1
|
Novak TS, Wilson SM, Newell KM. Establishing Task-Relevant MVC Protocols for Modelling Sustained Isometric Force Variability: A Manual Control Study. J Funct Morphol Kinesiol 2021; 6:jfmk6040094. [PMID: 34842771 PMCID: PMC8628892 DOI: 10.3390/jfmk6040094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/27/2022] Open
Abstract
The present study examined how prevalent methods for determining maximal voluntary contraction (MVC) impact the experimentally derived functions of graded force-force variability. Thirty-two young healthy subjects performed continuous isometric force tracking (20 s trials) at 10 target percentages (5-95% MVC) normalized to a conventional discrete-point (n = 16), or sustained (n = 16) MVC calculation. Distinct rates and magnitudes of change were observed for absolute variability (standard deviation (SD), root mean squared error (RMSE)), tracking error (RMSE, constant error (CE)), and complexity (detrended fluctuation analysis (DFA)) (all p < 0.05) of graded force fluctuations between the MVC groups. Differential performance strategies were observed beyond ~65% MVC, with the discrete-point group minimizing their SD at force values below that of the criterion target (higher CE/RMSE). Moreover, the sustained group's capacity to minimize SD/RMSE/CE corresponded to a more complex structure in their force fluctuations. These findings reveal that the time component of MVC estimation has a direct influence on the corrective strategies supporting near-maximal manual force control. While discrete MVC protocols predominate in the study of manual strength/endurance/precision, a 1:1 MVC-task mapping appears more to be ecologically valid if visuo-motor precision outcomes are of central importance.
Collapse
Affiliation(s)
- Thomas S. Novak
- Department of Kinesiology, University of Georgia, 330 River Rd., Athens, GA 30602, USA; (S.M.W.); (K.M.N.)
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Rd., Decatur, GA 30033, USA
- Correspondence:
| | - Shane M. Wilson
- Department of Kinesiology, University of Georgia, 330 River Rd., Athens, GA 30602, USA; (S.M.W.); (K.M.N.)
| | - Karl M. Newell
- Department of Kinesiology, University of Georgia, 330 River Rd., Athens, GA 30602, USA; (S.M.W.); (K.M.N.)
| |
Collapse
|
2
|
Dottor A, Camerone E, Job M, Barbiani D, Frisaldi E, Testa M. A new visual feedback-based system for the assessment of pinch force, endurance, accuracy and precision. A test-retest reliability study. HAND THERAPY 2021; 26:53-62. [PMID: 37969174 PMCID: PMC10634379 DOI: 10.1177/17589983211002550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/17/2021] [Indexed: 11/17/2023]
Abstract
Introduction Given that pinch is a precision grip involved in sustained submaximal activities, a Sustained Contraction (SC) task could be associated to Maximal Voluntary Contraction (MVC). To better evaluate the thumb-index system, the test-retest reliability of pinch MVC and SC, measured by a visual feedback-based pinch gauge was assessed. Methods 26 healthy participants performed MVC and SC in two separate sessions. SC required to maintain 40%MVC as long as possible and it was evaluated in terms of time, accuracy (Mean Distance between force trace and target force, MD), precision (Coefficient of Variability of force trace, CV). MD and CV analyses were conducted dividing the SC task into three equivalent time stages (beginning, middle, exhaustion). Relative Reliability (RR) was measured by Intraclass Correlation Coefficient, and Absolute Reliability (AR) was measured by Standard Error of Measurement and by Bland-Altman plot. Results MVC and Time showed high RR and AR in both hands. RR of MD and CV in right hand was excellent in the beginning and middle stages, and fair in the exhaustion one, showing decreasing reliability as fatigue increases. In the left hand RR of MD and CV was generally lower. MD showed excellent reliability in the beginning stage and good reliability in the other stages. CV showed fair relative reliability at both beginning and middle stages, excellent in the last one. Conversely, it was observed high AR of MD and CV in all stages in both hands. Conclusions All indices are reliable to assess motor control of thumb-index pinch in both hands.
