1
|
Zhang Q, Singh P, Peng DW, Peng EY, Burns JM, Swerdlow RH, Suo WZ. Proactive M2 blockade prevents cognitive decline in GRK5-deficient APP transgenic mice via enhancing cholinergic neuronal resilience. J Biol Chem 2024; 300:107619. [PMID: 39098530 PMCID: PMC11400976 DOI: 10.1016/j.jbc.2024.107619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease (AD) poses an immense challenge in healthcare, lacking effective therapies. This study investigates the potential of anthranilamide derivative (AAD23), a selective M2 receptor antagonist, in proactively preventing cognitive impairments and cholinergic neuronal degeneration in G protein-coupled receptor kinase-5-deficient Swedish APP (GAP) mice. GAP mice manifest cognitive deficits by 7 months and develop senile plaques by 9 months. A 6-month AAD23 treatment was initiated at 5 months and stopped at 11 months before behavioral assessments without the treatment. AAD23-treated mice exhibited preserved cognitive abilities and improved cholinergic axonal health in the nucleus basalis of Meynert akin to wildtype mice. Conversely, vehicle-treated GAP mice displayed memory deficits and pronounced cholinergic axonal swellings in the nucleus basalis of Meynert. Notably, AAD23 treatment did not alter senile plaques and microgliosis. These findings highlight AAD23's efficacy in forestalling AD-related cognitive decline in G protein-coupled receptor kinase-5-deficient subjects, attributing its success to restoring cholinergic neuronal integrity and resilience, enhancing resistance against diverse degenerative insults.
Collapse
Affiliation(s)
- Qiang Zhang
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA
| | - Prabhakar Singh
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA
| | - David W Peng
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA
| | - Evelyn Y Peng
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA
| | - Jeffery M Burns
- Department of Neurology, University of Kansas Medical College, Kansas City, Kansas, USA; Department of Physiology, University of Kansas Medical College, Kansas City, Kansas, USA; The University of Kansas Alzheimer's Disease Center, Kansas City, Kansas, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical College, Kansas City, Kansas, USA; Department of Physiology, University of Kansas Medical College, Kansas City, Kansas, USA; The University of Kansas Alzheimer's Disease Center, Kansas City, Kansas, USA
| | - William Z Suo
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA; Department of Neurology, University of Kansas Medical College, Kansas City, Kansas, USA; Department of Physiology, University of Kansas Medical College, Kansas City, Kansas, USA; The University of Kansas Alzheimer's Disease Center, Kansas City, Kansas, USA.
| |
Collapse
|
2
|
Duarte JMN. Concentrations of glutamate and N-acetylaspartate detected by magnetic resonance spectroscopy in the rat hippocampus correlate with hippocampal-dependent spatial memory performance. Front Mol Neurosci 2024; 17:1458070. [PMID: 39219740 PMCID: PMC11362093 DOI: 10.3389/fnmol.2024.1458070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Magnetic resonance spectroscopy (MRS) has been employed to investigate brain metabolite concentrations in vivo, and they vary during neuronal activation, across brain activity states, or upon disease with neurological impact. Whether resting brain metabolites correlate with functioning in behavioral tasks remains to be demonstrated in any of the widely used rodent models. This study tested the hypothesis that, in the absence of neurological disease or injury, the performance in a hippocampal-dependent memory task is correlated with the hippocampal levels of metabolites that are mainly synthesized in neurons, namely N-acetylaspartate (NAA), glutamate and GABA. Experimentally naïve rats were tested for hippocampal-dependent spatial memory performance by measuring spontaneous alternation in the Y-maze, followed by anatomical magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) in the hippocampus and cortex. Memory performance correlated with hippocampal concentrations of NAA (p = 0.024) and glutamate (p = 0.014) but not GABA. Concentrations of glutamate in the cortex also correlated with spatial memory (p = 0.035). In addition, memory performance was also correlated with the relative volume of the hippocampus (p = 0.041). Altogether, this exploratory study suggests that levels of the neuronal maker NAA and the main excitatory neurotransmitter glutamate are associated with physiological functional capacity.
Collapse
Affiliation(s)
- João M. N. Duarte
- Diabetes and Brain Function Unit, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Wu X, Liu J, Hui Y, Wu Z, Wang L, Wang Y, Bai Y, Li J, Zhang L, Xi Y, Zhang Q, Li L. Long-term intermittent theta burst stimulation enhanced hippocampus-dependent memory by regulating hippocampal theta oscillation and neurotransmitter levels in healthy rats. Neurochem Int 2024; 173:105671. [PMID: 38157888 DOI: 10.1016/j.neuint.2023.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/09/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Intermittent theta burst stimulation (iTBS), an updated pattern of high-frequency repetitive transcranial magnetic stimulation, is a potential candidate for improving memory. The hippocampus has been shown to be involved in the memory-enhancing effect induced by iTBS. However, it remains largely unknown whether this effect is achieved by regulating hippocampal theta oscillation and neurotransmitters gamma-aminobutyric acid (GABA) and glutamate, which are strongly related to memory. Thus, we investigated the effect of 14 days of iTBS on hippocampus-dependent memory and further explored the roles of hippocampal theta oscillation and neurotransmitters GABA and glutamate in this effect. We found that compared to sham iTBS, real iTBS enhanced hippocampus-dependent memory measured by hole-board test and object place recognition test. Further, real iTBS increased the density of c-Fos positive neurons and normalized power of theta oscillation in the dorsal hippocampus (dHip) compared to sham iTBS. Interestingly, we observed a decrease in the level of extracellular GABA and an increase in the level of extracellular glutamate in the dHip after real iTBS. Our results suggest that long-term iTBS improved hippocampus-dependent memory, which may be attributed to the enhancement of theta oscillation and altered levels of extracellular GABA and glutamate in the dHip.
Collapse
Affiliation(s)
- Xiang Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yanping Hui
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhongheng Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ling Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yixuan Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yihua Bai
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jing Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Lei Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yue Xi
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qiaojun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Libo Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
4
|
Burzynski HE, Ayala KE, Frick MA, Dufala HA, Woodruff JL, Macht VA, Eberl BR, Hollis F, McQuail JA, Grillo CA, Fadel JR, Reagan LP. Delayed cognitive impairments in a rat model of Gulf War Illness are stimulus-dependent. Brain Behav Immun 2023; 113:248-258. [PMID: 37437820 PMCID: PMC10530066 DOI: 10.1016/j.bbi.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/07/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Gulf War Illness (GWI) collectively describes the multitude of central and peripheral disturbances affecting soldiers who served in the 1990-1991 Gulf War. While the mechanisms responsible for GWI remain elusive, the prophylactic use of the reversible acetylcholinesterase inhibitor, pyridostigmine bromide (PB), and war-related stress have been identified as chief factors in GWI pathology. Post-deployment stress is a common challenge faced by veterans, and aberrant cholinergic and/or immune responses to these psychological stressors may play an important role in GWI pathology, especially the cognitive impairments experienced by many GWI patients. Therefore, the current study investigated if an immobilization stress challenge would produce abnormal responses in PB-treated rats three months later. Results indicate that hippocampal cholinergic responses to an immobilization stress challenge are impaired three months after PB administration. We also assessed if an immune or stress challenge reveals deficits in PB-treated animals during hippocampal-dependent learning and memory tasks at this delayed timepoint. Novel object recognition (NOR) testing paired with either acute saline or lipopolysaccharide (LPS, 30 µg/kg, i.p.), as well as Morris water maze (MWM) testing was conducted approximately three months after PB administration and/or repeated restraint stress. Rats with a history of PB treatment exhibited 24-hour hippocampal-dependent memory deficits when challenged with LPS, but not saline, in the NOR task. Similarly, in the same cohort, PB-treated rats showed 24-hour memory deficits in the MWM task. Ultimately, these studies highlight the long-term effects of PB treatment on hippocampal function and provide insight into the progressive cognitive deficits observed in veterans with GWI.
