1
|
Vasileva AV. [Posttraumatic stress disorder clinical guidelines and treatment standards: focus on the symptoms of the psychophysiological arousal]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:58-68. [PMID: 38884431 DOI: 10.17116/jnevro202412405158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The article describes the main diagnostic criteria and principles of posttraumatic stress disorder (PTSD) diagnostic with the consideration of risk factors and specific clinical features. The main biomarkers search trends and existing limitations are considered. The role of the psychophysiological arousal symptoms claster is highlighted in the clinical picture of PTSD as well as in connection with the main cluster of re-experiencing symptoms activation and slowing of sanogenesis process. The necessity of PTSD detection in somatic medicine is thoroughly described. The article presents therapeutic algorithms of the latest international and Russian PTSD treatment clinical guidelines based on the individual combination of psychotherapy and psychopharmacotherapy treatment choice. Additionally the accumulated during the last decades national clinical experience of the anxiety disorders treatment, including the symptoms of psychophysiological arousal is highlighted that determined the list of the recommended drugs indicating the evidence level, in the PTSD treatment standards and guidelines. The treatment choices possibilities with the consideration of different PTSD symptoms cluster expression and comorbid states and individual case distress level specific are presented. Main evidence based psychotherapeutic methods are described.
Collapse
Affiliation(s)
- A V Vasileva
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
- Mechnikov North-Western State Medical University, St. Petersburg, Russia
| |
Collapse
|
2
|
Bielawski A, Zelek-Molik A, Rafa-Zabłocka K, Kowalska M, Gruca P, Papp M, Nalepa I. Elevated Expression of HSP72 in the Prefrontal Cortex and Hippocampus of Rats Subjected to Chronic Mild Stress and Treated with Imipramine. Int J Mol Sci 2023; 25:243. [PMID: 38203414 PMCID: PMC10779295 DOI: 10.3390/ijms25010243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The HSP70 and HSP90 family members belong to molecular chaperones that exhibit protective functions during the cellular response to stressful agents. We investigated whether the exposure of rats to chronic mild stress (CMS), a validated model of depression, affects the expression of HSP70 and HSP90 in the prefrontal cortex (PFC), hippocampus (HIP) and thalamus (Thal). Male Wistar rats were exposed to CMS for 3 or 8 weeks. The antidepressant imipramine (IMI, 10 mg/kg, i.p., daily) was introduced in the last five weeks of the long-term CMS procedure. Depressive-like behavior was verified by the sucrose consumption test. The expression of mRNA and protein was quantified by real-time PCR and Western blot, respectively. In the 8-week CMS model, stress alone elevated HSP72 and HSP90B mRNA expression in the HIP. HSP72 mRNA was increased in the PFC and HIP of rats not responding to IMI treatment vs. IMI responders. The CMS exposure increased HSP72 protein expression in the cytosolic fraction of the PFC and HIP, and this effect was diminished by IMI treatment. Our results suggest that elevated levels of HSP72 may serve as an important indicator of neuronal stress reactions accompanying depression pathology and could be a potential target for antidepressant strategy.
Collapse
Affiliation(s)
- Adam Bielawski
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (A.B.); (A.Z.-M.); (K.R.-Z.); (M.K.)
| | - Agnieszka Zelek-Molik
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (A.B.); (A.Z.-M.); (K.R.-Z.); (M.K.)
| | - Katarzyna Rafa-Zabłocka
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (A.B.); (A.Z.-M.); (K.R.-Z.); (M.K.)
| | - Marta Kowalska
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (A.B.); (A.Z.-M.); (K.R.-Z.); (M.K.)
| | - Piotr Gruca
- Behavioral Pharmacology Laboratory, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (P.G.); (M.P.)
| | - Mariusz Papp
- Behavioral Pharmacology Laboratory, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (P.G.); (M.P.)
| | - Irena Nalepa
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (A.B.); (A.Z.-M.); (K.R.-Z.); (M.K.)