Collapse
Affiliation(s)
- Alberto Dottor
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Eleonora Camerone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Mirko Job
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Diletta Barbiani
- Department of Neuroscience, University of Turin Medical School, Turin, Italy
| | - Elisa Frisaldi
- Department of Neuroscience, University of Turin Medical School, Turin, Italy
| | - Marco Testa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
3
|
Zheng Y, Tian B, Zhang Y, Wang D. Effect of force accuracy on hemodynamic response: an fNIRS study using fine visuomotor task. J Neural Eng 2021; 18. [PMID: 33784650 DOI: 10.1088/1741-2552/abf399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/30/2021] [Indexed: 11/12/2022]
Abstract
Objective. Despite converging neuroimaging studies investigating how neural activity is modulated by various motor related factors, such as movement velocity and force magnitude, little has been devoted to identifying the effect of force accuracy. This study thus aimed to investigate the effect of task difficulty on cortical neural responses when participants performed a visuomotor task with varying demands on force accuracy.Approach. Fourteen healthy adults performed a set of force generation operations with six levels of force accuracy. The participants held a pen-shaped tool and moved the tool along a planar ring path, meanwhile producing a constant force against the plane under visual guidance. The required force accuracy was modulated by allowable tolerance of the force during the task execution. We employed functional near-infrared spectroscopy to record signals from bilateral prefrontal, sensorimotor and occipital areas, used the hemoglobin concentration as indicators of cortical activation, then calculated the effective connectivity across these regions by Granger causality.Main results.We observed overall stronger activation (oxy-hemoglobin concentration,p= 0.015) and connectivity (p< 0.05) associated with the initial increase in force accuracy, and the diminished trend in activation and connectivity when participants were exposed to excessive demands on accurate force generation. These findings suggested that the increasing task difficulty would be only beneficial for the mental investment up to a certain point, and above that point neural responses would show patterns of lower activation and connections, revealing mental overload at excessive task demands.Significance.Our results provide the first evidence for the inverted U-shaped effect of force accuracy on hemodynamic responses during fine visuomotor tasks. The insights obtained through this study also highlight the essential role of inter-region connectivity alterations for coping with task difficulty, enhance our understanding of the underlying motor neural processes, and provide the groundwork for developing adaptive neurorehabilitation strategies.
Collapse
Affiliation(s)
- Yilei Zheng
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, People's Republic of China.,Peng Cheng Laboratory, Shenzhen, People's Republic of China
| | - Bohao Tian
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, People's Republic of China
| | - Yuru Zhang
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, People's Republic of China
| | - Dangxiao Wang
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, People's Republic of China.,Peng Cheng Laboratory, Shenzhen, People's Republic of China
| |
Collapse
|
4
|
Marcel-Millet P, Gimenez P, Groslambert A, Ravier G, Grospretre S. The type of visual biofeedback influences maximal handgrip strength and activation strategies. Eur J Appl Physiol 2021; 121:1607-1616. [PMID: 33649937 DOI: 10.1007/s00421-021-04640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE This study investigated the effects of force and electromyographic (EMG) feedbacks on forearm muscle activations and handgrip maximal isometric voluntary contraction (MIVC). METHODS Sixteen males performed a set of MIVC in four different feedback conditions: (1) NO-FB: no feedback is given to the participant; (2) FORCE-FB: participants received a visual feedback of the produced force; (3) AGO-FB: participants received a visual feedback of the EMG activity of two agonist grip muscles; (4) ANTAGO-FB: participants received a visual feedback of the EMG activity of two hand extensors muscles. Each feedback was displayed by monitoring the signal of either force or electrical activity of the corresponding muscles. RESULTS Compared to NO-FB, FORCE-FB was associated with a higher MIVC force (+ 11%, P < 0.05), a higher EMG activity of agonist and antagonist muscles (+ 8.7% and + 9.2%, respectively, P < 0.05) and a better MIVC/EMG ratio with the agonist muscles (P < 0.05). AGO-FB was associated with a higher EMG activity of agonist muscles (P < 0.05) and ANTAGO-FB was associated with a higher EMG activity of antagonist muscles (P < 0.05). MIVC force was higher in the agonist feedback condition than in the antagonist feedback condition (+ 5.9%, P < 0.05). CONCLUSION Our results showed that the MIVC force can be influenced by different visuals feedback, such as force or EMG feedbacks. Moreover, these results suggested that the type of feedback employed could modify the EMG-to-force relationships. Finally, EMG biofeedback could represent an interesting tool to optimize motor strategies. But in the purpose of performing the highest strength independently of the strategy, the force feedback should be recommended.
Collapse
Affiliation(s)
- Philémon Marcel-Millet
- EA4660, C3S Laboratory, UPFR Sports, University of Bourgogne Franche-Comté, 31, Chemin de l'Epitaphe, 25000, Besançon, France
| | - Philippe Gimenez
- EA4660, C3S Laboratory, UPFR Sports, University of Bourgogne Franche-Comté, 31, Chemin de l'Epitaphe, 25000, Besançon, France
| | - Alain Groslambert
- EA4660, C3S Laboratory, UPFR Sports, University of Bourgogne Franche-Comté, 31, Chemin de l'Epitaphe, 25000, Besançon, France
| | - Gilles Ravier
- EA4660, C3S Laboratory, UPFR Sports, University of Bourgogne Franche-Comté, 31, Chemin de l'Epitaphe, 25000, Besançon, France
| | - Sidney Grospretre
- EA4660, C3S Laboratory, UPFR Sports, University of Bourgogne Franche-Comté, 31, Chemin de l'Epitaphe, 25000, Besançon, France.