Collapse
Affiliation(s)
- H E Burzynski
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States.
| | - K E Ayala
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| | - M A Frick
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| | - H A Dufala
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| | - J L Woodruff
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| | - V A Macht
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| | - B R Eberl
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| | - F Hollis
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States; Columbia VA Health Care System, Columbia, SC 29208, United States
| | - J A McQuail
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States; Columbia VA Health Care System, Columbia, SC 29208, United States
| | - C A Grillo
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States; Columbia VA Health Care System, Columbia, SC 29208, United States
| | - J R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States; Columbia VA Health Care System, Columbia, SC 29208, United States
| | - L P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States; Columbia VA Health Care System, Columbia, SC 29208, United States
| |
Collapse
|
5
|
Alves VS, da Silva JP, Rodrigues FC, Araújo SMB, Gouvêa AL, Leite-Aguiar R, Santos SACS, da Silva MSP, Ferreira FS, Marques EP, dos Passos BABR, Maron-Gutierrez T, Kurtenbach E, da Costa R, Figueiredo CP, Wyse ATS, Coutinho-Silva R, Savio LEB. P2X7 receptor contributes to long-term neuroinflammation and cognitive impairment in sepsis-surviving mice. Front Pharmacol 2023; 14:1179723. [PMID: 37153798 PMCID: PMC10160626 DOI: 10.3389/fphar.2023.1179723] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction: Sepsis is defined as a multifactorial debilitating condition with high risks of death. The intense inflammatory response causes deleterious effects on the brain, a condition called sepsis-associated encephalopathy. Neuroinflammation or pathogen recognition are able to stress cells, resulting in ATP (Adenosine Triphosphate) release and P2X7 receptor activation, which is abundantly expressed in the brain. The P2X7 receptor contributes to chronic neurodegenerative and neuroinflammatory diseases; however, its function in long-term neurological impairment caused by sepsis remains unclear. Therefore, we sought to evaluate the effects of P2X7 receptor activation in neuroinflammatory and behavioral changes in sepsis-surviving mice. Methods: Sepsis was induced in wild-type (WT), P2X7-/-, and BBG (Brilliant Blue G)-treated mice by cecal ligation and perforation (CLP). On the thirteenth day after the surgery, the cognitive function of mice was assessed using the novel recognition object and Water T-maze tests. Acetylcholinesterase (AChE) activity, microglial and astrocytic activation markers, and cytokine production were also evaluated. Results: Initially, we observed that both WT and P2X7-/- sepsis-surviving mice showed memory impairment 13 days after surgery, once they did not differentiate between novel and familiar objects. Both groups of animals presented increased AChE activity in the hippocampus and cerebral cortex. However, the absence of P2X7 prevented partly this increase in the cerebral cortex. Likewise, P2X7 absence decreased ionized calcium-binding protein 1 (Iba-1) and glial fibrillary acidic protein (GFAP) upregulation in the cerebral cortex of sepsis-surviving animals. There was an increase in GFAP protein levels in the cerebral cortex but not in the hippocampus of both WT and P2X7-/- sepsis-surviving animals. Pharmacological inhibition or genetic deletion of P2X7 receptor attenuated the production of Interleukin-1β (IL-1β), Tumor necrosis factor-α (TNF-α), and Interleukin-10 (IL-10). Conclusion: The modulation of the P2X7 receptor in sepsis-surviving animals may reduce neuroinflammation and prevent cognitive impairment due to sepsis-associated encephalopathy, being considered an important therapeutic target.
Collapse
Affiliation(s)
- Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joyce Pereira da Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Cristina Rodrigues
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - André Luiz Gouvêa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raíssa Leite-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Fernanda Silva Ferreira
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo Peil Marques
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson da Costa
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Angela T. S. Wyse
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Luiz Eduardo Baggio Savio,
| |
Collapse
|
6
|
Okada K, Hashimoto K, Kobayashi K. Cholinergic regulation of object recognition memory. Front Behav Neurosci 2022; 16:996089. [PMID: 36248033 PMCID: PMC9557046 DOI: 10.3389/fnbeh.2022.996089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Object recognition memory refers to a basic memory mechanism to identify and recall various features of objects. This memory has been investigated by numerous studies in human, primates and rodents to elucidate the neuropsychological underpinnings in mammalian memory, as well as provide the diagnosis of dementia in some neurological diseases, such as Alzheimer's disease and Parkinson's disease. Since Alzheimer's disease at the early stage is reported to be accompanied with cholinergic cell loss and impairment in recognition memory, the central cholinergic system has been studied to investigate the neural mechanism underlying recognition memory. Previous studies have suggested an important role of cholinergic neurons in the acquisition of some variants of object recognition memory in rodents. Cholinergic neurons in the medial septum and ventral diagonal band of Broca that project mainly to the hippocampus and parahippocampal area are related to recognition memory for object location. Cholinergic projections from the nucleus basalis magnocellularis innervating the entire cortex are associated with recognition memory for object identification. Especially, the brain regions that receive cholinergic projections, such as the perirhinal cortex and prefrontal cortex, are involved in recognition memory for object-in-place memory and object recency. In addition, experimental studies using rodent models for Alzheimer's disease have reported that neurodegeneration within the central cholinergic system causes a deficit in object recognition memory. Elucidating how various types of object recognition memory are regulated by distinct cholinergic cell groups is necessary to clarify the neuronal mechanism for recognition memory and the development of therapeutic treatments for dementia.
Collapse
Affiliation(s)
- Kana Okada
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
7
|
Physiological synaptic activity and recognition memory require astroglial glutamine. Nat Commun 2022; 13:753. [PMID: 35136061 PMCID: PMC8826940 DOI: 10.1038/s41467-022-28331-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
Presynaptic glutamate replenishment is fundamental to brain function. In high activity regimes, such as epileptic episodes, this process is thought to rely on the glutamate-glutamine cycle between neurons and astrocytes. However the presence of an astroglial glutamine supply, as well as its functional relevance in vivo in the healthy brain remain controversial, partly due to a lack of tools that can directly examine glutamine transfer. Here, we generated a fluorescent probe that tracks glutamine in live cells, which provides direct visual evidence of an activity-dependent glutamine supply from astroglial networks to presynaptic structures under physiological conditions. This mobilization is mediated by connexin43, an astroglial protein with both gap-junction and hemichannel functions, and is essential for synaptic transmission and object recognition memory. Our findings uncover an indispensable recruitment of astroglial glutamine in physiological synaptic activity and memory via an unconventional pathway, thus providing an astrocyte basis for cognitive processes. The authors present a fluorescent probe that tracks glutamine in live cells. They demonstrate the capabilities of the probe by providing direct visual evidence of an activity-dependent glutamine supply from astroglial networks to presynaptic structures under physiological conditions.
Collapse
|
8
|
Martínez-Orozco H, Reyes-Castro LA, Lomas-Soria C, Sandoval-Salazar C, Ramírez-Emiliano J, Díaz-Cintra S, Solís-Ortiz S. High-fat and combined high-fat-high-fructose diets impair episodic-like memory and decrease glutamate and glutamine in the hippocampus of adult mice. Nutr Neurosci 2021; 25:2479-2489. [PMID: 34719357 DOI: 10.1080/1028415x.2021.1977452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Diet-induced obesity is associated with premature cognitive decline. Elevated consumption of fats and sugars in humans and rodents has been associated with deficits in recognition memory, which is modulated by the hippocampus. Alterations in excitatory and inhibitory neurotransmitters in this area have been observed after hypercaloric diets, but the effects on episodic-like memory are not conclusive. OBJECTIVE To investigate the effects of hypercaloric diets on memory and their relationship with γ-aminobutyric acid (GABA), glutamate and glutamine and their genetic expression in the hippocampus. DESIGN A control diet (CD), a high-fat diet (HFD) and a combined high-fat-high-fructose diet (HFFrD) were administered to 30 C57BL/6 adult mice for 10 weeks. The discrimination indexes and exploration time of the novel object recognition (NOR) and novel object location (NOL) tasks were evaluated and GABA, glutamate and glutamine concentrations and their genetic expression were obtained from the hippocampus. RESULTS The HFFrD induced lower discrimination indexes, decreased exploration time in the recognition memory tasks, and lowered the concentrations of glutamate and glutamine, and HFD increased their expression in the hippocampus. CONCLUSIONS These findings suggest that a possible adaptative long-term mechanism in the hippocampal neurotransmitters, and this possibility may underlie the episodic-like memory deficits in mice fed HFD and HFFrD.
Collapse
Affiliation(s)
- Humberto Martínez-Orozco
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, México
| | - Luis A Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Consuelo Lomas-Soria
- CONACYT Cátedras, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Cuauhtémoc Sandoval-Salazar
- Departamento de Enfermería y Obstetricia, División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya, México
| | - Joel Ramírez-Emiliano
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, México
| | - Sofía Díaz-Cintra
- Laboratorio de Neuromorfometría y Desarrollo, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Silvia Solís-Ortiz
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, México
| |
Collapse
|
9
|
Pimpinella D, Mastrorilli V, Giorgi C, Coemans S, Lecca S, Lalive AL, Ostermann H, Fuchs EC, Monyer H, Mele A, Cherubini E, Griguoli M. Septal cholinergic input to CA2 hippocampal region controls social novelty discrimination via nicotinic receptor-mediated disinhibition. eLife 2021; 10:65580. [PMID: 34696824 PMCID: PMC8547952 DOI: 10.7554/elife.65580] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 09/30/2021] [Indexed: 12/03/2022] Open
Abstract
Acetylcholine (ACh), released in the hippocampus from fibers originating in the medial septum/diagonal band of Broca (MSDB) complex, is crucial for learning and memory. The CA2 region of the hippocampus has received increasing attention in the context of social memory. However, the contribution of ACh to this process remains unclear. Here, we show that in mice, ACh controls social memory. Specifically, MSDB cholinergic neurons inhibition impairs social novelty discrimination, meaning the propensity of a mouse to interact with a novel rather than a familiar conspecific. This effect is mimicked by a selective antagonist of nicotinic AChRs delivered in CA2. Ex vivo recordings from hippocampal slices provide insight into the underlying mechanism, as activation of nAChRs by nicotine increases the excitatory drive to CA2 principal cells via disinhibition. In line with this observation, optogenetic activation of cholinergic neurons in MSDB increases the firing of CA2 principal cells in vivo. These results point to nAChRs as essential players in social novelty discrimination by controlling inhibition in the CA2 region.
