1
|
Rafeeq M, Al-Abbasi FA, Afzal M, Moglad E, Al-Qahtani SD, Alzrea SI, Almalki NAR, Imam F, Sayyed N, Kazmi I. 6-Shogaol Abrogates Parkinson's Disease in Rotenone-Induced Rodents: Based on In Silico Study and Inhibiting TNF-α/NF-κB/IL-1β/MAO-B. Pharmaceuticals (Basel) 2024; 17:1348. [PMID: 39458989 PMCID: PMC11510247 DOI: 10.3390/ph17101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: 6-Shogaol is a comparatively innovative anti-Parkinson's remedy with antioxidant and anti-inflammatory characteristics. This investigation intended to determine the role of 6-shogaol in the Parkinson's disease (PD) paradigm in rotenone-induced rats. Methods: Thirty male Wistar rats (10-12 weeks old; 180 ± 20 g) were divided into five groups. Animals with rotenone-induced experimental PD were subsequently treated with 6-shogaol-10 at 20 mg/kg for 28 days. After the experimental duration, behavioural investigations were performed, i.e., open field test, forced swim test, rotarod test, and catalepsy test. Biochemical assessments like AChE, GSH, CAT, SOD, MDA, nitrite, ceruloplasmin, proinflammatory markers such as IL-1β, NF-κB, TNF-α, and catecholamines markers (DA, GABA, and MAO-B) were determined. The docking procedure was conducted using the AutoDock Vina docking protocol. Furthermore, histopathology was performed. Results: Rotenone significantly increased the level of MAO-B, oxidative, nitrative, and pro-inflammatory markers. However, there was a decline in ceruloplasmin, dopamine, and endogenous antioxidants. Treatment with 6-shogaol (10 and 20 mg/kg) considerably sustained the elevation of oxidative stress and inflammatory indicators and decreased AChE activity and dopamine levels. In the histology of the brain, 6-shogaol improved the neuronal structure and reduced the degeneration of neurons. Based on the binding energy values, compound 6-shogaol demonstrates a favourable binding affinity to AChE, MAO-B, DA, and GABA with respective binding energies of -8.214, -8.133, -7.396 and -6.189 kcal/mol. Conclusions: In this study, 6-shogaol exhibited neuroprotective properties against PD, which could be employed as a prospective medication for PD.
Collapse
Affiliation(s)
- Misbahuddin Rafeeq
- Department of Pharmacology Faculty of Medicine, Rabigh King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Salwa D. Al-Qahtani
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Sami I. Alzrea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia;
| | - Naif A. R. Almalki
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur 247121, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Faysal M, Khan J, Zehravi M, Nath N, Singh LP, Kakkar S, Perusomula R, Khan PA, Nainu F, Asiri M, Khan SL, Das R, Emran TB, Wilairatana P. Neuropharmacological potential of honokiol and its derivatives from Chinese herb Magnolia species: understandings from therapeutic viewpoint. Chin Med 2023; 18:154. [PMID: 38001538 PMCID: PMC10668527 DOI: 10.1186/s13020-023-00846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/30/2023] [Indexed: 11/26/2023] Open
Abstract
Honokiol is a neolignan biphenol found in aerial parts of the Magnolia plant species. The Magnolia plant species traditionally belong to China and have been used for centuries to treat many pathological conditions. Honokiol mitigates the severity of several pathological conditions and has the potential to work as an anti-inflammatory, anti-angiogenic, anticancer, antioxidant, and neurotherapeutic agent. It has a long history of being employed in the healthcare practices of Southeast Asia, but in recent years, a greater scope of research has been conducted on it. Plenty of experimental evidence suggests it could be beneficial as a neuroprotective bioactive molecule. Honokiol has several pharmacological effects, leading to its exploration as a potential therapy for neurological diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemia, anxiety, depression, spinal cord injury, and so on. So, based on the previous experimentation reports, our goal is to discuss the neuroprotective properties of honokiol. Besides, honokiol derivatives have been highlighted recently as possible therapeutic options for NDs. So, this review focuses on honokiol's neurotherapeutic actions and toxicological profile to determine their safety and potential use in neurotherapeutics.
Collapse
Affiliation(s)
- Md Faysal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia.
