1
|
Tang C, Li W, Zhu S, Zhang M, Xiong G, Lin Y. Association of serum A20 levels with stroke-associated pneumonia, early neurological deterioration, and poor neurological prognosis following acute supratentorial intracerebral hemorrhage: a prospective cohort study. Front Neurol 2025; 16:1546934. [PMID: 40343186 PMCID: PMC12059376 DOI: 10.3389/fneur.2025.1546934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/24/2025] [Indexed: 05/11/2025] Open
Abstract
Background A20 is an endogenous protective protein. We quantified serum A20 levels following acute intracerebral hemorrhage (ICH) and assessed their association with the severity of illness and clinical outcomes of patients. Methods In total, 243 patients with acute supratentorial ICH and 76 controls were included in this prospective cohort study. Serum A20 levels were measured at admission in all patients, at study entry in all controls, and on post-ICH days 1, 3, 5, 7, 10, and 14 in 76 patients. The National Institutes of Health Stroke Scale (NIHSS) scores and hematoma volume were used to estimate the severity. Stroke-associated pneumonia (SAP), early neurological deterioration (END), and post-ICH 6-month poor prognosis (modified Rankin Scale scores: 3-6) were considered as the three outcome variables of interest. Results Patients, as opposed to controls, exhibited significantly heightened serum A20 levels from admission until 14 days following ICH, with a peak value at day 3. Serum A20 levels at all-time points after ICH, which were significantly correlated with NIHSS scores and hematoma volume, were significantly higher in patients with END, SAP, or poor prognosis than in those without the corresponding one. Serum A20 levels at admission possessed similar predictive ability of these clinical outcomes to those at other time points. Serum A20 levels at admission, along with initial NIHSS scores and hematoma volume, remained independent predictors of clinical outcomes among patients. As confirmed by numerous statistical approaches, their conjunctions comprised three prediction models: satisfactory stability, clinical validity, and discrimination efficiency. Conclusion Serum A20 levels were significantly increased following ICH and may accurately reflect hemorrhagic severity and effectively predict END, SAP, and poor neurological prognosis, suggesting that serum A20 may be a promising prognostic biomarker for ICH.
Collapse
Affiliation(s)
- Chao Tang
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, China
- Department of Neurosurgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Li
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, China
- Department of Neurosurgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Suijun Zhu
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, China
- Department of Neurosurgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zhang
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, China
- Department of Neurosurgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Gaofeng Xiong
- Department of Critical Care Medicine, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yijuan Lin
- Emergency Department, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Doğanyiğit Z, Okan A, Yılmaz S, Uğuz AC, Akyüz E. Gender-related variation expressions of neuroplastin TRAF6, GluA1, GABA(A) receptor, and PMCA in cortex, hippocampus, and brainstem in an experimental epilepsy model. Synapse 2024; 78:e22289. [PMID: 38436644 DOI: 10.1002/syn.22289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/19/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Epileptic seizures are seen as a result of changing excitability balance depending on the deterioration in synaptic plasticity in the brain. Neuroplastin, and its related molecules which are known to play a role in synaptic plasticity, neurotransmitter activities that provide balance of excitability and, different neurological diseases, have not been studied before in epilepsy. In this study, a total of 34 Sprague-Dawley male and female rats, 2 months old, weighing 250-300 g were used. The epilepsy model in rats was made via pentylenetetrazole (PTZ). After the completion of the experimental procedure, the brain tissue of the rats were taken and the histopathological changes in the hippocampus and cortex parts and the brain stem were investigated, as well as the immunoreactivity of the proteins related to the immunohistochemical methods. As a result of the histopathological evaluation, it was determined that neuron degeneration and the number of dilated blood vessels in the hippocampus, frontal cortex, and brain stem were higher in the PTZ status epilepticus (SE) groups than in the control groups. It was observed that neuroplastin and related proteins TNF receptor-associated factor 6 (TRAF6), Gamma amino butyric acid type A receptors [(GABA(A)], and plasma membrane Ca2+ ATPase (PMCA) protein immunoreactivity levels increased especially in the male hippocampus, and only AMPA receptor subunit type 1 (GluA1) immunoreactivity decreased, unlike other proteins. We believe this may be caused by a problem in the mechanisms regulating the interaction of neuroplastin and GluA1 and may cause problems in synaptic plasticity in the experimental epilepsy model. It may be useful to elucidate this mechanism and target GluA1 when determining treatment strategies.
