season, a difference was observed with females showing a decrease in Glu and males showing an increase in Glu, though this was not statistically significant (p = 0.039). In both males and females, a negative correlation was observed between changes in Glu and changes in verbal memory (p = 0.008). Conclusion: The results of this study demonstrate changes in absolute concentrations of neuro-metabolites following exposure to RHI. Results suggest that changes in Glu are correlated with changes in verbal memory. Future studies need to investigate further the association between brain metabolites and clinical outcome as well as sex-specific differences in the brain's response to RHI.
Collapse
Affiliation(s)
- Hemali Panchal
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nico Sollmann
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael L Alosco
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, United States.,Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Philipp Kinzel
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - David Kaufmann
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Elisabeth Hartl
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Neurology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Lorie A Forwell
- 3M Centre, The University of Western Ontario, London, ON, Canada
| | - Andrew M Johnson
- School of Health Studies, The University of Western Ontario, London, ON, Canada
| | - Elaine N Skopelja
- Ruth Lilly Medical Library, Indiana University, Indianapolis, IN, United States
| | - Martha E Shenton
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,VA Boston Healthcare System, Brockton, MA, United States
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Paul S Echlin
- Elliott Sports Medicine Clinic, Burlington, ON, Canada
| | - Alexander P Lin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Coyle HL, Ponsford J, Hoy KE. Understanding individual variability in symptoms and recovery following mTBI: A role for TMS-EEG? Neurosci Biobehav Rev 2018; 92:140-149. [PMID: 29885426 DOI: 10.1016/j.neubiorev.2018.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 10/14/2022]
Abstract
The pathophysiology associated with mild traumatic brain injury (mTBI) includes neurometabolic and cytoskeletal changes that have been shown to impair structural and functional connectivity. Evidence that persistent neuropsychological impairments post injury are linked to structural and functional connectivity changes is increasing. However, to date the relationship between connectivity changes, heterogeneity of persistent symptoms and recovery post mTBI has been poorly characterised. Recent innovations in neuroimaging provide new ways of exploring connectivity changes post mTBI. Namely, combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) offers several advantages over traditional approaches for studying connectivity changes post TBI. Its ability to perturb neural function in a controlled manner allows for measurement of causal interactions or effective connectivity between brain regions. We review the current literature assessing structural and functional connectivity following mTBI and outline the rationale for the use of TMS-EEG as an ideal tool for investigating the neural substrates of connectivity dysfunction and reorganisation post mTBI. The diagnostic, prognostic and potential therapeutic implications will also be explored.
Collapse
Affiliation(s)
- Hannah L Coyle
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Melbourne, Australia.
| | - Jennie Ponsford
- School of Psychological Sciences, Monash University, Clayton, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Melbourne, Australia
| |
Collapse
|
14
|
Chamard E, Lichtenstein JD. A systematic review of neuroimaging findings in children and adolescents with sports-related concussion. Brain Inj 2018; 32:816-831. [PMID: 29648462 DOI: 10.1080/02699052.2018.1463106] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Sport-related concussion (SRC) generally does not result in structural anomalies revealed through clinical imaging techniques such as MRI and CT. While advanced neuroimaging techniques offer another avenue to investigate the subtle alterations following SRC, the current pediatric literature in this area has yet to be reviewed. The aim of this review is to systematically explore the literature on magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), functional magnetic resonance imaging (fMRI), and cortical thickness following SRC in children and adolescents. METHODS A systematic Pubmed search using the preferred reporting items for systematic reviews and meta-analysis guidelines was conducted independently for each neuroimaging method. Studies were screened for inclusion based on pre-determined criteria. RESULTS A total of 26 studies were included (MRS = 4, DTI = 10, fMRI = 11, cortical thickness = 1). A total of 16 studies were conducted solely with male athletes, while 10 studies recruited an unequal number of male and female athletes. CONCLUSIONS While MRI and CT are generally unrevealing, advanced neuroimaging techniques demonstrated neurometabolic, microstructural, and functional alterations following SRC in athletes younger than 19 years of age in the acute, subacute, and chronic phases of recovery. However, more studies are needed to fully understand the impact of SRC on the developing brain in children and adolescents.
Collapse
Affiliation(s)
- Emilie Chamard
- a Department of Psychiatry, Geisel School of Medicine at Dartmouth , Dartmouth-Hitchcock Medical Center , Lebanon , NH , USA
| | - Jonathan D Lichtenstein
- a Department of Psychiatry, Geisel School of Medicine at Dartmouth , Dartmouth-Hitchcock Medical Center , Lebanon , NH , USA
| |
Collapse
|
15
|
Kirov II, Whitlow CT, Zamora C. Susceptibility-Weighted Imaging and Magnetic Resonance Spectroscopy in Concussion. Neuroimaging Clin N Am 2018; 28:91-105. [PMID: 29157856 DOI: 10.1016/j.nic.2017.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Zafonte RD, Shih SL, Iaccarino MA, Tan CO. Neurologic benefits of sports and exercise. HANDBOOK OF CLINICAL NEUROLOGY 2018; 158:463-471. [PMID: 30482373 DOI: 10.1016/b978-0-444-63954-7.00042-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Traumatic brain injury (TBI) is associated with several pathophysiologic changes, including: neurostructural alterations; molecular changes with shifts in circulating neurotrophins; impaired neural metabolism; changes in cerebrovascular autoregulation, vasoreactivity, and neurovascular coupling; and alterations in functional brain connectivity. In animal models of TBI, aerobic exercise reduces neuronal injury, promotes neuronal survival, and enhances the production of neuroprotective trophic factors. However, the timing of exercise initiation is an important consideration as early exercise in the acute postinjury period may impede recovery mechanisms, although evidence for this in humans is lacking. Though human clinical studies are limited, aerobic exercise post-TBI engages cerebrovascular mechanisms and may impart neurophysiologic benefits to mitigate post-TBI pathophysiologic changes. Additionally, subsymptom threshold exercise in humans has been demonstrated to be safe, feasible, and effective in decreasing symptom burden in individuals with mild TBI, and to counteract the detrimental effects of prolonged inactivity, subsequent physical deconditioning, and its negative emotional sequelae. This chapter will explore the potential role of aerobic exercise in neurorecovery after TBI.