Collapse
Affiliation(s)
- Domenico Pimpinella
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Valentina Mastrorilli
- Department of Biology and Biotechnology 'C. Darwin', Center for Research in Neurobiology 'D. Bovet', Sapienza University of Rome, Rome, Italy
| | - Corinna Giorgi
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Rome, Italy.,Institute of Molecular Biology and Pathology of the National Council of Research (IBPM-CNR), Roma, Italy
| | - Silke Coemans
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Salvatore Lecca
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Arnaud L Lalive
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Hannah Ostermann
- Department of Clinical Neurobiology of the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke C Fuchs
- Department of Clinical Neurobiology of the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology of the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Mele
- Department of Biology and Biotechnology 'C. Darwin', Center for Research in Neurobiology 'D. Bovet', Sapienza University of Rome, Rome, Italy
| | - Enrico Cherubini
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Marilena Griguoli
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Rome, Italy.,Institute of Neuroscience of the National Research Council (IN-CNR), Pisa, Italy
| |
Collapse
|
10
|
Erichsen JM, Calva CB, Reagan LP, Fadel JR. Intranasal insulin and orexins to treat age-related cognitive decline. Physiol Behav 2021; 234:113370. [PMID: 33621561 PMCID: PMC8053680 DOI: 10.1016/j.physbeh.2021.113370] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
The intranasal (IN) administration of neuropeptides, such as insulin and orexins, has been suggested as a treatment strategy for age-related cognitive decline (ARCD). Because dysfunctional neuropeptide signaling is an observed characteristic of ARCD, it has been suggested that IN delivery of insulin and/or orexins may restore endogenous peptide signaling and thereby preserve cognition. IN administration is particularly alluring as it is a relatively non-invasive method that directly targets peptides to the brain. Several laboratories have examined the behavioral effects of IN insulin in young, aged, and cognitively impaired rodents and humans. These studies demonstrated improved performance on various cognitive tasks following IN insulin administration. Fewer laboratories have assessed the effects of IN orexins; however, this peptide also holds promise as an effective treatment for ARCD through the activation of the cholinergic system and/or the reduction of neuroinflammation. Here, we provide a brief overview of the advantages of IN administration and the delivery pathway, then summarize the current literature on IN insulin and orexins. Additional preclinical studies will be useful to ultimately uncover the mechanisms underlying the pro-cognitive effects of IN insulin and orexins, whereas future clinical studies will aid in the determination of the most efficacious dose and dosing paradigm. Eventually, IN insulin and/or orexin administration may be a widely used treatment strategy in the clinic for ARCD.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States.
| | - Coleman B Calva
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States; Columbia VA Health Care System, Columbia, SC, 29208, United States
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| |
Collapse
|
11
|
Angrand L, Takillah S, Malissin I, Berriche A, Cervera C, Bel R, Gerard Q, Knoertzer J, Baati R, Kononchik JP, Megarbane B, Thibault K, Dal Bo G. Persistent brainwave disruption and cognitive impairment induced by acute sarin surrogate sub-lethal dose exposure. Toxicology 2021; 456:152787. [PMID: 33887375 DOI: 10.1016/j.tox.2021.152787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 11/15/2022]
Abstract
Warfare neurotoxicants such as sarin, soman or VX, are organophosphorus compounds which irreversibly inhibit cholinesterase. High-dose exposure with nerve agents (NA) is known to produce seizure activity and related brain damage, while less is known about the effects of acute sub-lethal dose exposure. The aim of this study was to characterize behavioral, brain activity and neuroinflammatory modifications at different time points after exposure to 4-nitrophenyl isopropyl methylphosphonate (NIMP), a sarin surrogate. In order to decipher the impacts of sub-lethal exposure, we chose 4 different doses of NIMP each corresponding to a fraction of the median lethal dose (LD50). First, we conducted a behavioral analysis of symptoms during the first hour following NIMP challenge and established a specific scoring scale for the intoxication severity. The intensity of intoxication signs was dose-dependent and proportional to the cholinesterase activity inhibition evaluated in mice brain. The lowest dose (0.3 LD50) did not induce significant behavioral, electrocorticographic (ECoG) nor cholinesterase activity changes. Animals exposed to one of the other doses (0.5, 0.7 and 0.9 LD50) exhibited substantial changes in behavior, significant cholinesterase activity inhibition, and a disruption of brainwave distribution that persisted in a dose-dependent manner. To evaluate long lasting changes, we conducted ECoG recording for 30 days on mice exposed to 0.5 or 0.9 LD50 of NIMP. Mice in both groups showed long-lasting impairment of theta rhythms, and a lack of restoration in hippocampal ChE activity after 1-month post-exposure. In addition, an increase in neuroinflammatory markers (IBA-1, TNF-α, NF-κB) and edema were transiently observed in mice hippocampus. Furthermore, a novel object recognition test showed an alteration of short-term memory in both groups, 1-month post-NIMP intoxication. Our findings identified both transient and long-term ECoG alterations and some long term cognitive impairments following exposure to sub-lethal doses of NIMP. These may further impact morphopathological alterations in the brain.
Collapse
Affiliation(s)
- Loïc Angrand
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; EnvA, IMRB, Maisons-Alfort, France; Université Paris-Est Créteil, INSERM, Team Relaix, Créteil, France
| | - Samir Takillah
- Departement of Neuroscience, Unit of Fatigue and Vigilance, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; VIFASOM Team (EA 7330), Paris Descartes University, Sorbonne Paris Cité, Hôtel Dieu, Paris, France
| | - Isabelle Malissin
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Federation of Toxicology APHP, Paris-Diderot University, INSERM UMRS-1144, Paris, France
| | - Asma Berriche
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; CEA, Fontenay aux roses, France
| | - Chloe Cervera
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Rosalie Bel
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Quentin Gerard
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; Normandie University, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Julie Knoertzer
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Rachid Baati
- ICPEES UMR CNRS 7515, Institut de Chimie des Procédés, pour l'Energie, l'Environnement, et la Santé, Strasbourg, France
| | - Joseph P Kononchik
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Bruno Megarbane
- VIFASOM Team (EA 7330), Paris Descartes University, Sorbonne Paris Cité, Hôtel Dieu, Paris, France; Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Federation of Toxicology APHP, Paris-Diderot University, INSERM UMRS-1144, Paris, France
| | - Karine Thibault
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France.
| | - Gregory Dal Bo
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France.
| |
Collapse
|
12
|
Titulaer J, Björkholm C, Feltmann K, Malmlöf T, Mishra D, Bengtsson Gonzales C, Schilström B, Konradsson-Geuken Å. The Importance of Ventral Hippocampal Dopamine and Norepinephrine in Recognition Memory. Front Behav Neurosci 2021; 15:667244. [PMID: 33927604 PMCID: PMC8076496 DOI: 10.3389/fnbeh.2021.667244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
Dopaminergic neurons originating from the ventral tegmental area (VTA) and the locus coeruleus are innervating the ventral hippocampus and are thought to play an essential role for efficient cognitive function. Moreover, these VTA projections are hypothesized to be part of a functional loop, in which dopamine regulates memory storage. It is hypothesized that when a novel stimulus is encountered and recognized as novel, increased dopamine activity in the hippocampus induces long-term potentiation and long-term storage of memories. We here demonstrate the importance of increased release of dopamine and norepinephrinein the rat ventral hippocampus on recognition memory, using microdialysis combined to a modified novel object recognition test. We found that presenting rats to a novel object significantly increased dopamine and norepinephrine output in the ventral hippocampus. Two hours after introducing the first object, a second object (either novel or familiar) was placed in the same position as the first object. Presenting the animals to a second novel object significantly increased dopamine and norepinephrine release in the ventral hippocampus, compared to a familiar object. In conclusion, this study suggests that dopamine and norepinephrine output in the ventral hippocampus has a crucial role in recognition memory and signals novelty.
Collapse
Affiliation(s)
- Joep Titulaer
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Section of Neuropharmacology Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Carl Björkholm
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kristin Feltmann
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Torun Malmlöf
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Devesh Mishra
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Bengtsson Gonzales
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Schilström
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Konradsson-Geuken
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Section of Neuropharmacology Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Vasnik S, Sikdar SK. Cholinergic receptor-independent modulation of intrinsic resonance in the rat subiculum neurons through inhibition of hyperpolarization-activated cyclic nucleotide-gated channels. Acta Physiol (Oxf) 2021; 231:e13603. [PMID: 33332740 DOI: 10.1111/apha.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/22/2020] [Accepted: 12/11/2020] [Indexed: 11/27/2022]
Abstract
AIM Acetylcholine release is vital in the pacing of theta rhythms in the hippocampus. The subiculum is the output region of the hippocampus with different neuronal subtypes that generate theta oscillations during arousal and rapid eye movement sleep. The combination of intrinsic resonance in the hippocampal neurons and the periodic excitation of hippocampal excitatory and inhibitory neurons by cholinergic pathway drives theta oscillations. However, the acetylcholine mediated effect on intrinsic subthreshold resonance generating hyperpolarization-activated cyclic nucleotide-gated current, Ih of subicular neurons is unexplored. We studied the acetylcholine receptor-independent effect of cholinergic agents on the intrinsic properties of subiculum principal neurons and the underlying mechanism. METHODS We bath perfused acetylcholine or nicotine on rat brain slices in the presence of synaptic blockers. The physiological effect was studied by cholinergic fibres stimulation and electrophysiological recordings under whole-cell mode of subiculum neurons using septohippocampal sections. RESULTS Exogenously applied acetylcholine in the presence of atropine affected two groups of subicular neurons differently. Acetylcholine reduced the resonance frequency and Ih in bursting neurons, whereas these properties were unaffected in regular firing neurons. Subsequently, the endogenously released acetylcholine by stimulation showed a selective suppressive effect on Ih , sag, and resonance in burst firing among the two excitatory neurons. Nicotine suppressed the Ih amplitude in burst firing neurons, which was evident by decreased sag amplitude and resonance frequency and increased excitability. CONCLUSION Our study suggests cell type-specific acetylcholine receptor-independent shift in resonance frequency by partially inhibiting HCN current during high cholinergic inputs.