Collapse
Affiliation(s)
- Züleyha Doğanyiğit
- Faculty of Medicine, Department of Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | - Aslı Okan
- Faculty of Medicine, Department of Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | - Seher Yılmaz
- Faculty of Medicine, Department of Anatomy, Yozgat Bozok University, Yozgat, Turkey
| | - A Cihangir Uğuz
- Faculty of Medicine, Department of Biophysics, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Enes Akyüz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
3
|
Yan T, Chen Z, Zou S, Wang Z, Du Q, Yu W, Hu W, Zheng Y, Wang K, Dong X, Dong S. A prospective cohort study on serum A20 as a prognostic biomarker of aneurysmal subarachnoid hemorrhage. World J Emerg Med 2023; 14:360-366. [PMID: 37908792 PMCID: PMC10613794 DOI: 10.5847/wjem.j.1920-8642.2023.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/10/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND A20 may be a neuroprotective factor. Herein, we aimed to investigate whether serum A20 levels were associated with disease severity, delayed cerebral ischemia (DCI), and outcome after aneurysmal subarachnoid hemorrhage (aSAH). METHODS In this prospective cohort study containing 112 aSAH patients and 112 controls, serum A20 levels were quantified. At 90 d poststroke, Modified Rankin Scale (MRS) scores ≥3 were defined as a poor outcome. All correlations and associations were assessed using multivariate analysis. RESULTS Compared with controls, there was a significant elevation of serum A20 levels in patients (median 123.7 pg/mL vs. 25.8 pg/mL; P<0.001). Serum A20 levels were independently correlated with Hunt-Hess scores (β 9.854; 95% confidence interval [95% CI] 2.481-17.227, P=0.009) and modified Fisher scores (β 10.349, 95% CI 1.273-19.424, P=0.026). Independent associations were found between serum A20 levels and poor outcome (odds ratio [OR] 1.015, 95% CI 1.000-1.031, P=0.047) and DCI (OR 1.018, 95% CI 1.001-1.035, P=0.042). Areas under the curve for predicting poor outcome and DCI were 0.771 (95% CI 0.682-0.845) and 0.777 (95% CI 0.688-0.850), respectively. Serum A20 levels ≥128.15 pg/mL predicted poor outcome, with a sensitivity of 73.9% and specificity of 74.2%, and A20 levels ≥160.55 pg/mL distinguished the risk of DCI with 65.5% sensitivity and 89.2% specificity. Its ability to predict poor outcome and DCI was similar to those of Hunt-Hess scores and modified Fisher scores (both P>0.05). CONCLUSION Enhanced serum A20 levels are significantly associated with stroke severity and poor clinical outcome after aSAH, implying that serum A20 may be a potential prognostic biomarker for aSAH.
Collapse
Affiliation(s)
- Tian Yan
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 322000, China
| | - Ziyin Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 322000, China
| | - Shengdong Zou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 322000, China
| | - Zefan Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 322000, China
| | - Quan Du
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Wenhua Yu
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Wei Hu
- Department of Intensive Care Unit, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yongke Zheng
- Department of Intensive Care Unit, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Keyi Wang
- Clinical Laboratory Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaoqiao Dong
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shuangyong Dong
- Emergency Department, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
4
|
Perga S, Montarolo F, Martire S, Bonaldo B, Bono G, Bertolo J, Magliozzi R, Bertolotto A. Overexpression of the ubiquitin-editing enzyme A20 in the brain lesions of Multiple Sclerosis patients: moving from systemic to central nervous system inflammation. Brain Pathol 2020; 31:283-296. [PMID: 33051914 PMCID: PMC8018032 DOI: 10.1111/bpa.12906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple Sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) in which inflammation plays a key pathological role. Recent evidences showed that systemic inflammation induces increasing cell infiltration within meninges and perivascular spaces in the brain parenchyma, triggering resident microglial and astrocytic activation. The anti-inflammatory enzyme A20, also named TNF associated protein 3 (TNFAIP3), is considered a central gatekeeper in inflammation and peripheral immune system regulation through the inhibition of NF-kB. The TNFAIP3 locus is genetically associated to MS and its transcripts is downregulated in blood cells in treatment-naïve MS patients. Recently, several evidences in mouse models have led to hypothesize a function of A20 also in the CNS. Thus, here we aimed to unveil a possible contribution of A20 to the CNS human MS pathology. By immunohistochemistry/immunofluorescence and biomolecular techniques on post-mortem brain tissue blocks obtained from control cases (CC) and progressive MS cases, we demonstrated that A20 is present in CC brain tissues in both white matter (WM) regions, mainly in few parenchymal astrocytes, and in grey matter (GM) areas, in some neuronal populations. Conversely, in MS brain tissues, we observed increased expression of A20 by perivascular infiltrating macrophages, resident-activated astrocytes, and microglia in all the active and chronic active WM lesions. A20 was highly expressed also in the majority of active cortical lesions compared to the neighboring areas of normal-appearing grey matter (NAGM) and control GM, particularly by activated astrocytes. We demonstrated increased A20 expression in the active MS plaques, particularly in macrophages and resident astrocytes, suggesting a key role of this molecule in chronic inflammation.