Collapse
Affiliation(s)
- Ross D Zafonte
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.
| | - Shirley L Shih
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Mary Alexis Iaccarino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Can Ozan Tan
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Fidan E, Foley LM, New LA, Alexander H, Kochanek PM, Hitchens TK, Bayır H. Metabolic and Structural Imaging at 7 Tesla After Repetitive Mild Traumatic Brain Injury in Immature Rats. ASN Neuro 2018; 10:1759091418770543. [PMID: 29741097 PMCID: PMC5944144 DOI: 10.1177/1759091418770543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/03/2018] [Accepted: 03/20/2018] [Indexed: 11/15/2022] Open
Abstract
Mild traumatic brain injury (mTBI) in children is a common and serious public health problem. Traditional neuroimaging findings in children who sustain mTBI are often normal, putting them at risk for repeated mTBI (rmTBI). There is a need for more sensitive imaging techniques capable of detecting subtle neurophysiological alterations after injury. We examined neurochemical and white matter changes using diffusion tensor imaging of the whole brain and proton magnetic resonance spectroscopy of the hippocampi at 7 Tesla in 18-day-old male rats at 7 days after mTBI and rmTBI. Traumatic axonal injury was assessed by beta-amyloid precursor protein accumulation using immunohistochemistry. A significant decrease in fractional anisotropy and increase in axial and radial diffusivity were observed in several brain regions, especially in white matter regions, after a single mTBI versus sham and more prominently after rmTBI. In addition, we observed accumulation of beta-amyloid precursor protein in the external capsule after mTBI and rmTBI. mTBI and rmTBI reduced the N-acetylaspartate/creatine ratio (NAA/Cr) and increased the myoinositol/creatine ratio (Ins/Cr) versus sham. rmTBI exacerbated the reduction in NAA/Cr versus mTBI. The choline/creatine (Cho/Cr) and (lipid/Macro Molecule 1)/creatine (Lip/Cr) ratios were also decreased after rmTBI versus sham. Diffusion tensor imaging findings along with the decrease in Cho and Lip after rmTBI may reflect damage to axonal membrane. NAA and Ins are altered at 7 days after mTBI and rmTBI likely reflecting neuro-axonal damage and glial response, respectively. These findings may be relevant to understanding the extent of disability following mTBI and rmTBI in the immature brain and may identify possible therapeutic targets.
Collapse
Affiliation(s)
- Emin Fidan
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, PA, USA
| | - Lesley M. Foley
- Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, PA, USA
- Animal Imaging Center, University of Pittsburgh, PA, USA
| | - Lee Ann New
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, PA, USA
| | - Henry Alexander
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, PA, USA
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, PA, USA
| | - T. Kevin Hitchens
- Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, PA, USA
- Animal Imaging Center, University of Pittsburgh, PA, USA
| | - Hülya Bayır
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, PA, USA
- Children's Neuroscience Institute
| |
Collapse
|
18
|
Narayana PA. White matter changes in patients with mild traumatic brain injury: MRI perspective. Concussion 2017; 2:CNC35. [PMID: 30202576 PMCID: PMC6093760 DOI: 10.2217/cnc-2016-0028] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/10/2017] [Indexed: 12/20/2022] Open
Abstract
This review focuses on white matter (WM) changes in mild traumatic brain injury (mTBI) as assessed by multimodal MRI. All the peer reviewed publications on WM changes in mTBI from January 2011 through September 2016 are included in this review. This review is organized as follows: introduction to mTBI, the basics of multimodal MRI techniques that are potentially useful for probing the WM integrity, summary and critical evaluation of the published literature on the application of multimodal MRI techniques to assess the changes of WM in mTBI, and correlation of MRI measures with behavioral deficits. The MRI-pathology correlation studies based on preclinical models of mTBI are also reviewed. Finally, the author's perspective of future research directions is described.