Collapse
Affiliation(s)
- Sonali Vasnik
- Molecular Biophysics Unit Indian Institute of Science Bangalore India
| | - Sujit K. Sikdar
- Molecular Biophysics Unit Indian Institute of Science Bangalore India
| |
Collapse
|
14
|
D-serine Ameliorates Motor and Cognitive Impairments in β-amyloid 1-42 Injected Mice by Inhibiting JNK Signaling Pathway. J Chem Neuroanat 2020; 109:101852. [PMID: 32781134 DOI: 10.1016/j.jchemneu.2020.101852] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022]
Abstract
The senile plaque formed by β-amyloid (Aβ) deposition in the brain is one of the main pathological features of Alzheimer's disease (AD), and the c-Jun N-terminal kinase (JNK) signaling pathway plays an important role in the pathogenesis of AD. This study aimed to investigate that D-serine may ameliorate motor and cognitive impairment in Aβ injected mice by inhibiting JNK signaling pathway. Firstly, Kunming mice were injected intrahippocampally with Aβ1-42 to build AD model. The mice were injected intraperitoneally with saline, D-serine, D-amino acid oxidase (DAAO), and Sodium benzoate (BE) for 10 consecutive days, respectively. Subsequently, the motor and cognitive functions of mice were detected by behavioral tests. The silver staining and immunohistochemical methods were used to detect the distributions of Aβ in the hippocampus of mice. 18F-2-Fluro-D-deoxy-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) scans were performed to detected glucose metabolism of Aβ1-42 induced lesions. The expressions of relative JNK factors were detected by immunohistochemistry and Western blot methods. These results showed that Aβ severely impaired the motor and memory abilities of mice. The expressions of glial fibrillary acidic protein (GFAP), tumor necrosis factor (TNF-α), N-methyl-D-aspartate receptor 1 (NMDAR1), phospho-JNK (p-JNK), p-c-Jun and activating transcription factor 2 (ATF2) increased significantly. After D-serine treatment, the abilities of movement and memory of mice were improved, and the clearance rate of Aβ was accelerated. The expressions of GFAP, TNF-α, NMDAR1, p-JNK, p-c-Jun and ATF2 decreased significantly. DAAO and BE were administered to further validate these results. Therefore, this study showed that D-serine could alleviate the cognitive impairment of Aβ1-42 injected mice by inhibiting JNK signaling pathway. These results provide more evidences for the effect of D-serine on AD and relevant mechanism to treat AD.
Collapse
|
15
|
Singh P, Walia V. Anxiolytic like effect of L-Carnitine in mice: Evidences for the involvement of NO-sGC-cGMP signaling pathway. Behav Brain Res 2020; 391:112689. [PMID: 32417275 DOI: 10.1016/j.bbr.2020.112689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/26/2020] [Accepted: 05/02/2020] [Indexed: 12/20/2022]
Abstract
L-Carnitine (LC) is an endogenous compound synthesized from the essential amino acids lysine and methionine. LC act as an antioxidant and modulates the levels of neurochemicals such as glutamate, GABA, NO etc. implicated in the regulation of anxiety and related behavior. However its exact role in the anxiety is not known. The present study was designed to investigate the anxiolytic like effect of LC in mice. LC (2.5, 5.0 and 10 mg/kg, i.p.) was administered to the mice and the anxiety related behavior was determined using light and dark box (LDB) and elevated plus maze (EPM) tests. The whole brain nitrite level was also determined. The results obtained demonstrated that LC (10 mg/kg, i.p.) exerted anxiolytic like effect in mice, accompanied by the reduction of whole brain nitrite level significantly as compared to control. Further, the influence of NO and GABA modulators pretreatments on the effect of subtherapeutic dose of LC was also determined. The results obtained demonstrated that NO donor/cGMP modulator counteracted while NO inhibitor potentiated the effect confers by the subtherapeutic dose of LC mice. Pretreatment of diazepam (1 mg/kg, i.p.) further potentiated the effect of subtherapeutic dose of LC (5 mg/kg, i.p.) in EPM and LDB tests and further reduced the brain nitrite level significantly as compared to LC (5 mg/kg, i.p.) alone treatment. Thus, LC exerted anxiolytic like effect in mice and NO-sGC-cGMP signaling pathway influences the anxiolytic like effect of LC in mice.
Collapse
Affiliation(s)
- Poonam Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Vaibhav Walia
- Faculty of Pharmacy, DIT University, Dehradun, India.
| |
Collapse
|
16
|
The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev 2020; 113:373-407. [PMID: 32298711 DOI: 10.1016/j.neubiorev.2020.04.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Rats and mice have been demonstrated to show episodic-like memory, a prototype of episodic memory, as defined by an integrated memory of the experience of an object or event, in a particular place and time. Such memory can be assessed via the use of spontaneous object exploration paradigms, variably designed to measure memory for object, place, temporal order and object-location inter-relationships. We review the methodological properties of these tests, the neurobiology about time and discuss the evidence for the involvement of the medial prefrontal cortex (mPFC), entorhinal cortex (EC) and hippocampus, with respect to their anatomy, neurotransmitter systems and functional circuits. The systematic analysis suggests that a specific circuit between the mPFC, lateral EC and hippocampus encodes the information for event, place and time of occurrence into the complex episodic-like memory, as a top-down regulation from the mPFC onto the hippocampus. This circuit can be distinguished from the neuronal component memory systems for processing the individual information of object, time and place.
Collapse
|
17
|
Walia V, Garg C, Garg M. Amantadine exerts anxiolytic like effect in mice: Evidences for the involvement of nitrergic and GABAergic signaling pathways. Behav Brain Res 2019; 380:112432. [PMID: 31838141 DOI: 10.1016/j.bbr.2019.112432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023]
Abstract
Amantadine is a glutamatergic antagonist that works by inhibiting the NMDA receptor. Besides the inhibition of NMDA receptors amantadine also stabilizes the glutamatergic system and protects the neurons against the NMDA toxicity. Amantadine treatment also reduces the production of NO and metabolism of GABA. Therefore amantadine modulates glutamate, GABA and NO which are known to be implicated in the pathogenesis of anxiety and related behavior. The present study was designed to investigate the anxiolytic like effect of amantadine in mice. Nitrergic and GABAergic signaling influence in the anxiolytic like effect of amantadine was also studied. Amantadine (25, 50 and 75 mg/kg, i.p.) was administered and the anxiety related behavior was determined using light and dark box (LDB) and elevated plus maze (EPM) methods. Further, the effect of various treatments on the whole brain glutamate, nitrite and GABA levels were also determined. The results obtained demonstrated that the amantadine (50 mg/kg, i.p.) exerted anxiolytic like effect in mice and reduced the levels of glutamate, nitrite and GABA in the brain of mice as compared to control. Further, the influence of NO and GABA in the anxiolytic like effect of the amantadine was also determined. The results obtained demonstrated that NO donor counteracted while NO inhibitor potentiated the anxiolytic like effect of amantadine in mice. Also the combined treatment of amantadine (25 mg/kg, i.p.) and diazepam (1 mg/kg, i.p.) did not affect the anxiety related behavior, brain GABA and nitrite level of mice but reduced the levels the brain glutamate levels significantly as compared to amantadine (25 mg/kg, i.p.) and diazepam (1 mg/kg, i.p.) treated mice. Thus, amantadine exerted anxiolytic like effect in mice and the anxiolytic like effect of amantadine was modulated by nitrergic and GABAergic signaling pathway.