Collapse
Affiliation(s)
- Simona Perga
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy.,Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Serena Martire
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Gabriele Bono
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Jessica Bertolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Roberta Magliozzi
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.,Neurology B, Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| |
Collapse
|
5
|
RNF11 at the Crossroads of Protein Ubiquitination. Biomolecules 2020; 10:biom10111538. [PMID: 33187263 PMCID: PMC7697665 DOI: 10.3390/biom10111538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022] Open
Abstract
RNF11 (Ring Finger Protein 11) is a 154 amino-acid long protein that contains a RING-H2 domain, whose sequence has remained substantially unchanged throughout vertebrate evolution. RNF11 has drawn attention as a modulator of protein degradation by HECT E3 ligases. Indeed, the large number of substrates that are regulated by HECT ligases, such as ITCH, SMURF1/2, WWP1/2, and NEDD4, and their role in turning off the signaling by ubiquitin-mediated degradation, candidates RNF11 as the master regulator of a plethora of signaling pathways. Starting from the analysis of the primary sequence motifs and from the list of RNF11 protein partners, we summarize the evidence implicating RNF11 as an important player in modulating ubiquitin-regulated processes that are involved in transforming growth factor beta (TGF-β), nuclear factor-κB (NF-κB), and Epidermal Growth Factor (EGF) signaling pathways. This connection appears to be particularly significant, since RNF11 is overexpressed in several tumors, even though its role as tumor growth inhibitor or promoter is still controversial. The review highlights the different facets and peculiarities of this unconventional small RING-E3 ligase and its implication in tumorigenesis, invasion, neuroinflammation, and cancer metastasis.
Collapse
|
6
|
Privman Champaloux E, Donelson N, Pyakurel P, Wolin D, Ostendorf L, Denno M, Borman R, Burke C, Short-Miller JC, Yoder MR, Copeland JM, Sanyal S, Venton BJ. Ring Finger Protein 11 (RNF11) Modulates Dopamine Release in Drosophila. Neuroscience 2020; 452:37-48. [PMID: 33176188 DOI: 10.1016/j.neuroscience.2020.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Recent work indicates a role for RING finger protein 11 (RNF11) in Parkinson disease (PD) pathology, which involves the loss of dopaminergic neurons. However, the role of RNF11 in regulating dopamine neurotransmission has not been studied. In this work, we tested the effect of RNF11 RNAi knockdown or overexpression on stimulated dopamine release in the larval Drosophila central nervous system. Dopamine release was stimulated using optogenetics and monitored in real-time using fast-scan cyclic voltammetry at an electrode implanted in an isolated ventral nerve cord. RNF11 knockdown doubled dopamine release, but there was no decrease in dopamine from RNF11 overexpression. RNF11 knockdown did not significantly increase stimulated serotonin or octopamine release, indicating the effect is dopamine specific. Dopamine clearance was also changed, as RNF11 RNAi flies had a higher Vmax and RNF11 overexpressing flies had a lower Vmax than control flies. RNF11 RNAi flies had increased mRNA levels of dopamine transporter (DAT) in RNF11, confirming changes in DAT. In RNF11 RNAi flies, release was maintained better for stimulations repeated at short intervals, indicating increases in the recycled releasable pool of dopamine. Nisoxetine, a DAT inhibitor, and flupenthixol, a D2 antagonist, did not affect RNF11 RNAi or overexpressing flies differently than control. Thus, RNF11 knockdown causes early changes in dopamine neurotransmission, and this is the first work to demonstrate that RNF11 affects both dopamine release and uptake. RNF11 expression decreases in human dopaminergic neurons during PD, and that decrease may be protective by increasing dopamine neurotransmission in the surviving dopaminergic neurons.
Collapse
Affiliation(s)
- Eve Privman Champaloux
- Neuroscience Graduate Program and Medical Scientist Training Program, University of Virginia, Charlottesville, VA, United States
| | | | - Poojan Pyakurel
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Danielle Wolin
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Leah Ostendorf
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Madelaine Denno
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Ryan Borman
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | | | - Jonah C Short-Miller
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA, United States
| | - Maria R Yoder
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA, United States
| | - Jeffrey M Copeland
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States; Department of Biology, Eastern Mennonite University, Harrisonburg, VA, United States
| | | | - B Jill Venton
- Neuroscience Graduate Program and Medical Scientist Training Program, University of Virginia, Charlottesville, VA, United States; Department of Chemistry, University of Virginia, Charlottesville, VA, United States.
| |
Collapse
|
7
|
A20-Binding Inhibitor of NF- κB 1 Ameliorates Neuroinflammation and Mediates Antineuroinflammatory Effect of Electroacupuncture in Cerebral Ischemia/Reperfusion Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6980398. [PMID: 33110436 PMCID: PMC7582058 DOI: 10.1155/2020/6980398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022]
Abstract
A20-binding inhibitor of NF-κB 1 (ABIN1) is an inhibitor of NF-κB and exerts anti-inflammatory effect. Electroacupuncture (EA) is considered as a neuroprotective strategy by inhibiting neuroinflammatory damage after cerebral ischemia. This study was performed to explore the role of ABIN1 and investigate whether the ABIN1 is involved in the mechanism of EA in cerebral ischemia/reperfusion (I/R) rats. Male Sprague-Dawley (SD) rats were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and received EA after reperfusion once a day. Lentivirus-mediated ABIN1 gene knockdown was used to detect the role of ABIN1 in neuroinflammation after I/R. ABIN1 expression, proinflammatory cytokine levels, microglial activation, neurological function, infarct volumes, and NF-κB activation were assessed. ABIN1 expression was elevated in the peri-infarct cortex and was further upregulated by EA. ABIN1 knockdown increased the levels of proinflammatory cytokines and activation of microglia, worsened neurological deficits, and enlarged the infarct volume. Moreover, ABIN1 was blocked to partially reverse the neuroprotective effect of EA, and this treatment weakened the ability of EA to suppress NF-κB activity. Based on these findings, ABIN1 is a potential suppressor of neuroinflammation and ABIN1 mediates the antineuroinflammatory effect of EA in cerebral I/R rats.