Collapse
Affiliation(s)
- Ponnada A Narayana
- Department of Diagnostic & Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
19
|
McCrea M, Meier T, Huber D, Ptito A, Bigler E, Debert CT, Manley G, Menon D, Chen JK, Wall R, Schneider KJ, McAllister T. Role of advanced neuroimaging, fluid biomarkers and genetic testing in the assessment of sport-related concussion: a systematic review. Br J Sports Med 2017; 51:919-929. [DOI: 10.1136/bjsports-2016-097447] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2017] [Indexed: 01/17/2023]
|
20
|
Hobbs JG, Young JS, Bailes JE. Sports-related concussions: diagnosis, complications, and current management strategies. Neurosurg Focus 2017; 40:E5. [PMID: 27032922 DOI: 10.3171/2016.1.focus15617] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sports-related concussions (SRCs) are traumatic events that affect up to 3.8 million athletes per year. The initial diagnosis and management is often instituted on the field of play by coaches, athletic trainers, and team physicians. SRCs are usually transient episodes of neurological dysfunction following a traumatic impact, with most symptoms resolving in 7-10 days; however, a small percentage of patients will suffer protracted symptoms for years after the event and may develop chronic neurodegenerative disease. Rarely, SRCs are associated with complications, such as skull fractures, epidural or subdural hematomas, and edema requiring neurosurgical evaluation. Current standards of care are based on a paradigm of rest and gradual return to play, with decisions driven by subjective and objective information gleaned from a detailed history and physical examination. Advanced imaging techniques such as functional MRI, and detailed understanding of the complex pathophysiological process underlying SRCs and how they affect the athletes acutely and long-term, may change the way physicians treat athletes who suffer a concussion. It is hoped that these advances will allow a more accurate assessment of when an athlete is truly safe to return to play, decreasing the risk of secondary impact injuries, and provide avenues for therapeutic strategies targeting the complex biochemical cascade that results from a traumatic injury to the brain.
Collapse
Affiliation(s)
- Jonathan G Hobbs
- Department of Surgery, Section of Neurosurgery, The University of Chicago Pritzker School of Medicine, Chicago; and
| | - Jacob S Young
- Department of Surgery, Section of Neurosurgery, The University of Chicago Pritzker School of Medicine, Chicago; and
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University HealthSystem, The University of Chicago Pritzker School of Medicine, Evanston, Illinois
| |
Collapse
|
21
|
Wu X, Kirov II, Gonen O, Ge Y, Grossman RI, Lui YW. MR Imaging Applications in Mild Traumatic Brain Injury: An Imaging Update. Radiology 2016; 279:693-707. [PMID: 27183405 DOI: 10.1148/radiol.16142535] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mild traumatic brain injury (mTBI), also commonly referred to as concussion, affects millions of Americans annually. Although computed tomography is the first-line imaging technique for all traumatic brain injury, it is incapable of providing long-term prognostic information in mTBI. In the past decade, the amount of research related to magnetic resonance (MR) imaging of mTBI has grown exponentially, partly due to development of novel analytical methods, which are applied to a variety of MR techniques. Here, evidence of subtle brain changes in mTBI as revealed by these techniques, which are not demonstrable by conventional imaging, will be reviewed. These changes can be considered in three main categories of brain structure, function, and metabolism. Macrostructural and microstructural changes have been revealed with three-dimensional MR imaging, susceptibility-weighted imaging, diffusion-weighted imaging, and higher order diffusion imaging. Functional abnormalities have been described with both task-mediated and resting-state blood oxygen level-dependent functional MR imaging. Metabolic changes suggesting neuronal injury have been demonstrated with MR spectroscopy. These findings improve understanding of the true impact of mTBI and its pathogenesis. Further investigation may eventually lead to improved diagnosis, prognosis, and management of this common and costly condition. (©) RSNA, 2016.
Collapse
Affiliation(s)
- Xin Wu
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Ivan I Kirov
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Oded Gonen
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Yulin Ge
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Robert I Grossman
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Yvonne W Lui
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| |
Collapse
|
22
|
Caeyenberghs K, Verhelst H, Clemente A, Wilson PH. Mapping the functional connectome in traumatic brain injury: What can graph metrics tell us? Neuroimage 2016; 160:113-123. [PMID: 27919750 DOI: 10.1016/j.neuroimage.2016.12.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Traumatic brain injury (TBI) is associated with cognitive and motor deficits, and poses a significant personal, societal, and economic burden. One mechanism by which TBI is thought to affect cognition and behavior is through changes in functional connectivity. Graph theory is a powerful framework for quantifying topological features of neuroimaging-derived functional networks. The objective of this paper is to review studies examining functional connectivity in TBI with an emphasis on graph theoretical analysis that is proving to be valuable in uncovering network abnormalities in this condition. METHODS We review studies that have examined TBI-related alterations in different properties of the functional brain network, including global integration, segregation, centrality and resilience. We focus on functional data using task-related fMRI or resting-state fMRI in patients with TBI of different severity and recovery phase, and consider how graph metrics may inform rehabilitation and enhance efficacy. Moreover, we outline some methodological challenges associated with the examination of functional connectivity in patients with brain injury, including the sample size, parcellation scheme used, node definition and subgroup analyses. RESULTS The findings suggest that TBI is associated with hyperconnectivity and a suboptimal global integration, characterized by increased connectivity degree and strength and reduced efficiency of functional networks. This altered functional connectivity, also evident in other clinical populations, is attributable to diffuse white matter pathology and reductions in gray and white matter volume. These functional alterations are implicated in post-concussional symptoms, posttraumatic stress and neurocognitive dysfunction after TBI. Finally, the effects of focal lesions have been found to depend critically on topological position and their role in the network. CONCLUSION Graph theory is a unique and powerful tool for exploring functional connectivity in brain-injured patients. One limitation is that its results do not provide specific measures about the biophysical mechanism underlying TBI. Continued work in this field will hopefully see graph metrics used as biomarkers to provide more accurate diagnosis and help guide treatment at the individual patient level.