| |
Collapse
|
3
|
Block PD, Shinn B, Kim JH, Hann HW. Hepatitis B-related hepatocellular carcinoma and stress: untangling the host immune response from clinical outcomes. Hepat Oncol 2020; 8:HEP35. [PMID: 33680431 PMCID: PMC7907965 DOI: 10.2217/hep-2020-0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major public health challenge on the global scale. Affecting hundreds of millions worldwide, HBV is a leading risk factor for hepatocellular carcinoma (HCC). Clinical outcomes from chronic HBV infection are varied and appear to be influenced by a complex and dysregulated host immune response. In turn, much attention has been given to the immunologic response to HBV in an effort to identify host factors that lead to the development of HCC. However, the role of nonimmunologic host factors, such as chronic stress, in HBV-related HCC is poorly defined. Indeed, a growing appreciation for the effects of stress on chronic liver diseases raises the question of its role in chronic HBV infection. In this light, the present review will untangle the roles of key host factors in HBV-related HCC with an emphasis on chronic stress as a viable contributor. First discussed is the interplay of stress, inflammation and chronic liver disease. The host immune response's role as a driver of HBV-related HCC is then reviewed, allowing for a close exploration of the effects of stress on immune function in chronic hepatitis B and as a potential risk factor for HBV-related HCC.
Collapse
Affiliation(s)
- Peter D Block
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Brianna Shinn
- Department of Gastroenterology & Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Jin Hyang Kim
- Bristol-Myers Squibb, 3401 Princeton Pike, Lawrenceville, NJ 08648, USA
| | - Hie-Won Hann
- Department of Gastroenterology & Hepatology, Liver Disease Prevention Center, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Yang L, Chen H, Wang D, Nie S, Du J, Lu M. PDTC Alleviates Depressive Symptoms and Colon Tissue Injury via Inhibiting NO Overproduction in CUMS Rats. Front Neurosci 2019; 13:1327. [PMID: 31920496 PMCID: PMC6929669 DOI: 10.3389/fnins.2019.01327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023] Open
Abstract
Background The accumulated evidence demonstrates that stress plays an important role in the pathogenesis of depression that is associated with intestinal dysfunctions. However, the mechanisms remain unresolved. Methods A total of 40 male Wistar rats were obtained and randomly divided into four equal-sized group: control, PDTC + chronic and unpredictable mild stress (CUMS), FLX + CUMS, and CUMS. Western blotting and qRT-PCR were used to examine the levels of nitric oxide (NO), nuclear factor kappa beta (NF-κB), inducible nitric oxide synthase (iNOS), and iNOS mRNA in spinal cord L1-2 and colon. Key Results Chronic and unpredictable mild stress increased the serum CORT level, decreased body weight and sucrose preference, and altered OFT performance, while increased levels of NO, iNOS mRNA, iNOS and NF-κB protein in colon and spinal cord were accompanied by histopathological changes in colon. Pretreatment with an NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), reversed these effects. Fluoxetine failed to prevent NO increase in both spinal cord and colon, while the iNOS protein level, although not statistically significantly increased compared to control, was not decreased compared to CUMS. Also, fluoxetine failed to prevent histological changes. Conclusion In conclusion, the NF-κB/iNOS pathway may be involved in the mechanism of CUMS-induced depressive-like behavior and colon tissue injury.
Collapse
Affiliation(s)
- Lejin Yang
- Department of Psychology, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Chen
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Dongdong Wang
- Brain Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Shuping Nie
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Jinge Du
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
5
|
Wang Y, Zhu T, Wang M, Zhang F, Zhang G, Zhao J, Zhang Y, Wu E, Li X. Icariin Attenuates M1 Activation of Microglia and Aβ Plaque Accumulation in the Hippocampus and Prefrontal Cortex by Up-Regulating PPARγ in Restraint/Isolation-Stressed APP/PS1 Mice. Front Neurosci 2019; 13:291. [PMID: 31001073 PMCID: PMC6455051 DOI: 10.3389/fnins.2019.00291] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/13/2019] [Indexed: 12/20/2022] Open
Abstract
Background Studies have shown that psychosocial stress is involved in Alzheimer's disease (AD) pathogenesis; it induces M1 microglia polarization and production of pro-inflammatory cytokines, leading to neurotoxic outcomes and decreased β-amyloid (Aβ) clearance. Icariin has been proven to be an effective anti-inflammatory agent and to activate peroxisome proliferator-activated receptors gamma (PPARγ) which induces the M2 phenotype in the microglia. However, whether restraint/isolation stress reduces the clearance ability of microglia by priming and polarizing microglia to the M1 phenotype, and the effects of icariin in attenuating the inflammatory response and relieving the pathological changes of AD are still unclear. Methods APP/PS1 mice (male, aged 3 months) were randomly divided into a control group, a restraint/isolation stress group, and a restraint/isolation stress + icariin group. The restraint/isolation stress group was subjected to a paradigm to build a depressive animal model. Sucrose preference, open field, elevated plus maze, and Y maze test were used to assess the stress paradigm. The Morris water maze test was performed to evaluate spatial reference learning and memory. Enzyme-linked immunosorbent assay and immunohistochemistry were used to identify the microglia phenotype and Aβ accumulation. Western blotting was used to detect the expression of PPARγ in the hippocampus and prefrontal cortex (PFC). Results Restraint/isolation stress induced significant depressive-like behaviors in APP/PS1 mice at 4 months of age and memory impairment at 10 months of age, while 6 months of icariin administration relieved the memory damage. Restraint/isolation stressed mice had elevated pro-inflammatory cytokines, decreased anti-inflammatory cytokines, increased Aβ plaque accumulation and more M1 phenotype microglia in the hippocampus and PFC at 10 months of age, while 6 months of icariin administration relieved these changes. Moreover, restraint/isolation stressed mice had down-regulated PPARγ expression in the hippocampus and PFC at 10 months of age, while 6 months of icariin administration reversed the alteration, especially in the hippocampus. Conclusion Restraint/isolation stress induced depressive-like behaviors and spatial memory damage, over-expression of M1 microglia markers and more severe Aβ accumulation by suppressing PPARγ in APP/PS1 mice. Icariin can be considered a new treatment option as it induces the switch of the microglia phenotype by activating PPARγ.