Collapse
|
8
|
The ubiquitin-editing enzyme A20 regulates synapse remodeling and efficacy. Brain Res 2020; 1727:146569. [PMID: 31783001 PMCID: PMC9255268 DOI: 10.1016/j.brainres.2019.146569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 12/31/2022]
Abstract
Ubiquitination and its reverse process, deubiquitination, play essential roles in neural development, function, and plasticity. A20, a ubiquitin editing enzyme that can remove K63-polyubiquitin chains from substrates and attach K48-polyubiquitin chains to them, is a critical component in the NF-κB signaling pathway in the immune system. This dual ubiquitin enzyme is also present in mammalian brains, but its potential role in neurons and synapses is unknown. We show that A20 in pyramidal neurons potently regulates dendritic arborization, spine morphogenesis, and synaptic transmission through an NF-κB-dependent mechanism. In cultured hippocampal neurons, overexpression of A20 reduced dendritic complexity and spine size and density, whereas A20 knockdown increased spine size and density, as well as clustering of the postsynaptic scaffold PSD-95 and glutamate receptor subunit GluA1. A20 effects in vitro were recapitulated in vivo where increasing or decreasing A20 expression in mouse brains reduced and enhanced spine density, respectively. Functionally, A20 knockdown significantly increased the amplitude, but not frequency of miniature excitatory postsynaptic currents, suggesting a role in postsynaptic efficacy. A20 negatively regulated NF-κB activation in neurons and A20 mutants deficient in either the deubiquitinase or the ubiquitin ligase activity failed to suppress NF-κB activation or reduce spine morphogenesis. Finally, selective inhibition of NF-κB abolished A20 knockdown-elicited spine formation, suggesting that A20 exerts its modulation on synapses through NF-κB signaling. Together, our study reveals a previously unknown role for A20, the only known ubiquitin editing enzyme with both deubiquitinase and ubiquitin ligase activity, in dendritic arborization, spine remodeling, and synaptic plasticity.
Collapse
|
9
|
A20 protects neuronal apoptosis stimulated by lipopolysaccharide-induced microglial exosomes. Neurosci Lett 2019; 712:134480. [PMID: 31493550 DOI: 10.1016/j.neulet.2019.134480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
LPS-induced microglial activation has a major influence on neuronal damage in the inflammatory process. Integral to this is the cellular and molecular interaction between microglia and neurons. Exosomes, a mediator of communication between cells, can transfer lipids, proteins and nucleic acids, affecting many donor and recipient cells. To investigate the mechanism by which microglial exosomes regulate neuronal inflammation after traumatic brain injury, this study primarily analyzed the effect of microglial exosomes on neuronal apoptosis. Exosomes derived from lipopolysaccharide (LPS)-activated microglial cultures were identified and purified. Neurons treated with these exosomes underwent apoptosis. A20 (also known as TNF-inducible protein 3, TNFAIP3) is a deubiquitinating enzyme with key anti-inflammatory functions. A20 is of huge significance to the degeneration and development of neuron. Importantly, A20 protects the exosomes-induced neuronal death, while A20 knockdown increases neuronal death. This study shows that exosomes may be critical for communication between microglia and neurons.
Collapse
|
10
|
TNFAIP3, a negative regulator of the TLR signaling pathway, is a potential predictive biomarker of response to antidepressant treatment in major depressive disorder. Brain Behav Immun 2017; 59:265-272. [PMID: 27640899 DOI: 10.1016/j.bbi.2016.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/21/2016] [Accepted: 09/14/2016] [Indexed: 01/06/2023] Open
Abstract
Inflammation and abnormalities in Toll-like receptor (TLR) expression and activation have been linked to major depressive disorder (MDD). However, negative regulators of TLR pathways have not been previously investigated in this context. Here, we sought to investigate the association of depression severity, measured by the 17-item Hamilton Depression Rating Scale (HAMD-17), with mRNA expression levels of negative regulators of the TLR pathway, including SOCS1, TOLLIP, SIGIRR, MyD88s, NOD2 and TNFAIP3, in peripheral blood mononuclear cells (PBMCs) from 100 patients with MDD and 53 healthy controls, before and after treatment with antidepressants. Positive regulators of the TLR4 pathway, including Pellino 1, TRAF6 and IRAK1, were also investigated. Among all patients, MyD88s, and TNFAIP3 mRNAs were expressed at lower levels in PBMCs from patients with MDD. Multiple linear regression analyses revealed that TNFAIP3 mRNA expression before treatment was inversely correlated with severity of depression and effectively predicted improvement in HAMD-17 scores. Among 79 treatment-completers, only TNFAIP3 mRNA was significantly increased by treatment with antidepressants for 4 weeks. Treatment of human monocytes (THP-1) and mouse microglia (SIM-A9) cell lines with fluoxetine significantly increased TNFAIP3 mRNA expression and suppressed IL-6 levels. The suppressive effect of fluoxetine on IL-6 was attenuated by knockdown of TNFAIP3 expression. These findings suggest that both dysfunction of the negative regulatory system in patients with MDD and antidepressant treatment exert anti-inflammatory effects, at least in part through increased expression of the TNFAIP3 gene. They also indicate that modulating expression of the TNFAIP3 gene to rebalance TLR-mediated inflammatory signaling may be potential therapeutic strategy for treating MDD.