Collapse
Affiliation(s)
- Karen Caeyenberghs
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Victoria, Australia.
| | - Helena Verhelst
- Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Adam Clemente
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Victoria, Australia
| | - Peter H Wilson
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Victoria, Australia
| |
Collapse
|
23
|
Abstract
There is a paucity of accurate and reliable biomarkers to detect traumatic brain injury, grade its severity, and model post-traumatic brain injury (TBI) recovery. This gap could be addressed via advances in brain mapping which define injury signatures and enable tracking of post-injury trajectories at the individual level. Mapping of molecular and anatomical changes and of modifications in functional activation supports the conceptual paradigm of TBI as a disorder of large-scale neural connectivity. Imaging approaches with particular relevance are magnetic resonance techniques (diffusion weighted imaging, diffusion tensor imaging, susceptibility weighted imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, and positron emission tomographic methods including molecular neuroimaging). Inferences from mapping represent unique endophenotypes which have the potential to transform classification and treatment of patients with TBI. Limitations of these methods, as well as future research directions, are highlighted.
Collapse
|
24
|
A voxel-based meta-analysis of diffusion tensor imaging in mild traumatic brain injury. Neurosci Biobehav Rev 2016; 66:119-26. [PMID: 27133211 DOI: 10.1016/j.neubiorev.2016.04.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/31/2016] [Accepted: 04/27/2016] [Indexed: 12/22/2022]
Abstract
Microstructural damage to white matter and resultant abnormal structural connectivity are a potential underlying pathophysiological mechanism of mild traumatic brain injury (mTBI). Many Tract-Based Spatial Statics studies have investigated the pathophysiology of mTBI, but they yielded inconsistent results potentially due to insufficient statistical power in spite of methodological homogeneity. We used anisotropic effect size signed differential mapping (AES-SDM) to integrate previous studies that recruited patients without a psychiatric history. AES-SDM revealed that fractional anisotropy values were significantly lower in mTBI patients than in control in three clusters. The peak of the largest cluster was in the left thalamus and the cluster extended to the splenium of the corpus callosum and to the anterior thalamic radiation. The second largest cluster was situated in the left forceps minor, and the third largest cluster was in the right superior longitudinal fasciculus III. These results suggest that the pathophysiology of mTBI includes abnormal structural connectivity between the thalamus and the prefrontal cortex, and abnormal intra- and inter-hemispheric structural connectivity involving the prefrontal cortex.
Collapse
|
25
|
Rigon A, Duff MC, McAuley E, Kramer AF, Voss MW. Is Traumatic Brain Injury Associated with Reduced Inter-Hemispheric Functional Connectivity? A Study of Large-Scale Resting State Networks following Traumatic Brain Injury. J Neurotrauma 2016; 33:977-89. [PMID: 25719433 DOI: 10.1089/neu.2014.3847] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Traumatic brain injury (TBI) often has long-term debilitating sequelae in cognitive and behavioral domains. Understanding how TBI impacts functional integrity of brain networks that underlie these domains is key to guiding future approaches to TBI rehabilitation. In the current study, we investigated the differences in inter-hemispheric functional connectivity (FC) of resting state networks (RSNs) between chronic mild-to-severe TBI patients and normal comparisons (NC), focusing on two externally oriented networks (i.e., the fronto-parietal network [FPN] and the executive control network [ECN]), one internally oriented network (i.e., the default mode network [DMN]), and one somato-motor network (SMN). Seed voxel correlation analysis revealed that TBI patients displayed significantly less FC between lateralized seeds and both homologous and non-homologous regions in the opposite hemisphere for externally oriented networks but not for DMN or SMN; conversely, TBI patients showed increased FC within regions of the DMN, especially precuneus and parahippocampal gyrus. Region of interest correlation analyses confirmed the presence of significantly higher inter-hemispheric FC in NC for the FPN (p < 0.01), and ECN (p < 0.05), but not for the DMN (p > 0.05) or SMN (p > 0.05). Further analysis revealed that performance on a neuropsychological test measuring organizational skills and visuo-spatial abilities administered to the TBI group, the Rey-Osterrieth Complex Figure Test, positively correlated with FC between the right FPN and homologous regions. Our findings suggest that distinct RSNs display specific patterns of aberrant FC following TBI; this represents a step forward in the search for biomarkers useful for early diagnosis and treatment of TBI-related cognitive impairment.
