1
|
Kastner-Blasczyk AR, Hester SW, Reasons SE, Scofield MD, Woodward JJ. Effect of an astrocyte calcium exporter on orbitofrontal cortex neuron excitability, astrocyte-synaptic interaction, and alcohol consumption. Neuropharmacology 2025; 269:110365. [PMID: 39952350 PMCID: PMC11995387 DOI: 10.1016/j.neuropharm.2025.110365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Previous electrophysiology studies show that acute ethanol inhibits firing of orbitofrontal (OFC) cortex neurons while chronic intermittent ethanol (CIE) exposure increases firing accompanied by enhanced ethanol drinking. The acute ethanol inhibition of OFC neuronal firing is mediated by inhibitory glycine receptors and is reduced by expressing a plasma membrane calcium ATPase (PMCA) in OFC astrocytes. In this study, we tested the effects of astrocyte PMCA on CIE-induced increases in excitability and alcohol consumption and the physical interaction between OFC astrocytes and neurons. CIE increased neuronal firing in male mice as compared to Air controls while PMCA itself increased firing in Air control male mice. In contrast, PMCA reduced CIE-mediated hyperexcitability of firing in females. CIE did not affect OFC astrocyte size in control or PMCA male mice but increased astrocyte size in female mice. Similar to spiking, PMCA and CIE both increased the number of GluA1 containing synapses within the vicinity of virally labeled astrocytes in male mice but had differential effects in females. The astrocytic interaction with GluA1 labeled synapses was not affected by CIE treatment in male or female control mice, but there was a treatment-dependent effect of PMCA in male mice. CIE increased alcohol consumption in control but not PMCA male mice and had no effect on drinking in female mice. Lastly, OFC astrocyte PMCA expression had no effect on behavioral measures of locomotion, anxiety, spontaneous alternation, or spatial memory. These findings reveal important sex-dependent differences in the physiological, structural and behavioral actions of OFC astrocytes.
Collapse
Affiliation(s)
- A R Kastner-Blasczyk
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - S W Hester
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - S E Reasons
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - M D Scofield
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - J J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
2
|
Komlao P, Kraiwattanapirom N, Promyo K, Hein ZM, Chetsawang B. Melatonin enhances the restoration of neurological impairments and cognitive deficits during drug withdrawal in methamphetamine-induced toxicity and endoplasmic reticulum stress in rats. Neurotoxicology 2023; 99:305-312. [PMID: 37979660 DOI: 10.1016/j.neuro.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Methamphetamine (METH) is a psychostimulant with a very high addiction rate. Prolonged use of METH has been observed as one of the root causes of neurotoxicity. Melatonin (Mel) has been found to have a significant role in METH-induced neurotoxicity. This study aimed to investigate the restorative effect of Mel on behavioral flexibility in METH-induced cognitive deficits. Male Sprague-Dawley rats were randomly assigned to be intraperitoneally injected with saline (control) or Meth at 5 mg/kg for 7 consecutive days. Then, METH injection was withdrawn and rats in each group were subcutaneously injected with saline or Mel at 10 mg/kg for 14 consecutive days. The stereotypic behavioral test and attentional set-shifting task (ASST) were used to evaluate neurological functions and cognitive flexibility, respectively. Rats developed abnormal features of stereotyped behaviors and deficits in cognitive flexibility after 7 days of METH administration. However, post-treatment with Mel for 14 days after METH withdrawal dramatically ameliorated the neurological and cognitive deficits in METH-treated rats. Blood biomarkers indicated METH-induced systemic low-grade inflammation. Moreover, METH-induced endoplasmic reticulum (ER) stress in the prefrontal cortex was diminished by melatonin supplementation. These findings might reveal the therapeutic potential of Mel in METH toxicity-induced neurological and cognitive deficits.