Collapse
|
11
|
Meng Z, Zhao T, Zhou K, Zhong Q, Wang Y, Xiong X, Wang F, Yang Y, Zhu W, Liu J, Liao M, Wu L, Duan C, Li J, Gong Q, Liu L, Xiong A, Yang M, Wang J, Yang Q. A20 Ameliorates Intracerebral Hemorrhage-Induced Inflammatory Injury by Regulating TRAF6 Polyubiquitination. THE JOURNAL OF IMMUNOLOGY 2016; 198:820-831. [PMID: 27986908 DOI: 10.4049/jimmunol.1600334] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 11/15/2016] [Indexed: 11/19/2022]
Abstract
Reducing excessive inflammation is beneficial for the recovery from intracerebral hemorrhage (ICH). Here, the roles and mechanisms of A20 (TNFAIP3), an important endogenous anti-inflammatory factor, are examined in ICH. A20 expression in the PBMCs of ICH patients and an ICH mouse model was detected, and the correlation between A20 expression and neurologic deficits was analyzed. A20 expression was increased in PBMCs and was negatively related to the modified Rankin Scale score. A20 expression was also increased in mouse perihematomal tissues. A20-/- and A20-overexpressing mice were generated to further analyze A20 function. Compared with wild-type (WT) mice, A20-/- and A20-overexpressing mice showed significant increases and decreases, respectively, in hematoma volume, neurologic deficit score, mortality, neuronal degeneration, and proinflammatory factors. Moreover, WT-A20-/- parabiosis was established to explore the role of A20 in peripheral blood in ICH injury. ICH-induced damage, including brain edema, neurologic deficit score, proinflammatory factors, and neuronal apoptosis, was reduced in A20-/- parabionts compared with A20-/- mice. Finally, the interactions between TRAF6 and Ubc13 and UbcH5c were increased in A20-/- mice compared with WT mice; the opposite occurred in A20-overexpressing mice. Enhanced IκBα degradation and NF-κB activation were observed in A20-/- mice, but the results were reversed in A20-overexpressing mice. These results suggested that A20 is involved in regulating ICH-induced inflammatory injury in both the central and peripheral system and that A20 reduces ICH-induced inflammation by regulating TRAF6 polyubiquitination. Targeting A20 may thus be a promising therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Zhaoyou Meng
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Ting Zhao
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Kai Zhou
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qi Zhong
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yanchun Wang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xiaoyi Xiong
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Faxiang Wang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yuanrui Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Wenyao Zhu
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Juan Liu
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Maofan Liao
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Lirong Wu
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Chunmei Duan
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jie Li
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qiuwen Gong
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Liang Liu
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Ao Xiong
- Basic Medical College, Zhengzhou University, Zhengzhou 450000, China; and
| | - Meihua Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China;
| |
Collapse
|
12
|
Zhan J, Qin W, Zhang Y, Jiang J, Ma H, Li Q, Luo Y. Upregulation of neuronal zinc finger protein A20 expression is required for electroacupuncture to attenuate the cerebral inflammatory injury mediated by the nuclear factor-kB signaling pathway in cerebral ischemia/reperfusion rats. J Neuroinflammation 2016; 13:258. [PMID: 27716383 PMCID: PMC5048665 DOI: 10.1186/s12974-016-0731-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/23/2016] [Indexed: 02/16/2023] Open
Abstract
Background Zinc finger protein A20 (tumor necrosis factor alpha-induced protein 3) functions as a potent negative feedback inhibitor of the nuclear factor-kB (NF-kB) signaling. It exerts these effects by interrupting the activation of IkB kinase beta (IKKβ), the most critical kinase in upstream of NF-kB, and thereby controlling inflammatory homeostasis. We reported previously that electroacupuncture (EA) could effectively suppress IKKβ activation. However, the mechanism underlying these effects was unclear. Therefore, the current study further explored the effects of EA on A20 expression in rat brain and investigated the possible mechanism of A20 in anti-neuroinflammation mediated by EA using transient middle cerebral artery occlusion (MCAO) rats. Methods Rats were treated with EA at the “Baihui (GV20),” “Hegu (L14),” and “Taichong (Liv3)” acupoints once a day starting 2 h after focal cerebral ischemia. The spatiotemporal expression of A20, neurobehavioral scores, infarction volumes, cytokine levels, glial cell activation, and the NF-kB signaling were assessed at the indicated time points. A20 gene interference (overexpression and silencing) was used to investigate the role of A20 in mediating the neuroprotective effects of EA and in regulating the interaction between neuronal and glial cells by suppressing neuronal NF-kB signaling during cerebral ischemia/reperfusion-induced neuroinflammation. Results EA treatment increased A20 expression with an earlier peak and longer lasting upregulation. The upregulated A20 protein was predominantly located in neurons in the cortical zone of the ischemia/reperfusion. Furthermore, neuronal A20 cell counts were positively correlated with neurobehavioral scores but negatively correlated with infarct volume, the accumulation of pro-inflammatory cytokines, and glial cell activation. Moreover, the effects of EA on improving the neurological outcome and suppressing neuroinflammation in the brain were reversed by A20 silencing. Finally, A20 silencing also suppressed the ability of EA to inhibit neuronal NF-kB signaling pathway. Conclusions Ischemia/reperfusion cortical neurons in MCAO rats are the main cell types that express A20, and there is a correlation between A20 expression and the suppression of neuroinflammation and the resulting neuroprotective effects. EA upregulated neuronal A20 expression, which played an essential role in the anti-inflammatory effects of EA by suppressing the neuronal NF-kB signaling pathway in the brains of MCAO rats.