Collapse
Affiliation(s)
- Vaibhav Walia
- Faculty of Pharmacy, DIT University, Dehradun, India.
| | - Chanchal Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - Munish Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
18
|
Macht VA, Woodruff JL, Maissy ES, Grillo CA, Wilson MA, Fadel JR, Reagan LP. Pyridostigmine bromide and stress interact to impact immune function, cholinergic neurochemistry and behavior in a rat model of Gulf War Illness. Brain Behav Immun 2019; 80:384-393. [PMID: 30953774 PMCID: PMC6790976 DOI: 10.1016/j.bbi.2019.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Gulf War Illness (GWI) is characterized by a constellation of symptoms that includes cognitive dysfunction. While the causes for GWI remain unknown, prophylactic use of the acetylcholinesterase inhibitor pyridostigmine bromide (PB) in combination with the stress of deployment has been proposed to be among the causes of the cognitive dysfunction in GWI. Mechanistically, clinical studies suggest that altered immune function may be an underlying factor in the neurochemical and neurobehavioral complications of GWI. Accordingly, the goal of this study was to determine how responses to an immune challenge (lipopolysaccharide; LPS) or stress impacts inflammation, acetylcholine (ACh) neurochemistry and behavior in an experimental model of GWI. Rats with a history of PB treatment exhibited potentiated increases in C-reactive protein levels in response to a submaximal LPS challenge compared to control rats, indicating that prior treatment with this cholinesterase inhibitor leads to exacerbated inflammatory responses to a subsequent immune challenge. ACh responses to LPS administration were decreased in the hippocampus, but not prefrontal cortex (PFC), in rats with a prior history of PB treatment or stress exposure. Additionally, ACh release in response to acute immobilization stress was attenuated in the PFC and hippocampus in these groups. These attenuated cholinergic responses were accompanied by impairments in contextual and cue-based fear learning. The results of this study suggest that stress and LPS challenges adversely affect central ACh neurochemistry in a rodent model of GWI and support the hypothesis that dysregulated immune responses are mechanistically linked to the neurological complications of GWI.
Collapse
Affiliation(s)
- V A Macht
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, United States; University of South Carolina, Department of Psychology, Columbia, SC, United States; Wm. Jennings Bryant Dorn VA Medical Center, Columbia, SC, United States.
| | - J L Woodruff
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, United States; Wm. Jennings Bryant Dorn VA Medical Center, Columbia, SC, United States
| | - E S Maissy
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, United States
| | - C A Grillo
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, United States; Wm. Jennings Bryant Dorn VA Medical Center, Columbia, SC, United States
| | - M A Wilson
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, United States; University of South Carolina, Department of Psychology, Columbia, SC, United States; Wm. Jennings Bryant Dorn VA Medical Center, Columbia, SC, United States
| | - J R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, United States
| | - L P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, United States; Wm. Jennings Bryant Dorn VA Medical Center, Columbia, SC, United States.
| |
Collapse
|
19
|
Aerobic Physical Exercise as a Neuroprotector Strategy for Ethanol Binge-Drinking Effects in the Hippocampus and Systemic Redox Status in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2415243. [PMID: 31354903 PMCID: PMC6637690 DOI: 10.1155/2019/2415243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/06/2019] [Accepted: 05/27/2019] [Indexed: 12/22/2022]
Abstract
The heavy and episodic EtOH drinking pattern, equivalent to weekend consumption, characterizes the binge-drinking pattern and promotes a misbalance of encephalic metabolic functions, concurring to neurodegeneration and cerebral dysfunction. And for being a legal drug, it has global public health and social relevance. In this way, we aimed to investigate the effects of physical training, in a treadmill, on the deleterious effects of EtOH on hippocampal functions, related to memory and learning. For this, we used 40 Wistar rats, divided into four groups: Control group, Trained group (trained animals with doses of distilled water), EtOH group (nontrained animals with doses of 3 g/kg/day of EtOH, 20% w/v), and Trained+EtOH group (trained animals exposed to EtOH). The physical exercise was performed by running on a treadmill for 5 days a week for 4 weeks, and all doses of EtOH were administered through intragastric gavage in four repeated cycles of EtOH in binge. After the experimental period, the animals were submitted to the object recognition task and Morris water maze test, and after being euthanized, the blood and hippocampus were collected for Trolox Equivalent Antioxidant Capacity (TEAC), Reduced Glutathione Content (GSH), and Nitrite and Lipid Peroxidation (LPO) level measurements. Our results showed that EtOH caused marked oxidative stress and mnemonic damage, and the physical exercise promoted neuroprotective effects, among them, the modulation of oxidative biochemistry in plasma (by restoring GSH levels) and in the hippocampus (by reducing LPO levels and increasing antioxidant parameters) and cognitive function improvement. Therefore, physical exercise can be an important prophylactic and therapeutic tool in order to ameliorate and even prevent the deleterious effects of EtOH on cognitive functions.
Collapse
|
20
|
van Goethem NP, Paes D, Puzzo D, Fedele E, Rebosio C, Gulisano W, Palmeri A, Wennogle LP, Peng Y, Bertrand D, Prickaerts J. Antagonizing α7 nicotinic receptors with methyllycaconitine (MLA) potentiates receptor activity and memory acquisition. Cell Signal 2019; 62:109338. [PMID: 31176021 DOI: 10.1016/j.cellsig.2019.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
α7 nicotinic acetylcholine receptors (α7nAChRs) have been targeted to improve cognition in different neurological and psychiatric disorders. Nevertheless, no α7nAChR activating ligand has been clinically approved. Here, we investigated the effects of antagonizing α7nAChRs using the selective antagonist methyllycaconitine (MLA) on receptor activity in vitro and cognitive functioning in vivo. Picomolar concentrations of MLA significantly potentiated receptor responses in electrophysiological experiments mimicking the in vivo situation. Furthermore, microdialysis studies showed that MLA administration substantially increased hippocampal glutamate efflux which is related to memory processes. Accordingly, pre-tetanus administration of low MLA concentrations produced longer lasting potentiation (long-term potentiation, LTP) in studies examining hippocampal plasticity. Moreover, low doses of MLA improved acquisition, but not consolidation memory processes in rats. While the focus to enhance cognition by modulating α7nAChRs lies on agonists and positive modulators, antagonists at low doses should provide a novel approach to improve cognition in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Nick P van Goethem
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200, MD, Maastricht, The Netherlands
| | - Dean Paes
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200, MD, Maastricht, The Netherlands
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95124 Catania, Italy
| | - Ernesto Fedele
- Department of Pharmacy, Section of Pharmacology and Toxicology, School of Medical and Pharmaceutical Sciences, Centre of Excellence for Biomedical Research, University of Genoa, 16148 Genoa, Italy; IRCCS Polyclinic Hospital San Martino, 16132 Genoa, Italy
| | - Claudia Rebosio
- Department of Pharmacy, Section of Pharmacology and Toxicology, School of Medical and Pharmaceutical Sciences, Centre of Excellence for Biomedical Research, University of Genoa, 16148 Genoa, Italy
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95124 Catania, Italy
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95124 Catania, Italy
| | | | - Youyi Peng
- Intra-Cellular Therapies, Inc., New York 10016, United States
| | - Daniel Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222, Vésenaz, Geneva, Switzerland
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200, MD, Maastricht, The Netherlands.
| |
Collapse
|
21
|
Walia V, Garg C, Garg M. Nitrergic signaling modulation by ascorbic acid treatment is responsible for anxiolysis in mouse model of anxiety. Behav Brain Res 2019; 364:85-98. [PMID: 30738102 DOI: 10.1016/j.bbr.2019.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
The present study was designed to investigate the effect of ascorbic acid (AA) treatment on the anxiety related behavioral and neurochemical alterations. AA (50, 100 and 200 mg/kg, i.p.) was administered to the mice and anxiety related behavior and levels of glutamate and nitrite in the brain of mice were determined. The results obtained revealed that the administration of AA (100 mg/kg, i.p.) significantly reduced the anxiety related behavior and the levels of nitrite in the brain of mice. Nitrergic interactions were further determined by the pretreatment of mice with nitric oxide (NO) modulator and AA treatment followed by behavioral and neurochemical measurements. The results obtained suggested that NO inhibition potentiated the anxiolytic like activity of AA in mice. It was also observed that the glutamate and nitrite level in the brain of mice were significantly reduced by the NO inhibitor pretreatment. Thus, the present study demonstrated the possible nitrergic pathways modulation in the anxiolytic like activity of AA in mice.
Collapse
Affiliation(s)
- Vaibhav Walia
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| | - Chanchal Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| | - Munish Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| |
Collapse
|
22
|
Chung BYT, Bailey CDC. Sex differences in the nicotinic excitation of principal neurons within the developing hippocampal formation. Dev Neurobiol 2018; 79:110-130. [PMID: 30354016 DOI: 10.1002/dneu.22646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022]
Abstract
The hippocampal formation (HF) plays an important role to facilitate higher order cognitive functions. Cholinergic activation of heteromeric nicotinic acetylcholine receptors (nAChRs) within the HF is critical for the normal development of principal neurons within this brain region. However, previous research investigating the expression and function of heteromeric nAChRs in principal neurons of the HF is limited to males or does not differentiate between the sexes. We used whole-cell electrophysiology to show that principal neurons in the CA1 region of the female mouse HF are excited by heteromeric nAChRs throughout postnatal development, with the greatest response occurring during the first two weeks of postnatal life. Excitability responses to heteromeric nAChR stimulation were also found in principal neurons in the CA3, dentate gyrus, subiculum, and entorhinal cortex layer VI (ECVI) of young postnatal female HF. A direct comparison between male and female mice found that principal neurons in ECVI display greater heteromeric nicotinic passive and active excitability responses in females. This sex difference is likely influenced by the generally more excitable nature of ECVI neurons from female mice, which display a higher resting membrane potential, greater input resistance, and smaller afterhyperpolarization potential of medium duration (mAHP). These findings demonstrate that heteromeric nicotinic excitation of ECVI neurons differs between male and female mice during a period of major circuitry development within the HF, which may have mechanistic implications for known sex differences in the development and function of this cognitive brain region.