| |
Collapse
|
5
|
Effects of dual-task demands on the complexity and task performance of submaximal isometric handgrip force control. Eur J Appl Physiol 2020; 120:1251-1261. [PMID: 32242254 DOI: 10.1007/s00421-020-04357-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/21/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE To determine the effect of cognitive-motor dual-task load on temporal structure irregularity (complexity) of motor output and task performance of submaximal isometric contractions. METHODS Twelve young, sedentary subjects performed handgrip isometric contractions until failure at 50% of maximal voluntary contraction under mathematical self-regulated dual-task (own pace; SDT), regulated dual-task (imposed pace; RDT), and control. Force signal complexity was calculated by sample entropy at the initial, middle, and final thirds. Task performance was assessed by muscle fatigue (time to failure and rate of median frequency of the radial flexor of the carpus), force and math task error, and self-perceived difficulty. RESULTS Only RDT decreased complexity with respect to control (17.4% ± 12.6%, p = 0.005), all conditions decreased complexity by the final third (Control: 52.8% ± 18.7%, p < 0.001; SDT: 41.1% ± 32.1%, p = 0.003; RDT: 19.1% ± 21.9%, p = 0.035). Conditions did not affect time to failure, and only RDT decreased the rate of median frequency (0.1%/s ± 0.1%/s, p = 0.020). Inferior force error rate was increased by conditions (SDT: 1.5% ± 0.8%, p < 0.001; RDT: 2% ± 1.5%, p = 0.002). Math error was only augmented by RDT (from 9.9 ± 6.7 to 51.7 ± 18.8, p < 0.001), categorized as "very hard" in 85.7% of participants (p = 0.015). CONCLUSION Only the RDT condition reduced complexity and neuromuscular fatigue while increasing force error rate of the handgrip's motor output, without affecting time to failure. A highly demanding dual-task may become a strategy to modify the organization of the hand force motor output, which may contribute to its motor adaptations.
Collapse
|
6
|
Shafer RL, Solomon EM, Newell KM, Lewis MH, Bodfish JW. Visual feedback during motor performance is associated with increased complexity and adaptability of motor and neural output. Behav Brain Res 2019; 376:112214. [PMID: 31494179 PMCID: PMC6876558 DOI: 10.1016/j.bbr.2019.112214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 11/19/2022]
Abstract
Complex motor behavior is believed to be dependent on sensorimotor integration - the neural process of using sensory input to plan, guide, and correct movements. Previous studies have shown that the complexity of motor output is low when sensory feedback is withheld during precision motor tasks. However, much of this research has focused on motor behavior rather than neural processing, and therefore, has not specifically assessed the role of sensorimotor neural functioning in the execution of complex motor behavior. The present study uses a stimulus-tracking task with simultaneous electroencephalography (EEG) recording to assess the effect of visual feedback on motor performance, motor complexity, and sensorimotor neural processing in healthy adults. The complexity of the EEG signal was analyzed to capture the information content in frequency bands (alpha and beta) and scalp regions (central, parietal, and occipital) that are associated with sensorimotor processing. Consistent with previous literature, motor performance and its complexity were higher when visual feedback was provided relative to when it was withheld. The complexity of the neural signal was also higher when visual feedback was provided. This was most robust at frequency bands (alpha and beta) and scalp regions (parietal and occipital) associated with sensorimotor processing. The findings show that visual feedback increases the information available to the brain when generating complex, adaptive motor output.
Collapse
Affiliation(s)
- Robin L Shafer
- Vanderbilt Brain Institute, Vanderbilt University, 6133 Medical Research Building III, 465 21st Avenue South, Nashville, TN, 37232, USA.
| | - Eli M Solomon
- Neuroscience and Behavior Program, Wesleyan University Rm 257 Hall-Atwater, Wesleyan University, Middletown, CT, 06459, USA.
| | - Karl M Newell
- Department of Kinesiology, University of Georgia, G3 Aderhold Hall, 110 Carlton Street, Athens, GA, 30602, USA.
| | - Mark H Lewis
- Department of Psychiatry, University of Florida College of Medicine, PO Box 100256, L4-100 McKnight Brain Institute, 1149 Newell Drive, Gainesville, FL, 32611, USA.
| | - James W Bodfish
- Vanderbilt Brain Institute, Vanderbilt University, 6133 Medical Research Building III, 465 21st Avenue South, Nashville, TN, 37232, USA; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 8310 Medical Center East, 1215 21st Avenue South, Nashville, TN, 37232, USA.