Collapse
Affiliation(s)
- Arianna Rigon
- 1 Neuroscience Graduate Program, University of Iowa , Iowa City, Iowa
| | - Melissa C Duff
- 1 Neuroscience Graduate Program, University of Iowa , Iowa City, Iowa.,2 Department of Communication Sciences and Disorders, University of Iowa , Iowa City, Iowa.,3 Department of Neurology, University of Iowa , Iowa City, Iowa
| | - Edward McAuley
- 5 The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Illinois.,6 Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign , Illinois
| | - Arthur F Kramer
- 5 The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Illinois
| | - Michelle W Voss
- 1 Neuroscience Graduate Program, University of Iowa , Iowa City, Iowa.,4 Department of Psychological and Brain Sciences, University of Iowa , Iowa City, Iowa
| |
Collapse
|
26
|
Sours C, Rosenberg J, Kane R, Roys S, Zhuo J, Shanmuganathan K, Gullapalli RP. Associations between interhemispheric functional connectivity and the Automated Neuropsychological Assessment Metrics (ANAM) in civilian mild TBI. Brain Imaging Behav 2016; 9:190-203. [PMID: 24557591 DOI: 10.1007/s11682-014-9295-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study investigates cognitive deficits and alterations in resting state functional connectivity in civilian mild traumatic brain injury (mTBI) participants with high and low symptoms. Forty-one mTBI participants completed a resting state fMRI scan and the Automated Neuropsychological Assessment Metrics (ANAM) during initial testing (<10 days of injury) and a 1 month follow up. Data were compared to 30 healthy control subjects. Results from the ANAM demonstrate that mTBI participants performed significantly worse than controls on the code substitution delayed subtest (p = 0.032). [corrected]. Among the mTBI patients, high symptom mTBI participants performed worse than those with low symptoms on the code substitution delayed (p = 0.017), code substitution (p = 0.012), repeated simple reaction time (p = 0.031), and weighted throughput score (p = 0.019). [corrected]. Imaging results reveal that during the initial visit, low symptom mTBI participants had reduced interhemispheric functional connectivity (IH-FC) within the lateral parietal lobe (p = 0.020); however, during follow up, high symptom mTBI participants showed reduced IH-FC compared to the control group within the dorsolateral prefrontal cortex (DLPFC) (p = 0.013). Reduced IH-FC within the DLPFC during the follow-up was associated with reduced cognitive performance. Together, these findings suggest that reduced rs-FC may contribute to the subtle cognitive deficits noted in high symptom mTBI participants compared to control subjects and low symptom mTBI participants.
Collapse
Affiliation(s)
- Chandler Sours
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA,
| | | | | | | | | | | | | |
Collapse
|
27
|
Urban KJ, Barlow KM, Jimenez JJ, Goodyear BG, Dunn JF. Functional near-infrared spectroscopy reveals reduced interhemispheric cortical communication after pediatric concussion. J Neurotrauma 2015; 32:833-40. [PMID: 25387354 PMCID: PMC4449632 DOI: 10.1089/neu.2014.3577] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Concussion, or mild traumatic brain injury (mTBI), is a growing concern, especially among the pediatric population. By age 25, as many as 30% of the population are likely to have had a concussion. Many result in long-term disability, with some evolving to postconcussion syndrome. Treatments are being developed, but are difficult to assess given the lack of measures to quantitatively monitor concussion. There is no accepted quantitative imaging metric for monitoring concussion. We hypothesized that because cognitive function and fiber tracks are often impacted in concussion, interhemispheric brain communication may be impaired. We used functional near-infrared spectroscopy (fNIRS) to quantify functional coherence between the left and right motor cortex as a marker of interhemispheric communication. Studies were undertaken during the resting state and with a finger-tapping task to activate the motor cortex. Pediatric patients (ages 12-18) had symptoms for 31-473 days, compared to controls, who have not had reported a previous concussion. We detected differences between patients and controls in coherence between the contralateral motor cortices using measurements of total hemoglobin and oxy-hemoglobin with a p<0.01 (n=8, control; n=12 mTBI). Given the critical need for a quantitative biomarker for recovery after a concussion, we present these data to highlight the potential of fNIRS coupled with interhemispheric coherence analysis as a biomarker of concussion injury.
Collapse
Affiliation(s)
- Karolina J. Urban
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Experimental Imaging Center, University of Calgary, Calgary, Alberta, Canada
| | - Karen M. Barlow
- Department of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jon J. Jimenez
- Experimental Imaging Center, University of Calgary, Calgary, Alberta, Canada
| | - Bradley G. Goodyear
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F. Dunn
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Experimental Imaging Center, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
28
|
Association of brain metabolism with sulcation and corpus callosum development assessed by MRI in late-onset small fetuses. Am J Obstet Gynecol 2015; 212:804.e1-8. [PMID: 25640049 DOI: 10.1016/j.ajog.2015.01.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/12/2014] [Accepted: 01/27/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVE We sought to determine the relationship between fetal brain metabolism and microstructure expressed by brain sulcation, and corpus callosum (CC) development assessed by fetal brain magnetic resonance (MR) imaging and proton MR spectroscopy ((1)H-MRS). STUDY DESIGN A total of 119 fetuses, 64 that were small for gestational age (estimated fetal weight <10th centile and normal umbilical artery Doppler) and 55 controls underwent a 3T MR imaging/(1)H-MRS exam at 37 weeks. Anatomical T2-weighted images were obtained in the 3 orthogonal planes and long echo time (TE) (1)H-MRS acquired from the frontal lobe. Head biometrics, cortical fissure depths (insula, Sylvian, parietooccipital, cingulate, and calcarine), and CC area and biometries were blindly performed by manual and semiautomated delineation using Analyze software and corrected creating ratios for biparietal diameter and frontooccipital diameter, respectively, for group comparison. Spectroscopic data were processed using LCModel software and analyzed as metabolic ratios of N-acetylaspartate (NAA) to choline (Cho), Cho to creatine (Cr), and myo-inositol (Ino) to Cho. Differences between cases and controls were assessed. To test for the association between metabolic ratios and microstructural parameters, bivariate correlation analyses were performed. RESULTS Spectroscopic findings showed decreased NAA/Cho and increased Cho/Cr ratios in small fetuses. They also presented smaller head biometrics, shorter and smaller CC, and greater insular and cingulate depths. Frontal lobe NAA/Cho significantly correlated with biparietal diameter (r = 0.268; P = .021), head circumference (r = 0.259; P = .026), CC length (r = 0.265; P = .026), CC area (r = 0.317; P = .007), and the area of 6 from the 7 CC subdivisions. It did not correlate with any of the cortical sulcation parameters evaluated. None of the other metabolic ratios presented significant correlations with cortical development or CC parameters. CONCLUSION Frontal lobe NAA/Cho levels-which are considered a surrogate marker of neuronal activity-show a strong association with CC development. These results suggest that both metabolic and callosal alterations may be part of the same process of impaired brain development associated with intrauterine growth restriction.