Collapse
Affiliation(s)
- Beryl Y T Chung
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Craig D C Bailey
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
23
|
Neuroprotective evidence of alpha-lipoic acid and desvenlafaxine on memory deficit in a neuroendocrine model of depression. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:803-817. [DOI: 10.1007/s00210-018-1509-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/25/2018] [Indexed: 12/15/2022]
|
24
|
Microdialysis and its use in behavioural studies: Focus on acetylcholine. J Neurosci Methods 2018; 300:206-215. [DOI: 10.1016/j.jneumeth.2017.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 12/28/2022]
|
25
|
Abstract
The septo–hippocampal pathway adjusts CA1 network excitability to different behavioral states and is crucially involved in theta rhythmogenesis. In the medial septum, cholinergic, glutamatergic and GABAergic neurons form a highly interconnected local network. Neurons of these three classes project to glutamatergic pyramidal neurons and different subsets of GABAergic neurons in the hippocampal CA1 region. From there, GABAergic neurons project back to the medial septum and form a feedback loop between the two remote brain areas. In vivo, the firing of GABAergic medial septal neurons is theta modulated, while theta modulation is not observed in cholinergic neurons. One prominent feature of glutamatergic neurons is the correlation of their firing rates to the animals running speed. The cellular diversity, the high local interconnectivity and different activity patterns of medial septal neurons during different behaviors complicate the functional dissection of this network. New technical advances help to define specific functions of individual cell classes. In this review, we seek to highlight recent findings and elucidate functional implications of the septo-hippocampal connectivity on the microcircuit scale.
Collapse
Affiliation(s)
- Christina Müller
- Neuronal Networks Group, German Center for Neurodegenerative Diseases in the Helmholtz Association (DZNE e.V.), Bonn, Germany.
| | - Stefan Remy
- Neuronal Networks Group, German Center for Neurodegenerative Diseases in the Helmholtz Association (DZNE e.V.), Bonn, Germany.,Department of Epileptology, University of Bonn, Bonn, Germany
| |
Collapse
|
26
|
Dannenberg H, Young K, Hasselmo M. Modulation of Hippocampal Circuits by Muscarinic and Nicotinic Receptors. Front Neural Circuits 2017; 11:102. [PMID: 29321728 PMCID: PMC5733553 DOI: 10.3389/fncir.2017.00102] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/27/2017] [Indexed: 01/02/2023] Open
Abstract
This article provides a review of the effects of activation of muscarinic and nicotinic receptors on the physiological properties of circuits in the hippocampal formation. Previous articles have described detailed computational hypotheses about the role of cholinergic neuromodulation in enhancing the dynamics for encoding in cortical structures and the role of reduced cholinergic modulation in allowing consolidation of previously encoded information. This article will focus on addressing the broad scope of different modulatory effects observed within hippocampal circuits, highlighting the heterogeneity of cholinergic modulation in terms of the physiological effects of activation of muscarinic and nicotinic receptors and the heterogeneity of effects on different subclasses of neurons.
Collapse
Affiliation(s)
- Holger Dannenberg
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Kimberly Young
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Michael Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
27
|
Ballinger EC, Ananth M, Talmage DA, Role LW. Basal Forebrain Cholinergic Circuits and Signaling in Cognition and Cognitive Decline. Neuron 2017; 91:1199-1218. [PMID: 27657448 DOI: 10.1016/j.neuron.2016.09.006] [Citation(s) in RCA: 505] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 02/04/2023]
Abstract
Recent work continues to place cholinergic circuits at center stage for normal executive and mnemonic functioning and provides compelling evidence that the loss of cholinergic signaling and cognitive decline are inextricably linked. This Review focuses on the last few years of studies on the mechanisms by which cholinergic signaling contributes to circuit activity related to cognition. We attempt to identify areas of controversy, as well as consensus, on what is and is not yet known about how cholinergic signaling in the CNS contributes to normal cognitive processes. In addition, we delineate the findings from recent work on the extent to which dysfunction of cholinergic circuits contributes to cognitive decline associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Elizabeth C Ballinger
- Medical Scientist Training Program, Program in Neuroscience, Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Mala Ananth
- Program in Neuroscience, Department of Neurobiology & Behavior, Department of Psychiatry & Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA
| | - David A Talmage
- Department of Pharmacological Sciences, CNS Disorders Center, Center for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lorna W Role
- Department of Neurobiology & Behavior, Neurosciences Institute, CNS Disorders Center, Center for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
28
|
Wilson MA, Fadel JR. Cholinergic regulation of fear learning and extinction. J Neurosci Res 2016; 95:836-852. [PMID: 27704595 DOI: 10.1002/jnr.23840] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/10/2016] [Accepted: 06/27/2016] [Indexed: 01/10/2023]
Abstract
Cholinergic activation regulates cognitive function, particularly long-term memory consolidation. This Review presents an overview of the anatomical, neurochemical, and pharmacological evidence supporting the cholinergic regulation of Pavlovian contextual and cue-conditioned fear learning and extinction. Basal forebrain cholinergic neurons provide inputs to neocortical regions and subcortical limbic structures such as the hippocampus and amygdala. Pharmacological manipulations of muscarinic and nicotinic receptors support the role of cholinergic processes in the amygdala, hippocampus, and prefrontal cortex in modulating the learning and extinction of contexts or cues associated with threat. Additional evidence from lesion studies and analysis of in vivo acetylcholine release with microdialysis similarly support a critical role of cholinergic neurotransmission in corticoamygdalar or corticohippocampal circuits during acquisition of fear extinction. Although a few studies have suggested a complex role of cholinergic neurotransmission in the cellular plasticity essential for extinction learning, more work is required to elucidate the exact cholinergic mechanisms and physiological role of muscarinic and nicotinic receptors in these fear circuits. Such studies are important for elucidating the role of cholinergic neurotransmission in disorders such as posttraumatic stress disorder that involve deficits in extinction learning as well as for developing novel therapeutic approaches for such disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marlene A Wilson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina
| | - Jim R Fadel
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina
| |
Collapse
|
29
|
Godinho AF, de Oliveira Souza AC, Carvalho CC, Horta DF, De Fraia D, Anselmo F, Chaguri JL, Faria CA. Memory impairment due to fipronil pesticide exposure occurs at the GABAA receptor level, in rats. Physiol Behav 2016; 165:28-34. [DOI: 10.1016/j.physbeh.2016.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/19/2022]
|
30
|
Zhang G, Cinalli D, Cohen SJ, Knapp KD, Rios LM, Martínez-Hernández J, Luján R, Stackman RW. Examination of the hippocampal contribution to serotonin 5-HT2A receptor-mediated facilitation of object memory in C57BL/6J mice. Neuropharmacology 2016; 109:332-340. [DOI: 10.1016/j.neuropharm.2016.04.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/06/2016] [Accepted: 04/21/2016] [Indexed: 12/15/2022]
|
31
|
Dannenberg H, Hinman JR, Hasselmo ME. Potential roles of cholinergic modulation in the neural coding of location and movement speed. ACTA ACUST UNITED AC 2016; 110:52-64. [PMID: 27677935 DOI: 10.1016/j.jphysparis.2016.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/06/2016] [Accepted: 09/23/2016] [Indexed: 12/26/2022]
Abstract
Behavioral data suggest that cholinergic modulation may play a role in certain aspects of spatial memory, and neurophysiological data demonstrate neurons that fire in response to spatial dimensions, including grid cells and place cells that respond on the basis of location and running speed. These neurons show firing responses that depend upon the visual configuration of the environment, due to coding in visually-responsive regions of the neocortex. This review focuses on the physiological effects of acetylcholine that may influence the sensory coding of spatial dimensions relevant to behavior. In particular, the local circuit effects of acetylcholine within the cortex regulate the influence of sensory input relative to internal memory representations via presynaptic inhibition of excitatory and inhibitory synaptic transmission, and the modulation of intrinsic currents in cortical excitatory and inhibitory neurons. In addition, circuit effects of acetylcholine regulate the dynamics of cortical circuits including oscillations at theta and gamma frequencies. These effects of acetylcholine on local circuits and network dynamics could underlie the role of acetylcholine in coding of spatial information for the performance of spatial memory tasks.
Collapse
Affiliation(s)
- Holger Dannenberg
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Center for Memory and Brain, Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA 02215, USA.
| | - James R Hinman
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Center for Memory and Brain, Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA 02215, USA.
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Center for Memory and Brain, Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
32
|
Chung BYT, Bignell W, Jacklin DL, Winters BD, Bailey CDC. Postsynaptic nicotinic acetylcholine receptors facilitate excitation of developing CA1 pyramidal neurons. J Neurophysiol 2016; 116:2043-2055. [PMID: 27489367 DOI: 10.1152/jn.00370.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022] Open
Abstract
The hippocampus plays a key role in learning and memory. The normal development and mature function of hippocampal networks supporting these cognitive functions depends on afferent cholinergic neurotransmission mediated by nicotinic acetylcholine receptors. Whereas it is well-established that nicotinic receptors are present on GABAergic interneurons and on glutamatergic presynaptic terminals within the hippocampus, the ability of these receptors to mediate postsynaptic signaling in pyramidal neurons is not well understood. We use whole cell electrophysiology to show that heteromeric nicotinic receptors mediate direct inward currents, depolarization from rest and enhanced excitability in hippocampus CA1 pyramidal neurons of male mice. Measurements made throughout postnatal development provide a thorough developmental profile for these heteromeric nicotinic responses, which are greatest during the first 2 wk of postnatal life and decrease to low adult levels shortly thereafter. Pharmacological experiments show that responses are blocked by a competitive antagonist of α4β2* nicotinic receptors and augmented by a positive allosteric modulator of α5 subunit-containing receptors, which is consistent with expression studies suggesting the presence of α4β2 and α4β2α5 nicotinic receptors within the developing CA1 pyramidal cell layer. These findings demonstrate that functional heteromeric nicotinic receptors are present on CA1 pyramidal neurons during a period of major hippocampal development, placing these receptors in a prime position to play an important role in the establishment of hippocampal cognitive networks.