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Jamuhar, Sasaram, (Rohtas), Bihar, 821305, India
| | - Saloni Kakkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Rajashekar Perusomula
- Cognitive Science Research Initiative Lab, Vishnu Institute of Pharmaceutical Education & Research, Narsapur, India
| | - Pathan Amanulla Khan
- Department of Pharmacy Practice, Anwar Ul Uloom College of Pharmacy, New Mallepally, Hyderabad, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, Maharashtra, 413520, India
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Ajayi AM, Coker AI, Oyebanjo OT, Adebanjo IM, Ademowo OG. Ananas comosus (L) Merrill (pineapple) fruit peel extract demonstrates antimalarial, anti-nociceptive and anti-inflammatory activities in experimental models. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114576. [PMID: 34461191 DOI: 10.1016/j.jep.2021.114576] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Pineapple (Ananas comosus) peel is a major waste in pineapple canning industry and it is reported to be used in ethnomedicine as a component of herbal remedies for malarial management. This study aimed to evaluate the antimalarial, antinociceptive and anti-inflammatory properties of Ananas comosus peel extract (PEAC). METHODS Ananas comosus peel was extracted with 80% methanol. PEAC (100, 200 and 400 mg/kg) was investigated for antimalarial effect using Peter's 4-day suppressive test (4-DST) model in mice. Antinociceptive activity of PEAC was investigated in hot plate, acetic acid-induced writhing and formalin tests in mice. The anti-inflammatory activity was evaluated using the lipopolysaccharides-induced sickness behavior in mice and carrageenan-induced air pouch in rats' models. RESULTS PEAC could not significantly (p > 0.05) suppressed parasitemia level at 7-day post-infection in 4-DST. PEAC (400 mg/kg) mildly prolongs survival of infected mice up till day 21. PEAC demonstrated significant (p < 0.05) antinociceptive activity by increasing latency to jump on the hot plate, reduced number of writhings in acetic acid test and reduced paw licking time in 2nd phase of formalin test. PEAC significantly reduced anxiogenic and depressive-like symptoms of sickness behavior in LPS-injected mice. PEAC demonstrated significant anti-inflammatory activity in carrageenan-induced air pouch experiment by reducing exudates formation, inflammatory cell counts, and nitrite, tumor necrosis factor-alpha and interleukin-6 levels. CONCLUSION Ananas comosus peel extract demonstrated mild antimalarial activity but significant anti-nociceptive and anti-inflammatory properties probably mediated via inhibition of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Abayomi M Ajayi
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria.
| | - Adekunle I Coker
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria.
| | - Oyetola T Oyebanjo
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria; Department of Physiology, Ben Carson School of Medicine, Babcock University, Ilishan-Remo, Ogun-state, Nigeria.
| | - Iyanuoluwa Mary Adebanjo
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria.
| | - Olusegun G Ademowo
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria; Institute of Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
4
|
Rosinidin Attenuates Lipopolysaccharide-Induced Memory Impairment in Rats: Possible Mechanisms of Action Include Antioxidant and Anti-Inflammatory Effects. Biomolecules 2021; 11:biom11121747. [PMID: 34944391 PMCID: PMC8698430 DOI: 10.3390/biom11121747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022] Open
Abstract
The investigation aimed to evaluate the favourable effects of rosinidin in lipopolysaccharide (LPS)-induced learning and memory impairment in rats. Adult Wistar rats (150–200 g) were segregated equally into four different groups and treated as below: Group 1 (normal) and Group 2 (LPS control) were administered orally with 3 mL of 0.5% SCMC (vehicle); Group 3 and Group 4 were test groups and orally administered with rosinidin lower dose (10 mg/kg) and higher dose 20 mg/kg. Daily, 1 h post-offer mentioned treatments, Group 1 animals were injected with normal saline (i.p.) and groups 2–4 were treated with 1 mg/kg/day of LPS. This treatment schedule was followed daily for 7 days. During the treatment, schedule rats were evaluated for spontaneous locomotor activity, memory, and learning abilities. The biochemical assessment was carried out of acetylcholine esterase (AChE), endogenous antioxidants (GSH, SOD, GPx, and catalase), oxidative stress marker MDA, neuroinflammatory markers (IL-6, IL-1β, TNF-α, and NF-κB), and BDNF. LPS-induced reduced spontaneous locomotor activity and memory impairment in the animals. Moreover, LPS reduced GSH, SOD, GPx, and catalase levels; altered activities of AChE; elevated levels of MDA, IL-6, IL-1β, TNF-α, and NF-κB; and attenuated the levels of BDNF in brain tissue. Administration of rosinidin to LPS-treated animals significantly reduced LPS-induced neurobehavioral impairments, oxidative stress, neuroinflammatory markers, and reversed the Ach enzyme activities and BDNF levels towards normal. Results demonstrated that rosinidin attenuates the effects of LPS on learning memory in rats.