Collapse
Affiliation(s)
- Pongphat Komlao
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, Netherlands
| | - Natcharee Kraiwattanapirom
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand
| | - Kitipong Promyo
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Zaw Myo Hein
- Basic Medical Sciences Department, College of Medicine and Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand.
| |
Collapse
|
3
|
Levin OS, Zakharov VV, Khacheva KK, Vladykin AL, Globenko AA. [Pathogenetic therapy of cognitive impairment: results of a multicenter placebo-controlled clinical trial of the efficacy and safety of Miladean]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:60-68. [PMID: 37966441 DOI: 10.17116/jnevro202312310160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
OBJECTIVE Evaluation of the efficacy and safety of the use of the drug Miladean in the treatment of patients with cognitive disorders (CDs) of vascular genesis. MATERIAL AND METHODS In during the double-blind multicenter prospective randomized placebo-controlled phase III clinical trial, 300 patients with CDs and chronic cerebral ischemia were randomized into 3 groups: group 1 (n=100) received Miladean (daily dose: memantine 10 mg + melatonin 6 mg), group 2 (n=101) - memantine (10 mg/day), group 3 - placebo (n=99) for 8 weeks. The dynamics of the overall score (the primary criterion of effectiveness) and the proportion of patients with improvement on the Alzheimer's Disease Assessment Scale-Cognitive (ADAS-Cog), the dynamics of visual-spatial orientation disorders (Benton test), sleep quality (Pittsburgh Sleep Quality Index scale) and the safety of therapy were evaluated. RESULTS Miladean demonstrated efficacy in the treatment of CDs: a statistically and clinically significant decrease in the overall score on the ADAS-Sod scale was shown (by 6.1 versus 4.7 and 3.5 points in the 2nd (p=0.009) and 3rd (p<0.05) groups) and an increase in the proportion of patients (96.9%) with clinically and statistically a significant improvement compared to the 2nd and 3rd groups (p=0.019 and p<0.001 respectively). Miladean significantly improved the performance in the Benton test (1.20±1.66 vs. 0.64±1.69 points in group 3, p=0.026) and sleep quality (84.7% of patients with CDs), compared to placebo (63.9%) and memantine (64.3%) (p=0.002 in both cases). Miladean was well tolerated, there were no cases of interaction with basic therapy drugs. CONCLUSION The combination of many different pathogenetic effects of Miladean suggests that it has the ability to slow down the rate of progression of CDs and stabilize the condition of patients. The unique combination of active substances in Miladean has been proven to be effective and safe in the treatment of patients with CDs.
Collapse
Affiliation(s)
- O S Levin
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - V V Zakharov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | | |
Collapse
|
4
|
Kraiwattanapirom N, Komlao P, Harnpramukkul A, Promyo K, Ngampramuan S, Chetsawang B. The neuroprotective role of melatonin against methamphetamine toxicity-induced neurotransmission dysregulation and cognitive deficits in rats. Food Chem Toxicol 2021; 157:112610. [PMID: 34653556 DOI: 10.1016/j.fct.2021.112610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
Methamphetamine (MA) is a psychostimulant and addictive substance. Long-term uses and toxic high doses of MA can induce neurotoxicity. The present study aimed to investigate the protective role of melatonin against MA toxicity-induced dysregulation of the neurotransmission related to cognitive function in rats. The adult male Sprague Dawley rats were intraperitoneally injected with 5 mg/kg MA for 7 consecutive days with or without subcutaneously injected with 10 mg/kg melatonin before MA injection. Some rats were injected with saline solution (control) or 10 mg/kg melatonin. MA administration induced reduction in total weight gain, neurotoxic features of stereotyped behaviors, deficits in cognitive flexibility, and significantly increased lipid peroxidation in the brain which diminished in melatonin pretreatment. The neurotoxic effect of MA on glutamate, dopamine and GABA transmitters was represented by the alteration of the GluR1, DARPP-32 and parvalbumin (PV) levels, respectively. A significant decrease in the GluR1 was observed in the prefrontal cortex of MA administration in rats. MA administration significantly increased the DARPP-32 but decreased PV in the striatum. Pretreatment of melatonin can abolish the neurotoxic effect of MA on neurotransmission dysregulation. These findings might reveal the antioxidative role of melatonin to restore neurotransmission dysregulation related to cognitive deficits in MA-induced neurotoxicity.