Collapse
Affiliation(s)
- Beryl Y T Chung
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada; and
| | - Warren Bignell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada; and
| | - Derek L Jacklin
- Department of Psychology, College of Social and Applied Human Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Boyer D Winters
- Department of Psychology, College of Social and Applied Human Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Craig D C Bailey
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada; and
| |
Collapse
|
33
|
Kalra J, Kumar P, Majeed ABA, Prakash A. Modulation of LOX and COX pathways via inhibition of amyloidogenesis contributes to mitoprotection against β-amyloid oligomer-induced toxicity in an animal model of Alzheimer's disease in rats. Pharmacol Biochem Behav 2016; 146-147:1-12. [DOI: 10.1016/j.pbb.2016.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 01/13/2023]
|
34
|
Synergy of direct and indirect cholinergic septo-hippocampal pathways coordinates firing in hippocampal networks. J Neurosci 2015; 35:8394-410. [PMID: 26041909 DOI: 10.1523/jneurosci.4460-14.2015] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The medial septum/diagonal band of Broca complex (MSDB) is a key structure that modulates hippocampal rhythmogenesis. Cholinergic neurons of the MSDB play a central role in generating and pacing theta-band oscillations in the hippocampal formation during exploration, novelty detection, and memory encoding. How precisely cholinergic neurons affect hippocampal network dynamics in vivo, however, has remained elusive. In this study, we show that stimulation of cholinergic MSDB neurons in urethane-anesthetized mice acts on hippocampal networks via two distinct pathways. A direct septo-hippocampal cholinergic projection causes increased firing of hippocampal inhibitory interneurons with concomitantly decreased firing of principal cells. In addition, cholinergic neurons recruit noncholinergic neurons within the MSDB. This indirect pathway is required for hippocampal theta synchronization. Activation of both pathways causes a reduction in pyramidal neuron firing and a more precise coupling to the theta oscillatory phase. These two anatomically and functionally distinct pathways are likely relevant for cholinergic control of encoding versus retrieval modes in the hippocampus.
Collapse
|
35
|
Balderas I, Rodriguez-Ortiz CJ, Bermudez-Rattoni F. Consolidation and reconsolidation of object recognition memory. Behav Brain Res 2015; 285:213-22. [DOI: 10.1016/j.bbr.2014.08.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 01/06/2023]
|
36
|
Zhang Z, Fei P, Mu J, Wang H, Li W, Song J. Decreased expression of neuronal Per-Arnt-Sim domain protein 4 gene in the hippocampus of a post-stroke depression rat model. Exp Ther Med 2014; 7:1045-1049. [PMID: 24669275 PMCID: PMC3964933 DOI: 10.3892/etm.2014.1537] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/07/2014] [Indexed: 11/29/2022] Open
Abstract
Neuronal Per-Arnt-Sim domain protein 4 (NPAS4) is important in regulating transcription and function in the limbic system and in brain development. Post-stroke depression (PSD) is a common complication following a stroke. Furthermore, organic damage as a result of a stroke affects the restoration of nerve function and indicates that hippocampal neural activity may be associated with PSD. A PSD rat model was established via a middle cerebral artery occlusion procedure, which was combined with isolation and chronic unexpected mild stress, and was used to investigate the expression of the NPAS4 gene in the hippocampus. The neurological deficit and behavior were evaluated and NPAS4 mRNA expression was measured by semi-quantitative reverse transcription-polymerase chain reaction; furthermore, the association with cognitive impairment was analyzed. The PSD rats displayed neuropsychopathic disorders and the NPAS4 mRNA expression levels in the hippocampus were significantly lower in the depression and PSD groups compared with the control group. Therefore, the present study identified that NPAS4 expression was decreased in the hippocampus of PSD rats.
Collapse
Affiliation(s)
- Zhaohui Zhang
- Department of Psychosomatic Medicine, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China ; Department of Neurology, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China
| | - Pengge Fei
- Department of Neurology, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China ; The Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China
| | - Junlin Mu
- Department of Psychosomatic Medicine, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China ; The Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China
| | - Haoliang Wang
- Department of Neurology, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China ; The Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China
| | - Wenqiang Li
- The Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China
| | - Jinggui Song
- Department of Neurology, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China ; The Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China
| |
Collapse
|
37
|
Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, Freret T. Object recognition test in mice. Nat Protoc 2013; 8:2531-7. [PMID: 24263092 DOI: 10.1038/nprot.2013.155] [Citation(s) in RCA: 873] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The object recognition test is now among the most commonly used behavioral tests for mice. A mouse is presented with two similar objects during the first session, and then one of the two objects is replaced by a new object during a second session. The amount of time taken to explore the new object provides an index of recognition memory. As more groups have used the protocol, the variability of the procedures used in the object recognition test has increased steadily. This protocol provides a necessary standardization of the procedure. This protocol reduces inter-individual variability with the use of a selection criterion based on a minimal time of exploration for both objects during each session. In this protocol, we describe the three most commonly used variants, containing long (3 d), short (1 d) or no habituation phases. Thus, with a short intersession interval (e.g., 6 h), this procedure can be performed in 4, 2 or 1 d, respectively, according to the duration of the habituation phase. This protocol should allow for the comparison of results from different studies, while permitting adaption of the protocol to the constraints of the experimenter.
Collapse
Affiliation(s)
- Marianne Leger
- 1] Groupe Mémoire et Plasticité comportementale (GMPc), Université de Caen Basse-Normandie, Caen, France. [2]
| | | | | | | | | | | | | |
Collapse
|
38
|
Huang M, Panos JJ, Kwon S, Oyamada Y, Rajagopal L, Meltzer HY. Comparative effect of lurasidone and blonanserin on cortical glutamate, dopamine, and acetylcholine efflux: role of relative serotonin (5-HT)2A
and DA D2
antagonism and 5-HT1A
partial agonism. J Neurochem 2013; 128:938-49. [DOI: 10.1111/jnc.12512] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Mei Huang
- Department of Psychiatry and Behavioral Sciences; Northwestern Feinberg School of Medicine; Chicago Illinois USA
| | - John J. Panos
- Department of Psychiatry and Behavioral Sciences; Northwestern Feinberg School of Medicine; Chicago Illinois USA
| | - Sunoh Kwon
- Department of Psychiatry and Behavioral Sciences; Northwestern Feinberg School of Medicine; Chicago Illinois USA
| | - Yoshihiro Oyamada
- Department of Psychiatry and Behavioral Sciences; Northwestern Feinberg School of Medicine; Chicago Illinois USA
- Dainippon Sumitomo Pharma Co. Ltd.; Osaka Japan
| | - Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences; Northwestern Feinberg School of Medicine; Chicago Illinois USA
| | - Herbert Y. Meltzer
- Department of Psychiatry and Behavioral Sciences; Northwestern Feinberg School of Medicine; Chicago Illinois USA
| |
Collapse
|
39
|
Translating the N-methyl-D-aspartate receptor antagonist model of schizophrenia to treatments for cognitive impairment in schizophrenia. Int J Neuropsychopharmacol 2013; 16:2181-94. [PMID: 24099265 DOI: 10.1017/s1461145713000928] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The N-methyl-D-aspartate receptor (NMDAR) antagonists, phencyclidine (PCP), dizocilpine (MK-801), or ketamine, given subchronically (sc) to rodents and primates, produce prolonged deficits in cognitive function, including novel object recognition (NOR), an analog of human declarative memory, one of the cognitive domains impaired in schizophrenia. Atypical antipsychotic drugs (AAPDs) have been reported to improve declarative memory in some patients with schizophrenia, as well as to ameliorate and prevent the NOR deficit in rodents following scNMDAR antagonist treatment. While the efficacy of AAPDs to improve cognitive impairment in schizophrenia (CIS) is limited, at best, and controversial, single doses of all currently available AAPDs so far tested transiently restore NOR in rodents following scNMDAR antagonist treatment. Typical antipsychotic drugs (APDs), e.g. haloperidol and perphenazine, are ineffective in this rodent model, and may be less effective as treatments of some domains of CIS. Serotonergic mechanisms, including, but not limited to serotonin (5-HT)2A and 5-HT7 antagonism, 5-HT(1A), and GABA(A) agonism, contribute to the efficacy of the AAPDs in the scNMDAR antagonist rodent models, which are relevant to the loss of GABA interneuron/hyperglutamate hypothesis of the etiology of CIS. The ability of sub-effective doses of the atypical APDs to ameliorate NOR in the scNMDAR-treated rodents can be restored by the addition of a sub-effective dose of the 5-HT(1A) partial agonist, tandospirone, or the 5-HT7 antagonist, SB269970. The mGluR2/3 agonist, LY379268, which itself is unable to restore NOR in the scNMDAR-treated rodents, can also restore NOR when given with lurasidone, an AAPD. Enhancing cortical and hippocampal dopamine and acetylcholine efflux, or both, may contribute to the restoration of NOR by the atypical APDs. Importantly, co-administration of lurasidone, tandospirone, or SB269970, with PCP, to rodents, at doses 5-10 fold greater than those acutely effective to restore NOR following scNMDAR treatment, prevents the effect of scPCP to produce an enduring deficit in NOR. This difference in dosage may be relevant to utilizing AAPDs to prevent the onset of CIS in individuals at high risk for developing schizophrenia. The scNMDAR paradigm may be useful for identifying possible means to treat and prevent CIS.