Collapse
|
29
|
Narayana PA, Yu X, Hasan KM, Wilde EA, Levin HS, Hunter JV, Miller ER, Patel VKS, Robertson CS, McCarthy JJ. Multi-modal MRI of mild traumatic brain injury. Neuroimage Clin 2014; 7:87-97. [PMID: 25610770 PMCID: PMC4299969 DOI: 10.1016/j.nicl.2014.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 11/26/2022]
Abstract
Multi-modal magnetic resonance imaging (MRI) that included high resolution structural imaging, diffusion tensor imaging (DTI), magnetization transfer ratio (MTR) imaging, and magnetic resonance spectroscopic imaging (MRSI) were performed in mild traumatic brain injury (mTBI) patients with negative computed tomographic scans and in an orthopedic-injured (OI) group without concomitant injury to the brain. The OI group served as a comparison group for mTBI. MRI scans were performed both in the acute phase of injury (~24 h) and at follow-up (~90 days). DTI data was analyzed using tract based spatial statistics (TBSS). Global and regional atrophies were calculated using tensor-based morphometry (TBM). MTR values were calculated using the standard method. MRSI was analyzed using LC Model. At the initial scan, the mean diffusivity (MD) was significantly higher in the mTBI cohort relative to the comparison group in several white matter (WM) regions that included internal capsule, external capsule, superior corona radiata, anterior corona radiata, posterior corona radiata, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, forceps major and forceps minor of the corpus callosum, superior longitudinal fasciculus, and corticospinal tract in the right hemisphere. TBSS analysis failed to detect significant differences in any DTI measures between the initial and follow-up scans either in the mTBI or OI group. No significant differences were found in MRSI, MTR or morphometry between the mTBI and OI cohorts either at the initial or follow-up scans with or without family wise error (FWE) correction. Our study suggests that a number of WM tracts are affected in mTBI in the acute phase of injury and that these changes disappear by 90 days. This study also suggests that none of the MRI-modalities used in this study, with the exception of DTI, is sensitive in detecting changes in the acute phase of mTBI.
Collapse
Key Words
- Diffusion tensor imaging
- Magnetic resonance imaging
- Magnetic resonance spectroscopic imaging
- Magnetization transfer ratio
- Mild traumatic brain injury
- Orthopedic injury
- Tensor based morphometry
- acr, anterior region of corona radiata
- alic, anterior limb of internal capsule
- cc, corpus callosum
- cg, cingulate gyrus
- cs, centrum semiovale
- cst, corticospinal tract
- ec, external capsule
- ic, internal capsule
- ifo, inferior fronto-occipital fasciculus
- ilf, inferior longitudinal fasciculus
- jlc, juxtapositional lobule cortex
- mfg, superior frontal gyrus
- pcg, paracingulate gyrus
- pcr, posterior region of corona radiata
- plic, posterior limb of internal capsule
- scr, superior region of corona radiata
- sfg, superior frontal gyrus
- sfo, superior fronto-occipital fasciculus
- slf, superior longitudinal fasciculus
Collapse
Affiliation(s)
- Ponnada A. Narayana
- Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xintian Yu
- Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Khader M. Hasan
- Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elisabeth A. Wilde
- Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Harvey S. Levin
- Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | | | - Emmy R. Miller
- Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Vipul Kumar S. Patel
- Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - James J. McCarthy
- Emergency Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
30
|
Ng TS, Lin AP, Koerte IK, Pasternak O, Liao H, Merugumala S, Bouix S, Shenton ME. Neuroimaging in repetitive brain trauma. ALZHEIMERS RESEARCH & THERAPY 2014; 6:10. [PMID: 25031630 PMCID: PMC3978843 DOI: 10.1186/alzrt239] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sports-related concussions are one of the major causes of mild traumatic brain injury. Although most patients recover completely within days to weeks, those who experience repetitive brain trauma (RBT) may be at risk for developing a condition known as chronic traumatic encephalopathy (CTE). While this condition is most commonly observed in athletes who experience repetitive concussive and/or subconcussive blows to the head, such as boxers, football players, or hockey players, CTE may also affect soldiers on active duty. Currently, the only means by which to diagnose CTE is by the presence of phosphorylated tau aggregations post-mortem. Non-invasive neuroimaging, however, may allow early diagnosis as well as improve our understanding of the underlying pathophysiology of RBT. The purpose of this article is to review advanced neuroimaging methods used to investigate RBT, including diffusion tensor imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, susceptibility weighted imaging, and positron emission tomography. While there is a considerable literature using these methods in brain injury in general, the focus of this review is on RBT and those subject populations currently known to be susceptible to RBT, namely athletes and soldiers. Further, while direct detection of CTE in vivo has not yet been achieved, all of the methods described in this review provide insight into RBT and will likely lead to a better characterization (diagnosis), in vivo, of CTE than measures of self-report.