| |
Collapse
|
7
|
Vanderwegen J, Van Nuffelen G, Elen R, De Bodt M. The Influence of Age, Sex, Visual Feedback, Bulb Position, and the Order of Testing on Maximum Anterior and Posterior Tongue Strength in Healthy Belgian Children. Dysphagia 2019; 34:834-851. [DOI: 10.1007/s00455-019-09976-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
|
8
|
Cruz-Montecinos C, Calatayud J, Iturriaga C, Bustos C, Mena B, España-Romero V, Carpes FP. Influence of a self-regulated cognitive dual task on time to failure and complexity of submaximal isometric force control. Eur J Appl Physiol 2018; 118:2021-2027. [DOI: 10.1007/s00421-018-3936-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/05/2018] [Indexed: 11/25/2022]
|
9
|
Vergotte G, Perrey S, Muthuraman M, Janaqi S, Torre K. Concurrent Changes of Brain Functional Connectivity and Motor Variability When Adapting to Task Constraints. Front Physiol 2018; 9:909. [PMID: 30042697 PMCID: PMC6048415 DOI: 10.3389/fphys.2018.00909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/21/2018] [Indexed: 01/08/2023] Open
Abstract
In behavioral neuroscience, the adaptability of humans facing different constraints has been addressed on one side at the brain level, where a variety of functional networks dynamically support the same performance, and on the other side at the behavioral level, where fractal properties in sensorimotor variables have been considered as a hallmark of adaptability. To bridge the gap between the two levels of observation, we have jointly investigated the changes of network connectivity in the sensorimotor cortex assessed by modularity analysis and the properties of motor variability assessed by multifractal analysis during a prolonged tapping task. Four groups of participants had to produce the same tapping performance while being deprived from 0, 1, 2, or 3 sensory feedbacks simultaneously (auditory and/or visual and/or tactile). Whereas tapping performance was not statistically different across groups, the number of brain networks involved and the degree of multifractality of the inter-tap interval series were significantly correlated, increasing as a function of feedback deprivation. Our findings provide first evidence that concomitant changes in brain modularity and multifractal properties characterize adaptations underlying unchanged performance. We discuss implications of our findings with respect to the degeneracy properties of complex systems, and the entanglement of adaptability and effective adaptation.
Collapse
Affiliation(s)
| | | | - Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Focus Program Translational Neuroscience (FTN), Department of Neurology, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Janaqi
- LGI2P, Institut Mines Télécom-Ecole des Mines d'Alès, Alès, France
| | | |
Collapse
|
10
|
Chow JW, Stokic DS. Improvements in force variability and structure from vision- to memory-guided submaximal isometric knee extension in subacute stroke. J Appl Physiol (1985) 2017; 124:592-603. [PMID: 29097632 DOI: 10.1152/japplphysiol.00717.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined changes in variability, accuracy, frequency composition, and temporal regularity of force signal from vision-guided to memory-guided force-matching tasks in 17 subacute stroke and 17 age-matched healthy subjects. Subjects performed a unilateral isometric knee extension at 10, 30, and 50% of peak torque [maximum voluntary contraction (MVC)] for 10 s (3 trials each). Visual feedback was removed at the 5-s mark in the first two trials (feedback withdrawal), and 30 s after the second trial the subjects were asked to produce the target force without visual feedback (force recall). The coefficient of variation and constant error were used to quantify force variability and accuracy. Force structure was assessed by the median frequency, relative spectral power in the 0-3-Hz band, and sample entropy of the force signal. At 10% MVC, the force signal in subacute stroke subjects became steadier, more broadband, and temporally more irregular after the withdrawal of visual feedback, with progressively larger error at higher contraction levels. Also, the lack of modulation in the spectral frequency at higher force levels with visual feedback persisted in both the withdrawal and recall conditions. In terms of changes from the visual feedback condition, the feedback withdrawal produced a greater difference between the paretic, nonparetic, and control legs than the force recall. The overall results suggest improvements in force variability and structure from vision- to memory-guided force control in subacute stroke despite decreased accuracy. Different sensory-motor memory retrieval mechanisms seem to be involved in the feedback withdrawal and force recall conditions, which deserves further study. NEW & NOTEWORTHY We demonstrate that in the subacute phase of stroke, force signals during a low-level isometric knee extension become steadier, more broadband in spectral power, and more complex after removal of visual feedback. Larger force errors are produced when recalling target forces than immediately after withdrawing visual feedback. Although visual feedback offers better accuracy, it worsens force variability and structure in subacute stroke. The feedback withdrawal and force recall conditions seem to involve different memory retrieval mechanisms.