Collapse
Affiliation(s)
- Jian Zhan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurology, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.,Department of Neurology, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou Province, 563000, China
| | - Wenyi Qin
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ying Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurology, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jing Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurology, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Hongmei Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurology, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qiongli Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurology, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurology, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
13
|
Noyes NC, Hampton B, Migliorini M, Strickland DK. Regulation of Itch and Nedd4 E3 Ligase Activity and Degradation by LRAD3. Biochemistry 2016; 55:1204-13. [DOI: 10.1021/acs.biochem.5b01218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Nathaniel C. Noyes
- Center for Vascular and Inflammatory Diseases and the ‡Departments
of Surgery and §Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Brian Hampton
- Center for Vascular and Inflammatory Diseases and the ‡Departments
of Surgery and §Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Mary Migliorini
- Center for Vascular and Inflammatory Diseases and the ‡Departments
of Surgery and §Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory Diseases and the ‡Departments
of Surgery and §Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
14
|
Lu Y, Jiang BC, Cao DL, Zhang ZJ, Zhang X, Ji RR, Gao YJ. TRAF6 upregulation in spinal astrocytes maintains neuropathic pain by integrating TNF-α and IL-1β signaling. Pain 2014; 155:2618-2629. [PMID: 25267210 DOI: 10.1016/j.pain.2014.09.027] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/11/2014] [Accepted: 09/22/2014] [Indexed: 12/30/2022]
Abstract
The proinflammatory cytokines tumor necrosis factor (TNF) α and interleukin (IL) 1β have been strongly implicated in the pathogenesis of neuropathic pain, but the intracellular signaling of these cytokines in glial cells is not fully understood. TNF receptor-associated factor 6 (TRAF6) plays a key role in signal transduction in the TNF receptor superfamily and the IL-1 receptor superfamily. In this study, we investigated the role of TRAF6 in neuropathic pain in mice after spinal nerve ligation (SNL). SNL induced persistent TRAF6 upregulation in the spinal cord. Interestingly, TRAF6 was mainly colocalized with the astrocytic marker glial fibrillary acidic protein on SNL day 10 and partially expressed in microglia on SNL day 3. In cultured astrocytes, TRAF6 was upregulated after exposure to TNF-α or IL-1β. TNF-α or IL-1β also increased CCL2 expression, which was suppressed by both siRNA and shRNA targeting TRAF6. TRAF6 siRNA treatment also inhibited the phosphorylation of c-Jun N-terminal kinase (JNK) in astrocytes induced by TNF-α or IL-1β. JNK inhibitor D-NKI-1 dose-dependently decreased IL-1β-induced CCL2 expression. Moreover, spinal injection of TRAF6 siRNA decreased intrathecal TNF-α- or IL-1β-induced allodynia and hyperalgesia. Spinal TRAF6 inhibition via TRAF6 siRNA, shRNA lentivirus, or antisense oligodeoxynucleotides partially reversed SNL-induced neuropathic pain and spinal CCL2 expression. Finally, intrathecal injection of TNF-α-activated astrocytes induced mechanical allodynia, which was attenuated by pretreatment of astrocytes with TRAF6 siRNA. Taken together, the results suggest that TRAF6, upregulated in spinal cord astrocytes in the late phase after nerve injury, maintains neuropathic pain by integrating TNF-α and IL-1β signaling and activating the JNK/CCL2 pathway in astrocytes.