Collapse
|
40
|
Eltorki M, Uleryk E, Freedman SB. Waiver of informed consent in pediatric resuscitation research: a systematic review. Acad Emerg Med 2013; 20:822-34. [PMID: 24033626 DOI: 10.1111/acem.12180] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND In critical care and emergency medicine research, obtaining consent can be problematic when patients present with life-threatening conditions. This issue is further complicated in children, as even while coherent, they are often incapable of making decisions regarding their own care. To enable the ethical conduct of research in such situations, the Food and Drug Administration (FDA) of the United States has set recommendations for the conduct of research employing a waiver of consent. These regulations have been termed "exception from informed consent," or EFIC. As this is an evolving concept with limited pediatric experience, the authors conducted a review to examine the conduct of emergency research in the absence of prospectively obtained informed consent. Our review focused both on opinions and on the ability to conduct research without informed consent in life-threatening situations. METHODS A systematic review of the literature was undertaken in accordance with the PRISMA guidelines. Medline, CINAHL, and EMBASE databases were searched on January 9, 2013. Eligibility criteria included: 1) examined a method of conducting research in a life-threatening situation, 2) involved a real or theoretical clinical situation, 3) involved patients less than 18 years of age or a substitute decision-maker, and 4) reported at least one quantifiable outcome. The findings were synthesized qualitatively with the pertinent results summarized and discussed. RESULTS Eleven articles matched the eligibility criteria. Six focused on community consultation and public disclosure, three focused on the feasibility of employing a waiver of consent, and two examined attitudes toward emergency research. Of the studies focusing on community consultation, four defined the community as previous or current patients and health care providers and administrators in the study's home institution; the other two defined the community as the general population. Although there was heterogeneity in study designs, settings, and outcome measures, overall 68% (3,219 of 4,767) of subjects surveyed supported the use of EFIC under select circumstances (individual study range = 50% to 92%). Caregiver support increased among those in whom the situation was a more possible reality (e.g., critical care unit patients) and varied by the scenario and method of presentation (e.g., bulleted handout vs. preferred). Several studies revealed that patient accrual and time to intervention are impeded when prospective informed consent is required. Finally, deferred consent, although endorsed and used outside of the United States, continues to raise important ethical questions, particularly related to the need and timing of disclosure. CONCLUSIONS Limited data exist evaluating ethical issues in pediatric acute care resuscitation research. This review highlighted the fact that every proposal is unique and the method of obtaining consent (or waiver) requires careful consideration by local ethics committees. Particular attention must be paid to use of the population selected for community consultation. Several studies highlighted the need to consider the use of alternatives to prospective informed consent to enable the conduct of research in emergency departments (EDs) in life-threatening situations. Future research should evaluate children's opinions on this topic.
Collapse
Affiliation(s)
- Mohamed Eltorki
- Department of Paediatrics; The Hospital for Sick Children; University of Toronto; Toronto; Ontario; Canada
| | - Elizabeth Uleryk
- Department of Hospital Library and Archives; The Hospital for Sick Children; University of Toronto; Toronto; Ontario; Canada
| | | |
Collapse
|
41
|
Zhang Z, Fei P, Mu J, Li W, Song J. Hippocampal expression of aryl hydrocarbon receptor nuclear translocator 2 and neuronal PAS domain protein 4 in a rat model of depression. Neurol Sci 2013; 35:277-82. [DOI: 10.1007/s10072-013-1505-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/08/2013] [Indexed: 11/27/2022]
|
42
|
Fadel JR, Jolivalt CG, Reagan LP. Food for thought: the role of appetitive peptides in age-related cognitive decline. Ageing Res Rev 2013; 12:764-76. [PMID: 23416469 DOI: 10.1016/j.arr.2013.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/22/2013] [Accepted: 01/25/2013] [Indexed: 01/25/2023]
Abstract
Through their well described actions in the hypothalamus, appetitive peptides such as insulin, orexin and leptin are recognized as important regulators of food intake, body weight and body composition. Beyond these metabolic activities, these peptides also are critically involved in a wide variety of activities ranging from modulation of immune and neuroendocrine function to addictive behaviors and reproduction. The neurological activities of insulin, orexin and leptin also include facilitation of hippocampal synaptic plasticity and enhancement of cognitive performance. While patients with metabolic disorders such as obesity and diabetes have greater risk of developing cognitive deficits, dementia and Alzheimer's disease (AD), the underlying mechanisms that are responsible for, or contribute to, age-related cognitive decline are poorly understood. In view of the importance of these peptides in metabolic disorders, it is not surprising that there is a greater focus on their potential role in cognitive deficits associated with aging. The goal of this review is to describe the evidence from clinical and pre-clinical studies implicating insulin, orexin and leptin in the etiology and progression of age-related cognitive decline. Collectively, these studies support the hypothesis that leptin and insulin resistance, concepts normally associated with the hypothalamus, are also applicable to the hippocampus.
Collapse
Affiliation(s)
- Jim R Fadel
- Department of Pharmacology, Physiology and Neuroscience, School of Medicine, University of South Carolina, 6439 Garners Ferry Road, Columbia, SC 29208, USA
| | | | | |
Collapse
|
43
|
Newman EL, Gupta K, Climer JR, Monaghan CK, Hasselmo ME. Cholinergic modulation of cognitive processing: insights drawn from computational models. Front Behav Neurosci 2012; 6:24. [PMID: 22707936 PMCID: PMC3374475 DOI: 10.3389/fnbeh.2012.00024] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/21/2012] [Indexed: 11/20/2022] Open
Abstract
Acetylcholine plays an important role in cognitive function, as shown by pharmacological manipulations that impact working memory, attention, episodic memory, and spatial memory function. Acetylcholine also shows striking modulatory influences on the cellular physiology of hippocampal and cortical neurons. Modeling of neural circuits provides a framework for understanding how the cognitive functions may arise from the influence of acetylcholine on neural and network dynamics. We review the influences of cholinergic manipulations on behavioral performance in working memory, attention, episodic memory, and spatial memory tasks, the physiological effects of acetylcholine on neural and circuit dynamics, and the computational models that provide insight into the functional relationships between the physiology and behavior. Specifically, we discuss the important role of acetylcholine in governing mechanisms of active maintenance in working memory tasks and in regulating network dynamics important for effective processing of stimuli in attention and episodic memory tasks. We also propose that theta rhythm plays a crucial role as an intermediary between the physiological influences of acetylcholine and behavior in episodic and spatial memory tasks. We conclude with a synthesis of the existing modeling work and highlight future directions that are likely to be rewarding given the existing state of the literature for both empiricists and modelers.
Collapse
Affiliation(s)
- Ehren L. Newman
- Center for Memory and Brain, Boston University, BostonMA, USA
| | | | | | | | | |
Collapse
|
44
|
Balderas I, Morin JP, Rodriguez-Ortiz CJ, Bermudez-Rattoni F. Muscarinic receptors activity in the perirhinal cortex and hippocampus has differential involvement in the formation of recognition memory. Neurobiol Learn Mem 2012; 97:418-24. [PMID: 22452926 DOI: 10.1016/j.nlm.2012.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 03/09/2012] [Accepted: 03/12/2012] [Indexed: 11/17/2022]
Abstract
In this work we probed the effects of post-trial infusions of the muscarinic receptor antagonist scopolamine on object recognition memory formation. Scopolamine was infused bilaterally immediately after the sample phase in the perirhinal cortex or dorsal hippocampus and animals were tested for short-term (90 min) or long-term (24 h) memory. Results showed that scopolamine impaired short-term memory when injected in either the perirhinal cortex or hippocampus. Nevertheless, scopolamine disrupted long-term memory when administrated in the perirhinal cortex but not when applied in the hippocampus. Long-term memory was unaffected when scopolamine was infused 160 min after the sample phase or 90 min before test phase. Our data indicate that short-term recognition memory requires muscarinic receptors signaling in both the perirhinal cortex and hippocampus, whereas long-term recognition memory depends on muscarinic receptors in the perirhinal cortex but not hippocampus. These results support a differential involvement of muscarinic activity in these two medial temporal lobe structures in the formation of recognition memory.
Collapse
Affiliation(s)
- Israela Balderas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, 04510 México D.F., Mexico.
| | | | | | | |
Collapse
|