Collapse
Affiliation(s)
- John W Chow
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center , Jackson, Mississippi
| | - Dobrivoje S Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center , Jackson, Mississippi
| |
Collapse
|
11
|
Keenan KG, Huddleston WE, Ernest BE. Altered visual strategies and attention are related to increased force fluctuations during a pinch grip task in older adults. J Neurophysiol 2017; 118:2537-2548. [PMID: 28701549 DOI: 10.1152/jn.00928.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/19/2017] [Accepted: 07/08/2017] [Indexed: 11/22/2022] Open
Abstract
The purpose of the study was to determine the visual strategies used by older adults during a pinch grip task and to assess the relations between visual strategy, deficits in attention, and increased force fluctuations in older adults. Eye movements of 23 older adults (>65 yr) were monitored during a low-force pinch grip task while subjects viewed three common visual feedback displays. Performance on the Grooved Pegboard test and an attention task (which required no concurrent hand movements) was also measured. Visual strategies varied across subjects and depended on the type of visual feedback provided to the subjects. First, while viewing a high-gain compensatory feedback display (horizontal bar moving up and down with force), 9 of 23 older subjects adopted a strategy of performing saccades during the task, which resulted in 2.5 times greater force fluctuations in those that exhibited saccades compared with those who maintained fixation near the target line. Second, during pursuit feedback displays (force trace moving left to right across screen and up and down with force), all subjects exhibited multiple saccades, and increased force fluctuations were associated (rs = 0.6; P = 0.002) with fewer saccades during the pursuit task. Also, decreased low-frequency (<4 Hz) force fluctuations and Grooved Pegboard times were significantly related (P = 0.033 and P = 0.005, respectively) with higher (i.e., better) attention z scores. Comparison of these results with our previously published results in young subjects indicates that saccadic eye movements and attention are related to force control in older adults.NEW & NOTEWORTHY The significant contributions of the study are the addition of eye movement data and an attention task to explain differences in hand motor control across different visual displays in older adults. Older participants used different visual strategies across varying feedback displays, and saccadic eye movements were related with motor performance. In addition, those older individuals with deficits in attention had impaired motor performance on two different hand motor control tasks, including the Grooved Pegboard test.
Collapse
Affiliation(s)
- Kevin G Keenan
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin; and .,Center for Aging and Translational Research, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Wendy E Huddleston
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin; and.,Center for Aging and Translational Research, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Bradley E Ernest
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin; and
| |
Collapse
|
12
|
Effects of Tactile Sensitivity on Structural Variability of Digit Forces during Stable Precision Grip. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8314561. [PMID: 27847823 PMCID: PMC5099480 DOI: 10.1155/2016/8314561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/23/2016] [Accepted: 07/25/2016] [Indexed: 01/08/2023]
Abstract
This study investigated the effects of fingertip tactile sensitivity on the structural variability of thumb and index finger forces during stable precision grip. Thirty right-handed healthy subjects participated in the experiment. Transient perturbation of tactile afferents was achieved by wrapping up the distal pads of the thumb or index finger with transparent polyethylene films. The time-dependent structure of each digit force and the variability of interdigit force correlation were examined by detrended fluctuation analysis (DFA) and detrended cross-correlation analysis (DCCA), respectively. Results showed that the tactile sensitivity affected αDFA of the vertical shear force Fx (F3,239 = 6.814, p < 0.001) and αDCCA of Fx (χ2 = 16.440, p < 0.001). No significant difference was observed in αDFA or αDCCA of the normal forces produced by the thumb or index finger. These results suggested that with blurred tactile sensory inputs the central nervous system might decrease the vertical shear force flexibility and increase the interdigit shear force coupling in order to guarantee a stable grip control of an object against gravity. This study shed light on the feedback and feed-forward strategies involved in digit force control and the role of SA-II afferent fibers in regulation of vertical shear force variability for precision grip.
Collapse
|
13
|
Wang D, Jiao J, Yang G, Zhang Y. Force Maintenance Accuracy Using a Tool: Effects of Magnitude and Feedback. IEEE TRANSACTIONS ON HAPTICS 2016; 9:432-436. [PMID: 26930693 DOI: 10.1109/toh.2016.2535216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ability to precisely produce a force via a hand-held tool is crucial in fine manipulations. In this paper, we study the error in maintaining a target force ranging from 0.5 to 5 N under two concurrent feedback conditions: pure haptic feedback (H), and visual plus haptic feedback (V + H). The results show that absolute error (AE) increases along with the increasing force magnitudes under both feedback conditions. For target forces ranging from 1.5 to 5 N, the relative error (RE) is approximately constant under both feedback conditions, while the RE significantly increases for the small target forces of 0.5 and 1 N. The effect of force magnitude on the coefficient of variation (CoV) is not significant for target forces ranging from 1.5 to 5 N. For both the RE and the CoV, the values under the H condition are significantly larger than those under the V + H condition. The effect of manipulation mode (i.e., a hand-held tool or a fingertip) on force maintenance accuracy is complex, i.e., its effect on RE is not significant while its effect on CoV is significant. Only for the magnitude of 0.5 N, the RE of using the tool was significantly greater than that of using the fingertip under both feedback conditions. For both the RE and the CoV, no interaction effect exists between manipulation mode, force magnitude and feedback condition.