Collapse
Affiliation(s)
- Yihe Wang
- School of Medicine, Shandong University, Jinan, China
| | - Tianrui Zhu
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Min Wang
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Feng Zhang
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Guitao Zhang
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jing Zhao
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yuanyuan Zhang
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, United States.,Department of Surgery and Department of Pharmaceutical Sciences, Texas A&M University Health Science Center, College Station, TX, United States.,LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Xiaohong Li
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| |
Collapse
|
6
|
Joung J, Cho J, Kim Y, Choi S, Son C. A literature review for the mechanisms of stress-induced liver injury. Brain Behav 2019; 9:e01235. [PMID: 30761781 PMCID: PMC6422711 DOI: 10.1002/brb3.1235] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Experimental studies and clinical observations have shown that stress can damage hepatic tissue both directly and indirectly. Many studies have partially revealed the contributors of stress-induced liver injury; however, the whole process has not yet been uncovered. This review aims to summarize the mechanisms that have been proposed to be involved. METHODS A literature search was conducted using PubMed (http://www.ncbi.nlm.nih.gov/pubmed) in its entirety up to March 2018, and analyzed the animal-derived mechanistic studies on stress-induced liver injury. RESULTS The liver is the organ that meets and filters a mass of alien material, and then maintains immune tolerance under physiological conditions. Under stress conditions, however, immune tolerance is interrupted, which results in the induction of inflammation in the liver. Contributors to this process can be categorized as follows: hypoxia-reoxygenation, over-activation of Kupffer cells and oxidative stress, influx of gut-derived lipopolysaccharide and norepinephrine, and over-production of stress hormones and activation of the sympathetic nerve. CONCLUSIONS Psychological stress is associated with a variety of pathological conditions resulting in liver injury through multiple systems, including the sympathetic nervous and adrenocortical system. Mechanistic understanding of this phenomenon is important for the clinical practice of managing patients with hepatic disorders and should be explored further in the future.