Collapse
|
5
|
Lomba LA, Cruz JV, Coelho LCM, Leite-Avalca MCG, Correia D, Zampronio AR. Role of central endothelin-1 in hyperalgesia, anhedonia, and hypolocomotion induced by endotoxin in male rats. Exp Brain Res 2020; 239:267-277. [PMID: 33145614 DOI: 10.1007/s00221-020-05929-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
Sickness syndrome is an adaptive response that can be distinguished by specific signs and symptoms, such as fever and generalized hyperalgesia. Endothelin-1 (ET-1) is produced by inflammatory stimuli, including lipopolysaccharide, and involved in the pathogenesis of inflammation and pain by acting through ETA and ETB receptors. ET-1 also induces fever by acting on the central nervous system. The present study investigated the role of ET-1 in sickness syndrome responses, including hyperalgesia, anhedonia, and hypolocomotion. Intracerebroventricular ET-1 administration induced mechanical and thermal hyperalgesia in rats, which was ameliorated by the ETA receptor antagonist BQ123 and exacerbated by the ETB receptor antagonist BQ788. A cyclooxygenase blocker did not alter hyperalgesia that was induced by ET-1. Lipopolysaccharide administration induced hyperalgesia, and both BQ123 and BQ788 abolished this mechanical hyperalgesia, but the thermal response was only partially blocked. The blockade of ETA receptors in the hypothalamus also abolished lipopolysaccharide-induced mechanical hyperalgesia, and the ETB receptor antagonist did not influence this response. Lipopolysaccharide also induced anhedonia, reflected by lower sucrose preference, and reduced locomotor activity. Both antagonists restored locomotor activity, but only BQ788 reversed the reduction of sucrose preference. These results indicate that ET-1 and both ETA and ETB receptors are involved in various responses that are related to sickness syndrome, including hyperalgesia, anhedonia, and hypolocomotion, that is induced by LPS. Hypothalamic ETA but not ETB receptors are involved in mechanical hyperalgesia that is observed during lipopolysaccharide-induced sickness syndrome.
Collapse
Affiliation(s)
- Luís Alexandre Lomba
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| | - Juliana Varella Cruz
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| | | | | | - Diego Correia
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| | - Aleksander Roberto Zampronio
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil.
| |
Collapse
|
6
|
Nandeesh R, Vijayakumar S, Munnolli A, Alreddy A, Veerapur VP, Chandramohan V, Manjunatha E. Bioactive phenolic fraction of Citrus maxima abate lipopolysaccharide-induced sickness behaviour and anorexia in mice: In-silico molecular docking and dynamic studies of biomarkers against NF-κB. Biomed Pharmacother 2018; 108:1535-1545. [DOI: 10.1016/j.biopha.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022] Open
|
7
|
Lomb J, Neave H, Weary D, LeBlanc S, Huzzey J, von Keyserlingk M. Changes in feeding, social, and lying behaviors in dairy cows with metritis following treatment with a nonsteroidal anti-inflammatory drug as adjunctive treatment to an antimicrobial. J Dairy Sci 2018; 101:4400-4411. [DOI: 10.3168/jds.2017-13812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/18/2017] [Indexed: 01/13/2023]
|
8
|
Effectiveness of conservative interventions for sickness and pain behaviors induced by a high repetition high force upper extremity task. BMC Neurosci 2017; 18:36. [PMID: 28356066 PMCID: PMC5371184 DOI: 10.1186/s12868-017-0354-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 03/16/2017] [Indexed: 11/29/2022] Open
Abstract
Background Systemic inflammation is known to induce sickness behaviors, including decreased social interaction and pain. We have reported increased serum inflammatory cytokines in a rat model of repetitive strain injury (rats perform an upper extremity reaching task for prolonged periods). Here, we sought to determine if sickness behaviors are induced in this model and the effectiveness of conservative treatments. Methods Experimental rats underwent initial training to learn a high force reaching task (10 min/day, 5 days/week for 6 weeks), with or without ibuprofen treatment (TRHF vs. TRHF + IBU rats). Subsets of trained animals went on to perform a high