Collapse
|
14
|
Lafe CW, Pacheco MM, Newell KM. Adapting relative phase of bimanual isometric force coordination through scaling visual information intermittency. Hum Mov Sci 2016; 47:186-196. [PMID: 27017544 DOI: 10.1016/j.humov.2016.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 11/16/2022]
Abstract
Visual information plays an adaptive role in the relation between bimanual force coupling and error corrective processes of isometric force control. In the present study, the evolving distribution of the relative phase properties of bimanual isometric force coupling was examined by scaling within a trial the temporal feedback rate of visual intermittency (short to long presentation intervals and vice versa). The force error (RMSE) was reduced, and time-dependent irregularity (SampEn) of the force output was increased with greater amounts of visual information (shorter intermittency). Multi-stable coordination patterns of bimanual isometric force control were differentially shifted toward and away from the intrinsic dynamics by the changing the intermittency of visual information. The distribution of Hilbert transformed relative phase values showed progressively a predominantly anti-phase mode under less intermittent visual information to predominantly an in-phase mode with limited (almost no) visual information. Correlation between the hands showed a continuous reduction, rather than abrupt "transition," with increase in visual information, although no mean negative correlation was realized, despite the tendency towards an anti-phase distribution. Lastly, changes in both the performance outcome and bimanual isometric force coordination occurred at visual feedback rates faster than the minimal visual processing times established from single limb movement and isometric force protocols.
Collapse
Affiliation(s)
- Charley W Lafe
- Department of Kinesiology, The University of Georgia, USA.
| | | | - Karl M Newell
- Department of Kinesiology, The University of Georgia, USA
| |
Collapse
|
15
|
Bimanual coordination and the intermittency of visual information in isometric force tracking. Exp Brain Res 2016; 234:2025-2034. [PMID: 26960740 DOI: 10.1007/s00221-016-4606-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/20/2016] [Indexed: 10/22/2022]
Abstract
The effect of the intermittency of visual information in the bimanual coordination of an isometric force coordination task was investigated as a function of criterion force level. Eight levels of visual information intermittency (.2-25.6 Hz) were used in blocked fashion at each force level. Participants were required to produce a constant force output matching as accurately as possible the criterion force target. The results showed that performance improved as the intermittency of visual information was reduced-this effect being a function of force level. The distribution of the relative phase through the trial revealed a preference for the two hands to be coupled together (in-phase) at the slower rates of visual presentation (~.2 Hz). However, as the rate of visual feedback was increased (up to ~25.6 Hz), there was a transition to predominantly a negative correlation pattern (anti-phase). The pattern of bimanual coordination in this isometric tracking task is driven by the availability of information for error correction and the interactive influence of perceptual-motor constraints.
Collapse
|
16
|
Botcharova M, Berthouze L, Brookes MJ, Barnes GR, Farmer SF. Resting state MEG oscillations show long-range temporal correlations of phase synchrony that break down during finger movement. Front Physiol 2015; 6:183. [PMID: 26136690 PMCID: PMC4469817 DOI: 10.3389/fphys.2015.00183] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/03/2015] [Indexed: 11/13/2022] Open
Abstract
The capacity of the human brain to interpret and respond to multiple temporal scales in its surroundings suggests that its internal interactions must also be able to operate over a broad temporal range. In this paper, we utilize a recently introduced method for characterizing the rate of change of the phase difference between MEG signals and use it to study the temporal structure of the phase interactions between MEG recordings from the left and right motor cortices during rest and during a finger-tapping task. We use the Hilbert transform to estimate moment-to-moment fluctuations of the phase difference between signals. After confirming the presence of scale-invariance we estimate the Hurst exponent using detrended fluctuation analysis (DFA). An exponent of >0.5 is indicative of long-range temporal correlations (LRTCs) in the signal. We find that LRTCs are present in the α/μ and β frequency bands of resting state MEG data. We demonstrate that finger movement disrupts LRTCs correlations, producing a phase relationship with a structure similar to that of Gaussian white noise. The results are validated by applying the same analysis to data with Gaussian white noise phase difference, recordings from an empty scanner and phase-shuffled time series. We interpret the findings through comparison of the results with those we obtained from an earlier study during which we adopted this method to characterize phase relationships within a Kuramoto model of oscillators in its sub-critical, critical, and super-critical synchronization states. We find that the resting state MEG from left and right motor cortices shows moment-to-moment fluctuations of phase difference with a similar temporal structure to that of a system of Kuramoto oscillators just prior to its critical level of coupling, and that finger tapping moves the system away from this pre-critical state toward a more random state.