Collapse
Affiliation(s)
- Ying Lu
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu, China Department of Nutrition, School of Public Health, Nantong University, Nantong, Jiangsu, China Departments of Anesthesiology and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Guedes RP, Csizmadia E, Moll HP, Ma A, Ferran C, da Silva CG. A20 deficiency causes spontaneous neuroinflammation in mice. J Neuroinflammation 2014; 11:122. [PMID: 25026958 PMCID: PMC4128606 DOI: 10.1186/1742-2094-11-122] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/25/2014] [Indexed: 11/10/2022] Open
Abstract
Background A20 (TNFAIP3) is a pleiotropic NFκB-dependent gene that terminates NFκB activation in response to inflammatory stimuli. The potent anti-inflammatory properties of A20 are well characterized in several organs. However, little is known about its role in the brain. In this study, we investigated the brain phenotype of A20 heterozygous (HT) and knockout (KO) mice. Methods The inflammatory status of A20 wild type (WT), HT and KO brain was determined by immunostaining, quantitative PCR, and Western blot analysis. Cytokines secretion was evaluated by ELISA. Quantitative results were statistically analyzed by ANOVA followed by a post-hoc test. Results Total loss of A20 caused remarkable reactive microgliosis and astrogliosis, as determined by F4/80 and GFAP immunostaining. Glial activation correlated with significantly higher mRNA and protein levels of the pro-inflammatory molecules TNF, IL-6, and MCP-1 in cerebral cortex and hippocampus of A20 KO, as compared to WT. Basal and TNF/LPS-induced cytokine production was significantly higher in A20 deficient mouse primary astrocytes and in a mouse microglia cell line. Brain endothelium of A20 KO mice demonstrated baseline activation as shown by increased vascular immunostaining for ICAM-1 and VCAM-1, and mRNA levels of E-selectin. In addition, total loss of A20 increased basal brain oxidative/nitrosative stress, as indicated by higher iNOS and NADPH oxidase subunit gp91phox levels, correlating with increased protein nitration, gauged by nitrotyrosine immunostaining. Notably, we also observed lower neurofilaments immunostaining in A20 KO brains, suggesting higher susceptibility to axonal injury. Importantly, A20 HT brains showed an intermediate phenotype, exhibiting considerable, albeit not statistically significant, increase in markers of basal inflammation when compared to WT. Conclusions This is the first characterization of spontaneous neuroinflammation caused by total or partial loss of A20, suggesting its key role in maintenance of nervous tissue homeostasis, particularly control of inflammation. Remarkably, mere partial loss of A20 was sufficient to cause chronic, spontaneous low-grade cerebral inflammation, which could sensitize these animals to neurodegenerative diseases. These findings carry strong clinical relevance in that they question implication of identified A20 SNPs that lower A20 expression/function (phenocopying A20 HT mice) in the pathophysiology of neuroinflammatory diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Cleide Gonçalves da Silva
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
AAV2 production with optimized N/P ratio and PEI-mediated transfection results in low toxicity and high titer for in vitro and in vivo applications. J Virol Methods 2013; 193:270-7. [PMID: 23791963 DOI: 10.1016/j.jviromet.2013.06.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 05/22/2013] [Accepted: 06/03/2013] [Indexed: 01/24/2023]
Abstract
The adeno-associated virus (AAV) is one of the most useful viral vectors for gene delivery for both in vivo and in vitro applications. A variety of methods have been established to produce and characterize recombinant AAV (rAAV) vectors; however most methods are quite cumbersome and obtaining consistently high titer can be problematic. This protocol describes a triple-plasmid co-transfection approach with 25 kDa linear polyethylenimine (PEI) in 293 T cells for the production of AAV serotype 2. Seventy-two hours post-transfection, supernatant and cells were harvested and purified by a discontinuous iodixanol density gradient ultracentrifugation, then dialyzed and concentrated with an Amicon 15 100,000 MWCO concentration unit. To optimize the protocol for AAV2 production using PEI, various N/P ratios and DNA amounts were compared. We found that an N/P ratio of 40 coupled with 1.05 μg DNA per ml of media (21 μg DNA/15 cm dish) was found to produce the highest yields for viral replication and assembly measured multiple ways. The infectious units, as determined by serial dilution, were between 1×10(8) and 2×10(9) IU/ml. The genomic titer of the viral stock was determined by qPCR and ranged from 2×10(12) to 6×10(13) VG/ml. These viral vectors showed high expression both in vivo within the brain and in vitro in cell culture. The use of linear 25 kDa polyethylenamine PEI as a transfection reagent is a simple, more cost-effective, and stable means of high-throughput production of high-titer AAV serotype 2. The use of PEI also eliminates the need to change cell medium post-transfection, lowering cost and workload, while producing high-titer, efficacious AAV2 vectors for routine gene transfer.
Collapse
|
17
|
Pranski E, Van Sanford CD, Dalal N, Orr AL, Karmali D, Cooper DS, Gearing M, Lah JJ, Levey AI, Betarbet R. NF-κB activity is inversely correlated to RNF11 expression in Parkinson's disease. Neurosci Lett 2013; 547:16-20. [PMID: 23669642 DOI: 10.1016/j.neulet.2013.04.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/18/2013] [Accepted: 04/26/2013] [Indexed: 12/21/2022]
Abstract
RING finger protein 11 (RNF11), a negative regulator of NF-κB signaling pathway, colocalizes with α-synuclein and is sequestered in Lewy bodies in Parkinson's disease (PD). Since persistent NF-κB activation is reported in PD, in this report we investigated if RNF11 expression level is correlated to activated NF-κB in PD. We examined RNF11 expression levels in correlation to phospho-p65, a marker for activated NF-κB, in control and PD brain tissue from cerebral cortex. In addition we performed double immunofluorescence labeling experiments to confirm this correlation. Our investigations demonstrated that the neuronal RNF11 expression was down-regulated in PD and was usually associated with increased expression of phospho-p65. Double labeling confirmed that loss of neuronal RNF11 was linked to increased phospho-p65 expression, suggesting that persistent presence of NF-κB activation could be due to decreased levels of its negative regulator. Our data exemplifies the relevance of RNF11 and persistent NF-κB activation in PD.