Collapse
Affiliation(s)
- Thomas Sc Ng
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA ; Keck School of Medicine of the University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA ; Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA
| | - Inga K Koerte
- Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA ; Institute for Clinical Radiology, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377 Munich, Germany
| | - Ofer Pasternak
- Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA
| | - Huijun Liao
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Sai Merugumala
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Sylvain Bouix
- Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA
| | - Martha E Shenton
- Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA ; Research and Development, VA Boston Healthcare System, 850 Belmont Street, Brockton, MA 02130, USA
| |
Collapse
|
31
|
Gardner A, Iverson GL, Stanwell P. A Systematic Review of Proton Magnetic Resonance Spectroscopy Findings in Sport-Related Concussion. J Neurotrauma 2014; 31:1-18. [DOI: 10.1089/neu.2013.3079] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andrew Gardner
- Centre for Translational Neuroscience and Mental Health, School of Medicine and Public Health, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School; Red Sox Foundation and Massachusetts General Hospital Home Base Program, Boston, Massachusetts
| | - Peter Stanwell
- Centre for Translational Neuroscience and Mental Health, School of Medicine and Public Health, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
32
|
Sivák Š, Bittšanský M, Grossmann J, Nosál' V, Kantorová E, Siváková J, Demková A, Hnilicová P, Dobrota D, Kurča E. Clinical correlations of proton magnetic resonance spectroscopy findings in acute phase after mild traumatic brain injury. Brain Inj 2013; 28:341-6. [DOI: 10.3109/02699052.2013.865270] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Han K, Mac Donald CL, Johnson AM, Barnes Y, Wierzechowski L, Zonies D, Oh J, Flaherty S, Fang R, Raichle ME, Brody DL. Disrupted modular organization of resting-state cortical functional connectivity in U.S. military personnel following concussive 'mild' blast-related traumatic brain injury. Neuroimage 2013; 84:76-96. [PMID: 23968735 DOI: 10.1016/j.neuroimage.2013.08.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/05/2013] [Accepted: 08/09/2013] [Indexed: 01/21/2023] Open
Abstract
Blast-related traumatic brain injury (TBI) has been one of the "signature injuries" of the wars in Iraq and Afghanistan. However, neuroimaging studies in concussive 'mild' blast-related TBI have been challenging due to the absence of abnormalities in computed tomography or conventional magnetic resonance imaging (MRI) and the heterogeneity of the blast-related injury mechanisms. The goal of this study was to address these challenges utilizing single-subject, module-based graph theoretic analysis of resting-state functional MRI (fMRI) data. We acquired 20min of resting-state fMRI in 63 U.S. military personnel clinically diagnosed with concussive blast-related TBI and 21 U.S. military controls who had blast exposures but no diagnosis of TBI. All subjects underwent an initial scan within 90days post-injury and 65 subjects underwent a follow-up scan 6 to 12months later. A second independent cohort of 40 U.S. military personnel with concussive blast-related TBI served as a validation dataset. The second independent cohort underwent an initial scan within 30days post-injury. 75% of the scans were of good quality, with exclusions primarily due to excessive subject motion. Network analysis of the subset of these subjects in the first cohort with good quality scans revealed spatially localized reductions in the participation coefficient, a measure of between-module connectivity, in the TBI patients relative to the controls at the time of the initial scan. These group differences were less prominent on the follow-up scans. The 15 brain areas with the most prominent reductions in the participation coefficient were next used as regions of interest (ROIs) for single-subject analyses. In the first TBI cohort, more subjects than would be expected by chance (27/47 versus 2/47 expected, p<0.0001) had 3 or more brain regions with abnormally low between-module connectivity relative to the controls on the initial scans. On the follow-up scans, more subjects than expected by chance (5/37, p=0.044) but fewer subjects than on the initial scans had 3 or more brain regions with abnormally low between-module connectivity. Analysis of the second TBI cohort validation dataset with no free parameters provided a partial replication; again more subjects than expected by chance (8/31, p=0.006) had 3 or more brain regions with abnormally low between-module connectivity on the initial scans, but the numbers were not significant (2/27, p=0.276) on the follow-up scans. A single-subject, multivariate analysis by probabilistic principal component analysis of the between-module connectivity in the 15 identified ROIs, showed that 31/47 subjects in the first TBI cohort were found to be abnormal relative to the controls on the initial scans. In the second TBI cohort, 9/31 patients were found to be abnormal in identical multivariate analysis with no free parameters. Again, there were not substantial differences on the follow-up scans. Taken together, these results indicate that single-subject, module-based graph theoretic analysis of resting-state fMRI provides potentially useful information for concussive blast-related TBI if high quality scans can be obtained. The underlying biological mechanisms and consequences of disrupted between-module connectivity are unknown, thus further studies are required.