Collapse
Affiliation(s)
- Maria Botcharova
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College LondonLondon, UK
- Sobell Department of Motor Neuroscience and Movement disorders, Institute of Neurology, University College LondonLondon, UK
| | - Luc Berthouze
- Centre for Computational Neuroscience and Robotics, University of SussexFalmer, UK
- Institute of Child Health, University College LondonLondon, UK
| | - Matthew J. Brookes
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of NottinghamNottingham, UK
| | - Gareth R. Barnes
- The Wellcome Trust Centre for Neuroimaging, University College LondonLondon, UK
| | - Simon F. Farmer
- Sobell Department of Motor Neuroscience and Movement disorders, Institute of Neurology, University College LondonLondon, UK
| |
Collapse
|
17
|
Castillo RD, Kloos H, Holden JG, Richardson MJ. Long-range correlations and patterns of recurrence in children and adults' attention to hierarchical displays. Front Physiol 2015; 6:138. [PMID: 25999862 PMCID: PMC4422029 DOI: 10.3389/fphys.2015.00138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/17/2015] [Indexed: 11/13/2022] Open
Abstract
In order to make sense of a scene, a person must pay attention to several levels of nested order, ranging from the most differentiated details of the display to the integrated whole. In adults, research shows that the processes of integration and differentiation have the signature of self-organization. Does the same hold for children? The current study addresses this question with children between 6 and 9 years of age, using two tasks that require attention to hierarchical displays. A group of adults were tested as well, for control purposes. To get at the question of self-organization, reaction times were submitted to a detrended fluctuation analysis and a recurrence quantification analysis. H exponents show a long-range correlations (1/f noise), and recurrence measures (percent determinism, maximum line, entropy, and trend), show a deterministic structure of variability being characteristic of self-organizing systems. Findings are discussed in terms of organism-environment coupling that gives rise to fluid attention to hierarchical displays.
Collapse
Affiliation(s)
| | - Heidi Kloos
- Department of Psychology, CAP Center for Cognition, Action, and Perception, University of CincinnatiCincinnati, OH, USA
| | - John G. Holden
- Department of Psychology, CAP Center for Cognition, Action, and Perception, University of CincinnatiCincinnati, OH, USA
| | - Michael J. Richardson
- Department of Psychology, CAP Center for Cognition, Action, and Perception, University of CincinnatiCincinnati, OH, USA
| |
Collapse
|
18
|
Effects of visual feedback absence on force control during isometric contraction. Eur J Appl Physiol 2014; 115:507-19. [PMID: 25366253 DOI: 10.1007/s00421-014-3036-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE The aim of the study was to evaluate the force control in the complete absence of visual feedback and the effect of repeated contractions without visual feedback. METHODS Twelve physically active males (age 23 ± 1 years; stature 1.74 ± 0.07 m; body mass 71 ± 6 kg) performed isometric tasks at 20, 40 and 60% maximal voluntary contraction (MVC) for 20 s. For each intensity, a trial with force visual feedback (FB) was followed by 3 trials without FB (noFB-1, noFB-2, noFB-3). During contraction, force and surface electromyogram (EMG) from the vastus lateralis muscle were recorded. From force signal, the coefficient of variation (CV, force stability index), the distance of force from target (ΔF, force accuracy index) and the time within the target (t-target) were determined. From EMG signal, the root mean square (RMS) and mean frequency (MF) were calculated. RESULTS MVC was 679.14 ± 38.22 N. In noFB-1, CV was similar to FB, ΔF was higher and t-target lower (P < 0.05) than in FB. EMG-RMS in noFB-1 was lower than in FB at 40 and 60%MVC (P < 0.05). A decrease in ΔF between noFB-1 and noFB-3 (P < 0.05) and an increase in t-target from noFB-1 to noFB-3 (P < 0.05) occurred at 20% MVC. A difference in EMG-RMS among noFB conditions was retrieved only at 60% MVC (P < 0.05). CONCLUSIONS These findings suggest that the complete absence of visual feedback decreased force accuracy but did not affect force stability. Moreover, the repetition of noFB trials improved force accuracy at low exercise intensity, suggesting that real-time visual information could be obviated by other feedbacks for force control.
Collapse
|
19
|
Li K, Evans PJ, Seitz WH, Li ZM. Carpal tunnel syndrome impairs sustained precision pinch performance. Clin Neurophysiol 2014; 126:194-201. [PMID: 24877682 DOI: 10.1016/j.clinph.2014.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/25/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate effects of carpal tunnel syndrome (CTS) on digit force control during a sustained precision pinch. METHODS Eleven CTS individuals and 11 age- and gender-matched healthy volunteers participated in the study. The subjects were instructed to isometrically pinch an instrumented apparatus for 60s with a stable force output. Visual feedback of force output was provided for the first 30s but removed for the remaining 30s. Pinch forces were examined for accuracy, variability, and inter-digit correlation. RESULTS CTS led to a decrease in force accuracy and an increase in amount of force variability, particularly without visual feedback (p<0.001). However, CTS did not affect the structure of force variability or force correlation between digits (p>0.05). The force of the thumb was less accurate and more variable than that of the index finger for both the CTS and healthy groups (p<0.001). CONCLUSIONS Sensorimotor deficits associated with CTS lead to inaccurate and unstable digit forces during sustained precision pinch. SIGNIFICANCE This study shed light on basic and pathophysiological mechanisms of fine motor control and aids in development of new strategies for diagnosis and evaluation of CTS.