repetition high force (HRHF) task for 6 or 12 weeks (2 h/day, 3 days/week) without treatment, or received two secondary interventions: ibuprofen (HRHF + IBU) or a move to a lower demand low repetition low force task (HRHF-to-LRLF), beginning in task week 5. Mixed-effects models with repeated measures assays were used to assay duration of social interaction, aggression, forepaw withdrawal thresholds and reach performance abilities. One-way and two-way ANOVAs were used to assay tissue responses. Corrections for multiple comparisons were made. Results TRHF + IBU rats did not develop behavioral declines or systemic increases in IL-1beta and IL-6, observed in untreated TRHF rats. Untreated HRHF rats showed social interaction declines, difficulties performing the operant task and forepaw mechanical allodynia. Untreated HRHF rats also had increased serum levels of several inflammatory cytokines and chemokines, neuroinflammatory responses (e.g., increased TNFalpha) in the brain, median nerve and spinal cord, and Substance P and neurokinin 1 immunoexpression in the spinal cord. HRHF + IBU and HRHF-to-LRLF rats showed improved social interaction and reduced inflammatory serum, nerve and brain changes. However, neither secondary treatment rescued HRHF-task induced forepaw allodynia, or completely attenuated task performance declines or spinal cord responses. Conclusions These results suggest that inflammatory mechanisms induced by prolonged performance of high physical demand tasks mediate the development of social interaction declines and aggression. However, persistent spinal cord sensitization was associated with persistent behavioral indices of discomfort, despite use of conservative secondary interventions indicating the need for prevention or more effective interventions. Electronic supplementary material The online version of this article (doi:10.1186/s12868-017-0354-3) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Moraes MMT, Galvão MC, Cabral D, Coelho CP, Queiroz-Hazarbassanov N, Martins MFM, Bondan EF, Bernardi MM, Kirsten TB. Propentofylline Prevents Sickness Behavior and Depressive-Like Behavior Induced by Lipopolysaccharide in Rats via Neuroinflammatory Pathway. PLoS One 2017; 12:e0169446. [PMID: 28056040 PMCID: PMC5215944 DOI: 10.1371/journal.pone.0169446] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/16/2016] [Indexed: 01/03/2023] Open
Abstract
Recent studies have demonstrated the intimate relationship between depression and immune disturbances. Aware of the efficacy limits of existing antidepressant drugs and the potential anti-inflammatory properties of propentofylline, we sought to evaluate the use of propentofylline as a depression treatment. We used a rat model of depression induced by repetitive lipopolysaccharide (LPS) administrations. We have studied sickness behavior, by assessing daily body weight, open field behavior, and TNF-α plasmatic levels. Anxiety-like behavior (light-dark test), depressive-like behavior (forced swim test), plasmatic levels of the brain-derived neurotrophic factor (BDNF, depression biomarker), and central glial fibrillary acidic protein (GFAP) expression (an astrocyte biomarker) were also evaluated. LPS induced body weight loss, open field behavior impairments (decreased locomotion and rearing, and increased immobility), and increased TNF-α levels in rats, compared with control group. Thus, LPS induced sickness behavior. LPS also increased the immobility and reduced climbing in the forced swim test, when compared with the control group, i.e., LPS induced depressive-like behavior in rats. Propentofylline prevented sickness behavior after four days of consecutive treatment, as well as prevented the depressive-like behavior after five days of consecutive treatments. Propentofylline also prevented the increase in GFAP expression induced by LPS. Neither LPS nor propentofylline has influenced the anxiety and BDNF levels of rats. In conclusion, repetitive LPS administrations induced sickness behavior and depressive-like behavior in rats. Propentofylline prevented both sickness behavior and depressive-like behavior via neuroinflammatory pathway. The present findings may contribute to a better understanding and treatment of depression and associated diseases.