Collapse
Affiliation(s)
- Jin‐Yong Joung
- Liver and Immunology Research CenterDaejeon Oriental Hospital of Daejeon UniversityDaejeonKorea
| | - Jung‐Hyo Cho
- Liver and Immunology Research CenterDaejeon Oriental Hospital of Daejeon UniversityDaejeonKorea
| | - Yun‐Hee Kim
- Korean Medicine Convergence Research DivisionKorea Institute of Oriental Medicine (KIOM)DaejeonKorea
| | - Seung‐Hoon Choi
- Department of Life ConvergenceGraduate School of Dankook UniversityYonginKorea
| | - Chang‐Gue Son
- Liver and Immunology Research CenterDaejeon Oriental Hospital of Daejeon UniversityDaejeonKorea
| |
Collapse
|
7
|
TLR4-NF- κB Signal Involved in Depressive-Like Behaviors and Cytokine Expression of Frontal Cortex and Hippocampus in Stressed C57BL/6 and ob/ob Mice. Neural Plast 2018; 2018:7254016. [PMID: 29765402 PMCID: PMC5885403 DOI: 10.1155/2018/7254016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/11/2018] [Indexed: 12/21/2022] Open
Abstract
Studies found that elevated levels of cytokines such as interleukin- (IL-) 1β, IL-6, and tumor necrosis factor-α (TNF-α) are closely associated with the pathogenesis of depression. Obesity providing a low-grade inflammation state was proposed to be implicated in susceptibility to depression in obesity. However, the alterations of cytokines and the TLR4-NF-κB signal in the brain of normal-weight and obese mice under stress have not been fully elucidated. This study used chronic unpredictable mild stress (CUMS) to induce a depressive-like behavior in an animal model and examine depressive-like behaviors, memory changes, and serum corticosterone levels, as well as the expressions of cytokines and NF-κB in the frontal cortex and hippocampus. We aimed to observe the role of neuroinflammation in susceptibility to depression in obesity under CUMS. In addition, we investigated the protective effect of inhibiting the TLR4-NF-κB signal. Our results demonstrated that CUMS induced depressive-like behavior and spatial memory damage, higher level of serum corticosterone, and overexpression of cytokines and NF-κB in the frontal cortex and hippocampus in both C57BL/6 and ob/ob mice. ob/ob mice displayed serious behavioral disorder and higher levels of IL-1β, IL-6, TNF-α, and NF-κB. Our results concluded that a hyperactive TLR4-NF-κB signal and higher level of cytokines are involved in susceptibility to depression in stressed obese mice.
Collapse
|
8
|
Stress Response, Brain Noradrenergic System and Cognition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 980:67-74. [PMID: 28132133 DOI: 10.1007/5584_2016_204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Locus coeruleus is a critical component of the brain noradrenergic system. The brain noradrenergic system provides the neural substrate for the architecture supporting the interaction with, and navigation through, an external world complexity. Changes in locus coeruleus tonic and phasic activity and the interplay between norepinephrine and α1- and α2-adrenoceptors in the prefrontal cortex are the key elements of this sophisticated architecture. In this narrative review we discuss how the brain noradrenergic system is affected by increased exposure to corticotropin-releasing hormone triggered by stress response. In particular, we present the mechanisms responsible for thinking inflexibility often observed under highly stressful conditions. Finally, the main directions for future research are highlighted.
Collapse
|
9
|
Atzori M, Cuevas-Olguin R, Esquivel-Rendon E, Garcia-Oscos F, Salgado-Delgado RC, Saderi N, Miranda-Morales M, Treviño M, Pineda JC, Salgado H. Locus Ceruleus Norepinephrine Release: A Central Regulator of CNS Spatio-Temporal Activation? Front Synaptic Neurosci 2016; 8:25. [PMID: 27616990 PMCID: PMC4999448 DOI: 10.3389/fnsyn.2016.00025] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022] Open
Abstract
Norepinephrine (NE) is synthesized in the Locus Coeruleus (LC) of the brainstem, from where it is released by axonal varicosities throughout the brain via volume transmission. A wealth of data from clinics and from animal models indicates that this catecholamine coordinates the activity of the central nervous system (CNS) and of the whole organism by modulating cell function in a vast number of brain areas in a coordinated manner. The ubiquity of NE receptors, the daunting number of cerebral areas regulated by the catecholamine, as well as the variety of cellular effects and of their timescales have contributed so far to defeat the attempts to integrate central adrenergic function into a unitary and coherent framework. Since three main families of NE receptors are represented-in order of decreasing affinity for the catecholamine-by: α2 adrenoceptors (α2Rs, high affinity), α1 adrenoceptors (α1Rs, intermediate affinity), and β adrenoceptors (βRs, low affinity), on a pharmacological basis, and on the ground of recent studies on cellular and systemic central noradrenergic effects, we propose that an increase in LC tonic activity promotes the emergence of four global states covering the whole spectrum of brain activation: (1) sleep: virtual absence of NE, (2) quiet wake: activation of α2Rs, (3) active wake/physiological stress: activation of α2- and α1-Rs, (4) distress: activation of α2-, α1-, and β-Rs. We postulate that excess intensity and/or duration of states (3) and (4) may lead to maladaptive plasticity, causing-in turn-a variety of neuropsychiatric illnesses including depression, schizophrenic psychoses, anxiety disorders, and attention deficit. The interplay between tonic and phasic LC activity identified in the LC in relationship with behavioral response is of critical importance in defining the short- and long-term biological mechanisms associated with the basic states postulated for the CNS. While the model has the potential to explain a large number of experimental and clinical findings, a major challenge will be to adapt this hypothesis to integrate the role of other neurotransmitters released during stress in a centralized fashion, like serotonin, acetylcholine, and histamine, as well as those released in a non-centralized fashion, like purines and cytokines.