Collapse
Affiliation(s)
- Ke Li
- Hand Research Laboratory, Departments of Biomedical Engineering, Orthopaedic Surgery, and Physical Medicine and Rehabilitation, Cleveland Clinic, Cleveland, OH, USA.
| | - Peter J Evans
- Hand Research Laboratory, Departments of Biomedical Engineering, Orthopaedic Surgery, and Physical Medicine and Rehabilitation, Cleveland Clinic, Cleveland, OH, USA.
| | - William H Seitz
- Hand Research Laboratory, Departments of Biomedical Engineering, Orthopaedic Surgery, and Physical Medicine and Rehabilitation, Cleveland Clinic, Cleveland, OH, USA.
| | - Zong-Ming Li
- Hand Research Laboratory, Departments of Biomedical Engineering, Orthopaedic Surgery, and Physical Medicine and Rehabilitation, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
20
|
Huddleston W, Keenan K, Ernest B. Relations among visual strategies, force fluctuations, and attention during a force-matching task. Percept Mot Skills 2014; 117:775-800. [PMID: 24665797 DOI: 10.2466/22.24.pms.117x29z6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Greater understanding of how people use visual information to minimize force fluctuations provides critical insight into visuomotor processing. Visual strategies were examined during a force-matching task with different feedback displays. When only vertical feedback was provided, young healthy participants (N = 20, 9 men) fixated their gaze centrally. When vertical and horizontal visual feedback was provided, participants performed saccades to maintain gaze near the leading edge of the force trace. Performance on a separate attention task assessed visual and motor attention capabilities in the same participants. Selecting the correct saccade trajectory on the attention task was positively correlated with measures predicting performance on the force-matching task. Optimal visual strategies, combined with motor attention, may contribute to minimizing pinch force variability at low force.
Collapse
|
21
|
Laine CM, Negro F, Farina D. Neural correlates of task-related changes in physiological tremor. J Neurophysiol 2013; 110:170-6. [PMID: 23596333 DOI: 10.1152/jn.00041.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Appropriate control of muscle contraction requires integration of command signals with sensory feedback. Sensorimotor integration is often studied under conditions in which muscle force is controlled with visual feedback. While it is known that alteration of visual feedback can influence task performance, the underlying changes in neural drive to the muscles are not well understood. In this study, we characterize the frequency content of force fluctuations and neural drive when production of muscle force is target guided versus self guided. In the self-guided condition, subjects performed isometric contractions of the first dorsal interosseous (FDI) muscle while slowly and randomly varying their force level. Subjects received visual feedback of their own force in order to keep contractions between 6% and 10% of maximum voluntary contraction (MVC). In the target-guided condition, subjects used a display of their previously generated force as a target to track over time. During target tracking, force tremor increased significantly in the 3–5 and 7–9 Hz ranges, compared with self-guided contractions. The underlying changes in neural drive were assessed by coherence analysis of FDI motor unit activity. During target-guided force production, pairs of simultaneously recorded motor units showed less coherent activity in the 3–5 Hz frequency range but greater coherence in the 7–9 Hz range than in the self-guided contractions. These results show that the frequency content of common synaptic input to motoneurons is altered when force production is visually guided. We propose that a change in stretch-reflex gain could provide a potential mechanism for the observed changes in force tremor and motor unit coherence.
Collapse
Affiliation(s)
- Christopher M. Laine
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology (BFNT) Göttingen, Bernstein Center for Computational Neuroscience (BCCN), University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Francesco Negro
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology (BFNT) Göttingen, Bernstein Center for Computational Neuroscience (BCCN), University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Dario Farina
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology (BFNT) Göttingen, Bernstein Center for Computational Neuroscience (BCCN), University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| |
Collapse
|
22
|
Removal of visual feedback lowers structural variability of inter-digit force coordination during sustained precision pinch. Neurosci Lett 2013; 545:1-5. [PMID: 23624025 DOI: 10.1016/j.neulet.2013.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/07/2013] [Accepted: 04/01/2013] [Indexed: 11/23/2022]
Abstract
This study examined the effects of visual feedback on inter-digit force coordination during a precision pinch. Sixteen healthy, right-handed subjects were instructed to pinch an instrumented apparatus for 1 min with a stable force output. Visual feedback was provided for the first 30s and withdrawn for the second 30s. Detrended fluctuation analysis (DFA) and detrended cross-correlation analysis (DCCA) methods were used to quantify the time-dependent structures of each digit's force and of the force correlation between the digits. After removing visual feedback, the DFA scaling exponent, αDFA, increased from 1.10±0.12 to 1.29±0.13 for the thumb and from 0.95±0.08 to 1.33±0.13 for the index finger (F1,95=372.47, p<0.001); the DCCA scaling exponent, αDCCA, increased from 1.00±0.08 to 1.33±0.13 (t95=20.33, p<0.001). Structural changes were observed beginning with the first 5s epoch after the removal of visual feedback. The results provide evidence that removing visual feedback lowers the structural variability of inter-digit force coordination. This change is reflected in the high-level control strategy, resulting in the two digits being more tightly coupled under somatosensory feedback without visual inputs.
Collapse
|