Collapse
Affiliation(s)
- Kihwan Han
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tallus J, Lioumis P, Hämäläinen H, Kähkönen S, Tenovuo O. Transcranial magnetic stimulation-electroencephalography responses in recovered and symptomatic mild traumatic brain injury. J Neurotrauma 2013; 30:1270-7. [PMID: 23384582 DOI: 10.1089/neu.2012.2760] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mild traumatic brain injury (mTBI) may cause diffuse damage to the brain, especially to the frontal areas, that may lead to persistent symptoms. We studied participants with past mTBI by means of navigated transcranial magnetic stimulation (nTMS) combined with electroencephalography (EEG). Eleven symptomatic and 8 recovered participants with a history of single mTBI and 9 healthy controls participated. Average time from injury to testing was 5 years. The participants did not have abnormalities or signs of injury on brain magnetic resonance imaging, and they did not use any centrally acting medication. Left primary motor cortex (M1) and dorsolateral prefrontal cortex (DLPFC) were stimulated with nTMS and evoked potentials measured from the corresponding areas of both hemispheres. Delayed ipsilateral P30 and contralateral N45 peak latencies to left DLPFC nTMS were found in the symptomatic group, along with higher DLPFC N100 amplitudes compared with the control or recovered group. The recovered group had shorter P200 latencies in left DLPFC nTMS compared with the other groups. Both mTBI groups had higher motor thresholds compared with the control group. In left M1 nTMS, the mTBI groups showed less P30 amplitude increase, and the symptomatic group showed longer P60 interhemispheric latency difference with higher stimulation intensities. The results suggest altered brain reactivity and connectivity in mTBI. Some of the observed differences may be related to compensatory mechanisms of recovery. nTMS-EEG is a potentially useful tool for studying the effects of mTBI.
Collapse
Affiliation(s)
- Jussi Tallus
- Department of Psychology, Centre for Cognitive Neuroscience, University of Turku, Turku, Finland.
| | | | | | | | | |
Collapse
|
35
|
Chamard E, Théoret H, Skopelja EN, Forwell LA, Johnson AM, Echlin PS. A prospective study of physician-observed concussion during a varsity university hockey season: metabolic changes in ice hockey players. Part 4 of 4. Neurosurg Focus 2013. [PMID: 23199427 DOI: 10.3171/2012.10.focus12305] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Despite negative neuroimaging findings using traditional neuroimaging methods such as MRI and CT, sports-related concussions have been shown to cause neurometabolic changes in both the acute and subacute phases of head injury. However, no prospective clinical study has used an independent physician-observer design in the monitoring of these changes. The objective of this study was to evaluate the effects of repetitive concussive and sub-concussive head impacts on neurometabolic concentrations in a prospective study of two Canadian Interuniversity Sports (CIS) ice hockey teams using MR spectroscopy (MRS). METHODS Forty-five ice hockey players (25 men and 20 women) participated in this study. All participants underwent pre- and postseason MRI, including spectroscopy imaging, using a 3-T MRI machine. The linear combination model was used to quantify the following ratios: glutamate/creatine-phosphocreatine (Cr), myoinositol/Cr, and N-acetylaspartate (NAA)/Cr. Individuals sustaining a medically diagnosed concussion were sent for MRI at 72 hours, 2 weeks, and 2 months after injury. RESULTS No statistically significant differences were observed between athletes who were diagnosed with a concussion and athletes who were not clinically diagnosed as sustaining a concussion. Although no statistically significant longitudinal metabolic changes were observed among athletes who were diagnosed with a concussion, the results demonstrated a predictable pattern of initial impairment, followed by a gradual return to ratios that were similar to, but lower than, baseline ratios. No significant pre- to postseason changes were demonstrated among men who were not observed to sustain a concussion. However, a substantively significant decrease in the NAA/Cr ratio was noted among the female hockey players (t((13)) = 2.58, p = 0.02, η(2) = 0.34). CONCLUSIONS A key finding in this study, from the standpoint of future research design, is the demonstration of substantively significant metabolic changes among the players who were not diagnosed with a concussion. In addition, it may explain why there are few statistically significant differences demonstrated between players who were diagnosed with a concussion and players who were not diagnosed with a concussion (that is, the potency of the independent variable was diminished by the fact that the group of players not diagnosed with a concussion might be better described as a subgroup of the players who may have sustained a concussion but were not observed and diagnosed with a concussion). This result suggests that definitions of concussion may need to be revisited within sports with high levels of repetitive subconcussive head impacts. Future analysis of these data will examine the relationships between the modes of MRI (diffusion tensor imaging, MRS, and susceptibility-weighted MR imaging) used in this study, along with other more sensitive evaluative techniques. This type of intermodal comparison may improve the identification of concussions that were previously dependent on the unreliable self-reporting of recognized concussion symptomatology by the athlete or on poorly validated neuropsychological tests.
Collapse
Affiliation(s)
- Emilie Chamard
- Département de Psychologie, Université de Montréal and CHU Sainte-Justine, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Slobounov S, Gay M, Johnson B, Zhang K. Concussion in athletics: ongoing clinical and brain imaging research controversies. Brain Imaging Behav 2012; 6:224-43. [PMID: 22669496 DOI: 10.1007/s11682-012-9167-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Concussion, the most common form of traumatic brain injury, proves to be increasingly complex and not mild in nature as its synonymous term mild traumatic brain injury (mTBI) would imply. Despite the increasing occurrence and prevalence of mTBI there is no universally accepted definition and conventional brain imaging techniques lack the sensitivity to detect subtle changes it causes. Moreover, clinical management of sports induced mild traumatic brain injury has not changed much over the past decade. Advances in neuroimaging that include electroencephalography (EEG), functional magnetic resonance imaging (fMRI), resting-state functional connectivity, diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS) offer promise in aiding research into understanding the complexities and nuances of mTBI which may ultimately influence clinical management of the condition. In this paper the authors review the major findings from these advanced neuroimaging methods along with current controversy within this field of research. As mTBI is frequently associated with youth and sports injury this review focuses on sports-related mTBI in the younger population.
Collapse
Affiliation(s)
- Semyon Slobounov
- Department of Kinesiology, The Pennsylvania State University, University Park, 16802, USA.
| | | | | | | |
Collapse
|