Collapse
Affiliation(s)
- Elaine Pranski
- Department of Neurology, Emory University, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pranski EL, Dalal NV, Sanford CV, Herskowitz JH, Gearing M, Lazo C, Miller GW, Lah JJ, Levey AI, Betarbet RS. RING finger protein 11 (RNF11) modulates susceptibility to 6-OHDA-induced nigral degeneration and behavioral deficits through NF-κB signaling in dopaminergic cells. Neurobiol Dis 2013; 54:264-79. [PMID: 23318928 DOI: 10.1016/j.nbd.2012.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/05/2012] [Accepted: 12/31/2012] [Indexed: 12/21/2022] Open
Abstract
Chronic activation of the NF-κB pathway is associated with progressive neurodegeneration in Parkinson's disease (PD). Given the role of neuronal RING finger protein 11 (RNF11) as a negative regulator of the NF-κB pathway, in this report we investigated the function of RNF11 in dopaminergic cells in PD-associated neurodegeneration. We found that RNF11 knockdown in an in vitro model of PD mediated protection against 6-OHDA-induced toxicity. In converse, over-expression of RNF11 enhanced 6-OHDA-induced dopaminergic cell death. Furthermore, by directly manipulating NF-κB signaling, we showed that the observed RNF11-enhanced 6-OHDA toxicity is mediated through inhibition of NF-κB-dependent transcription of TNF-α, antioxidants GSS and SOD1, and anti-apoptotic factor BCL2. Experiments in an in vivo 6-OHDA rat model of PD recapitulated the in vitro results. In vivo targeted RNF11 over-expression in nigral neurons enhanced 6-OHDA toxicity, as evident by increased amphetamine-induced rotations and loss of nigral dopaminergic neurons as compared to controls. This enhanced toxicity was coupled with the downregulation of NF-κB transcribed GSS, SOD1, BCL2, and neurotrophic factor BDNF mRNA levels, in addition to decreased TNF-α mRNA levels in ventral mesenchephalon samples. In converse, knockdown of RNF11 was associated with protective phenotypes and increased expression of above-mentioned NF-κB transcribed genes. Collectively, our in vitro and in vivo data suggest that RNF11-mediated inhibition of NF-κB in dopaminergic cells exaggerates 6-OHDA toxicity by inhibiting neuroprotective responses while loss of RNF11 inhibition on NF-κB activity promotes neuronal survival. The decreased expression of RNF11 in surviving cortical and nigral tissue detected in PD patients, thus implies a compensatory response in the diseased brain to PD-associated insults. In summary, our findings demonstrate that RNF11 in neurons can modulate susceptibility to 6-OHDA toxicity through NF-κB mediated responses. This neuron-specific role of RNF11 in the brain has important implications for targeted therapeutics aimed at preventing neurodegeneration.
Collapse
Affiliation(s)
- Elaine L Pranski
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dalal NV, Pranski EL, Tansey MG, Lah JJ, Levey AI, Betarbet RS. RNF11 modulates microglia activation through NF-κB signalling cascade. Neurosci Lett 2012; 528:174-9. [PMID: 22975135 PMCID: PMC3478679 DOI: 10.1016/j.neulet.2012.08.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/30/2012] [Accepted: 08/20/2012] [Indexed: 12/23/2022]
Abstract
Microglia are resident macrophages in the central nervous system (CNS) that play a major role in neuroinflammation and pathogenesis of several neurodegenerative diseases. Upon activation, microglia releases a multitude of pro-inflammatory factors that initiate and sustain an inflammatory response by activating various signalling pathways, including the NF-κB pathway in a feed forward cycle. In microglial cells, activation of NF-κB signalling is normally transient, while sustained NF-κB activation is associated with persistent neuroinflammation. RING finger protein 11 (RNF11), in association with A20 ubiquitin-editing complex, is one of the key negative regulators of NF-κB signalling pathway in neurons. In this study, we have demonstrated and confirmed this role of RNF11 in microglia, the immune cells of the CNS. Coimmunoprecipitation experiments showed that RNF11 and A20 interact in a microglial cell line, suggesting the presence of A20 ubiquitin-editing protein complex in microglial cells. Next, using targeted short hairpin RNA (shRNA) knockdown and over-expression of RNF11, we established that RNF11 expression levels are inversely related to NF-κB activation, as evident from altered expression of NF-κB transcribed genes. Moreover our studies, illustrated that RNF11 confers protection against LPS-induced cell cytotoxicity. Thus our investigations clearly demonstrated that microglial RNF11 is a negative regulator of NF-κB signalling pathway and could be a strong potential target for modulating inflammatory responses in neurodegenerative diseases.
Collapse
Affiliation(s)
- Nirjari V. Dalal
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Elaine L. Pranski
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Malu G. Tansey
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - James J. Lah
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Allan I. Levey
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Ranjita S. Betarbet
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|