Collapse
Affiliation(s)
- Marco Atzori
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis PotosíSan Luis Potosí, Mexico; School for Behavior and Brain Sciences, University of Texas at DallasRichardson, TX, USA
| | - Roberto Cuevas-Olguin
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Eric Esquivel-Rendon
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | | | - Roberto C Salgado-Delgado
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Nadia Saderi
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Marcela Miranda-Morales
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Mario Treviño
- Laboratory of Cortical Plasticity and Learning, Universidad de Guadalajara Guadalajara, Mexico
| | - Juan C Pineda
- Electrophysiology Laboratory, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán Mérida, Mexico
| | - Humberto Salgado
- Electrophysiology Laboratory, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán Mérida, Mexico
| |
Collapse
|
10
|
Browne CA, Hanke J, Rose C, Walsh I, Foley T, Clarke G, Schwegler H, Cryan JF, Yilmazer-Hanke D. Effect of acute swim stress on plasma corticosterone and brain monoamine levels in bidirectionally selected DxH recombinant inbred mouse strains differing in fear recall and extinction. Stress 2014; 17:471-83. [PMID: 25117886 PMCID: PMC4527314 DOI: 10.3109/10253890.2014.954104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites 3,4-dihydroxyphenyacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 min after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or post-traumatic stress disorder.
Collapse
Affiliation(s)
- Caroline A Browne
- Alimentary Pharmabiotic Centre, University College Cork , Cork , Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhu Q, Gu L, Wang Y, Jia L, Zhao Z, Peng S, Lei L. The role of alpha-1 and alpha-2 adrenoceptors in restraint stress-induced liver injury in mice. PLoS One 2014; 9:e92125. [PMID: 24682087 PMCID: PMC3969348 DOI: 10.1371/journal.pone.0092125] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/18/2014] [Indexed: 12/04/2022] Open
Abstract
Acute stress affects cellular integrity in many tissues including the liver, but its underlying mechanism is still unclear. The aim of the present study was to investigate the potential involvement of catecholamines and adrenoceptors in the regulation of acute restraint stress-induced liver injury. Restraint was achieved by placing mice in restraint tubes. Mice were treated with either an α-l antagonist, prazosin, an α-2 antagonist, yohimbine, a β-l antagonist, betaxolol, a β-2 antagonist, ICI 118551, or a central and peripheral catecholamine depleting agent, reserpine, and followed by restraint stress. Assessment of liver injury (serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) , hepatic total GSH, GSSG and GSH/GSSG ratio) , histopathology and of apoptosis, by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) assay and western blotting, was performed. Three hours of restraint stress resulted in liver injury, as indexed by elevated serum transaminase levels, decreased hepatic total GSH levels and GSH/GSSG ratio, increased hepatic GSSG levels as well as enhanced hepatocytes apoptosis. Either reserpine or prazosin or yohimbine was found to attenuate liver injury. Furthermore, prazosin and yohimbine protected against restraint-induced hepatocytes apoptosis through attenuating the activation of caspases-9 and -3 and reducing the Bax/Bcl-2 ratio. These results suggest that α-1 and α-2 adrenoceptors mediate restraint-induced liver oxidative injury through caspase-9 and Bcl-2 family of apoptotic regulatory proteins.
Collapse
Affiliation(s)
- Qing Zhu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Liwei Gu
- Qinghaosu (Artemisinin) Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yimei Wang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Li Jia
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Zengming Zhao
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Shuangqing Peng
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- * E-mail: (LL); (SP)
| | - Linsheng Lei
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- * E-mail: (LL); (SP)
| |
Collapse
|
12
|
Gądek-Michalska A, Tadeusz J, Rachwalska P, Spyrka J, Bugajski J. Effect of repeated restraint on homotypic stress-induced nitric oxide synthases expression in brain structures regulating HPA axis. Pharmacol Rep 2012; 64:1381-90. [DOI: 10.1016/s1734-1140(12)70935-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/15/2012] [Indexed: 11/30/2022]
|
13
|
Brain nitric oxide synthases in the interleukin-1β-induced activation of hypothalamic-pituitary-adrenal axis. Pharmacol Rep 2012; 64:1455-65. [DOI: 10.1016/s1734-1140(12)70943-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/25/2012] [Indexed: 12/20/2022]
|