Collapse
Affiliation(s)
- Márcia M. T. Moraes
- Environmental and Experimental Pathology, Paulista University, Sao Paulo, Brazil
| | - Marcella C. Galvão
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Sao Paulo, Brazil
| | - Danilo Cabral
- Environmental and Experimental Pathology, Paulista University, Sao Paulo, Brazil
| | - Cideli P. Coelho
- Graduate Program of Animal Medicine and Welfare, University of Santo Amaro, Sao Paulo, Brazil
| | | | - Maria F. M. Martins
- Environmental and Experimental Pathology, Paulista University, Sao Paulo, Brazil
| | - Eduardo F. Bondan
- Environmental and Experimental Pathology, Paulista University, Sao Paulo, Brazil
| | - Maria M. Bernardi
- Environmental and Experimental Pathology, Paulista University, Sao Paulo, Brazil
| | - Thiago Berti Kirsten
- Environmental and Experimental Pathology, Paulista University, Sao Paulo, Brazil
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
10
|
Shaikh A, Dhadde SB, Durg S, Veerapur VP, Badami S, Thippeswamy BS, Patil JS. Effect of Embelin Against Lipopolysaccharide-induced Sickness Behaviour in Mice. Phytother Res 2016; 30:815-822. [PMID: 26890475 DOI: 10.1002/ptr.5585] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 01/21/2023]
Abstract
Sickness behaviour is a coordinated set of adaptive behavioural changes that develop in ill individuals during the course of an infection. It is relevant to understanding depression and some aspects of the suffering that in cancer. Embelin has been reported to possess antiinflammatory, neuroprotective and anxiolytic assets and has been shown to inhibit nuclear factor κB pathway and cytokine production. The present study was undertaken to investigate the effect of embelin isolated from Embelia ribes Burm in lipopolysaccharide (LPS)-induced sickness behaviour in mice. Adult male Swiss albino mice were pre-treated with embelin (10 and 20 mg/kg, p.o.) or dexamethasone (1 mg/kg, i.p.) for 3 days and then challenged with LPS (400 µg/kg, i.p.). At different time intervals of post-LPS challenge, sickness behaviour was evaluated in the animals by battery of behavioural tests (plus maze, open field, light-dark box, forced swim, social behaviour assessment, sucrose preference and food and water intake). Levels of oxidative stress makers (reduced glutathione and lipid peroxidation) in mice brain were also analysed. LPS induced behavioural alterations, anhedonia and anorexia, in mice. Pre-treatment with embelin attenuated behavioural changes induced by LPS. In addition, embelin prevented anhedonia, anorexia and ameliorated brain oxidative stress markers. The experimental outcomes of the present study demonstrated protective effect of embelin in LPS-induced sickness behaviour in mice. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ashique Shaikh
- Sree Siddaganga College of Pharmacy, Tumkur, 572 102, India
| | - Shivsharan B Dhadde
- Sree Siddaganga College of Pharmacy, Tumkur, 572 102, India
- VT's Shivajirao S. Jondhle College of Pharmacy, Asangaon, 421 601, India
| | | | - V P Veerapur
- Sree Siddaganga College of Pharmacy, Tumkur, 572 102, India
| | - S Badami
- Sree Siddaganga College of Pharmacy, Tumkur, 572 102, India
| | - B S Thippeswamy
- Sree Siddaganga College of Pharmacy, Tumkur, 572 102, India
- Department of Biomedical Science, College of Pharmacy, Shaqra University Al-Dawadmi, Kingdom of Saudi Arabia
| | | |
Collapse
|
11
|
Sulakhiya K, Keshavlal GP, Bezbaruah BB, Dwivedi S, Gurjar SS, Munde N, Jangra A, Lahkar M, Gogoi R. Lipopolysaccharide induced anxiety- and depressive-like behaviour in mice are prevented by chronic pre-treatment of esculetin. Neurosci Lett 2016; 611:106-11. [DOI: 10.1016/j.neulet.2015.11.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/02/2015] [Accepted: 11/20/2015] [Indexed: 12/16/2022]
|
12
|
Sulakhiya K, Kumar P, Gurjar SS, Barua CC, Hazarika NK. Beneficial effect of honokiol on lipopolysaccharide induced anxiety-like behavior and liver damage in mice. Pharmacol Biochem Behav 2015; 132:79-87. [DOI: 10.1016/j.pbb.2015.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 01/12/2023]
|
13
|
Rodent models of depression: neurotrophic and neuroinflammatory biomarkers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:932757. [PMID: 24999483 PMCID: PMC4066721 DOI: 10.1155/2014/932757] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/18/2014] [Indexed: 12/13/2022]
Abstract
Rodent models are an indispensable tool for studying etiology and progress of depression. Since interrelated systems of neurotrophic factors and cytokines comprise major regulatory mechanisms controlling normal brain plasticity, impairments of these systems form the basis for development of cerebral pathologies, including mental diseases. The present review focuses on the numerous experimental rodent models of depression induced by different stress factors (exteroceptive and interoceptive) during early life (including prenatal period) or adulthood, giving emphasis to the data on the changes of neurotrophic factors and neuroinflammatory indices in the brain. These parameters are closely related to behavioral depression-like symptoms and impairments of neuronal plasticity and are both gender- and genotype-dependent. Stress-related changes in expression of neurotrophins and cytokines in rodent brain are region-specific. Some contradictory data reported by different groups may be a consequence of differences of stress paradigms or their realization in different laboratories. Like all experimental models, stress-induced depression-like conditions are experimental simplification of clinical depression states; however, they are suitable for understanding the involvement of neurotrophic factors and cytokines in the pathogenesis of the disease—a goal unachievable in the clinical reality. These major regulatory systems may be important targets for therapeutic measures as well as for development of drugs for treatment of depression states.
Collapse
|
14
|
Synergistic effects of celecoxib and bupropion in a model of chronic inflammation-related depression in mice. PLoS One 2013; 8:e77227. [PMID: 24086771 PMCID: PMC3785450 DOI: 10.1371/journal.pone.0077227] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/01/2013] [Indexed: 11/19/2022] Open
Abstract
This study was aimed to characterize the depression-like behaviour in the classical model of chronic inflammation induced by Complete Freund's Adjuvant (CFA). Male Swiss mice received an intraplantar (i.pl.) injection of CFA (50 µl/paw) or vehicle. Behavioural and inflammatory responses were measured at different time-points (1 to 4 weeks), and different pharmacological tools were tested. The brain levels of IL-1β and BDNF, or COX-2 expression were also determined. CFA elicited a time-dependent edema formation and mechanical allodynia, which was accompanied by a significant increase in the immobility time in the tail suspension (TST) or forced-swimming (FST) depression tests. Repeated administration of the antidepressants imipramine (10 mg/kg), fluoxetine (20 mg/kg) and bupropion (30 mg/kg) significantly reversed depression-like behaviour induced by CFA. Predictably, the anti-inflammatory drugs dexamethasone (0.5 mg/kg), indomethacin (10 mg/kg) and celecoxib (30 mg/kg) markedly reduced CFA-induced edema. The oral treatment with the analgesic drugs dipyrone (30 and 300 mg/kg) or pregabalin (30 mg/kg) significantly reversed the mechanical allodyinia induced by CFA. Otherwise, either dipyrone or pregabalin (both 30 mg/kg) did not significantly affect the paw edema or the depressive-like behaviour induced by CFA, whereas the oral treatment with dipyrone (300 mg/kg) was able to reduce the immobility time in TST. Noteworthy, CFA-induced edema was reduced by bupropion (30 mg/kg), and depression behaviour was prevented by celecoxib (30 mg/kg). The co-treatment with bupropion and celecoxib (3 mg/kg each) significantly inhibited both inflammation and depression elicited by CFA. The same combined treatment reduced the brain levels of IL-1β, as well as COX-2 immunopositivity, whilst it failed to affect the reduction of BDNF levels. We provide novel evidence on the relationship between chronic inflammation and depression, suggesting that combination of antidepressant and anti-inflammatory agents bupropion and celecoxib might represent an attractive therapeutic strategy for depression.
Collapse
|
15
|
Inhibition of nitric oxide synthase accentuates endotoxin-induced sickness behavior in mice. Pharmacol Biochem Behav 2013; 103:535-40. [DOI: 10.1016/j.pbb.2012.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/18/2012] [Accepted: 09/29/2012] [Indexed: 12/27/2022]
|