Collapse
Affiliation(s)
- Natcharee Kraiwattanapirom
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand
| | - Pongphat Komlao
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, the Netherlands
| | | | - Kitipong Promyo
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sukonthar Ngampramuan
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand.
| |
Collapse
|
5
|
Hein ZM, Kraiwattanapirom N, Mukda S, Chetsawang B. The induction of Neuron-Glial2 (NG2) expressing cells in methamphetamine toxicity-induced neuroinflammation in rat brain are averted by melatonin. J Neuroimmunol 2020; 344:577232. [PMID: 32311585 DOI: 10.1016/j.jneuroim.2020.577232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 01/26/2023]
Abstract
Neuron-Glial2 (NG2) expressing cells are described as the oligodendrocyte precursor cells in the brain. This study aimed to investigate the possible involvement of NG2 cells under the methamphetamine (METH)-induced neurotoxicity and neuroprotective capacity of melatonin. The results showed that the levels of NG2 in rat brain gradually increase from postnatal day 0 to postnatal day 8 and then the lower levels of NG2 are shown in adults. In adult rats, the levels of NG2 and COX-2 in the brain were significantly increased in lipopolysaccharide treatment. Pretreatment of 10 mg/kg melatonin prior to treating with METH was able to reduce an increase in the levels of NG2 and activation in astrocyte and microglia. These findings would extend the contribution of NG2 expressing cells in the adult brain during pathological conditions such as neuroinflammation.
Collapse
Affiliation(s)
- Zaw Myo Hein
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Natcharee Kraiwattanapirom
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand.
| |
Collapse
|
6
|
Khazaie H, Ahmadi HR, Kiani A, Ghadami MR. Circadian melatonin profile in opium and amphetamine dependent patients: A preliminary study. Neurobiol Sleep Circadian Rhythms 2019; 7:100046. [PMID: 31463419 PMCID: PMC6710474 DOI: 10.1016/j.nbscr.2019.100046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 06/21/2019] [Accepted: 07/17/2019] [Indexed: 12/03/2022] Open
Abstract
Aim The aim of this study was to investigate the relationship between opium and amphetamine dependency with the serum melatonin levels in the presence of circadian rhythm sleep disorders (CRSD). Participants Forty four male amphetamine-dependent and opium-dependent patients with CRSD and with more than one year substance dependency were enrolled in this study. Control group consisted of twelve healthy male subjects. Design The diagnoses of sleep disorders were established by a psychiatrist and were made on the basis of the criteria of ICSD-II using the patients’ sleep logs. Blood samples were drawn every 4 h through an intravenous catheter. Serum melatonin levels were assayed using an enzyme-linked immunosorbent assay (ELISA) kit. Repeated Measures Analysis of variance (ANOVA) was used to assess differences between the melatonin levels at six separate times. Finding The serum melatonin levels of the control subjects were significantly higher than both opium-dependent and amphetamine-dependent patients at 24:00, 4:00 and 8:00. The serum melatonin level of the opium-dependent patients were significantly lower than the amphetamine-dependent patients at 24:00 (26.9 ± 11.4 vs. 41 ± 19.4, respectively; p = 0.006) and were significantly higher than the amphetamine-dependent patients at 16:00 (12.7 ± 5.1 vs. 8.9 ± 4.1, respectively; p = 0.011). Conclusion This is an evidence of negative effects of substance dependence on circadian cycle of melatonin secretion among opium and amphetamine dependent patients. Sleep problems in substance abuse patients may be caused by dysfunction of circadian rhythm. High prevalence of circadian rhythm sleep disorders (CRSD) in substance dependent patients, possibly related to abnormal melatonin cycle. Circadian rhythm-based interventions could play an important role in the prevention and treatment of substance use disorders.
Collapse
Affiliation(s)
- Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid Reza Ahmadi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Department of Pharmacology and Toxicology, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Rasoul Ghadami
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Corresponding author. Sleep Disorders Research Center, Farabi Hospital, Kermanshah University of Medical Sciences, Kermanshah, PO Box: 6719851151, Iran.
| |
Collapse
|
7
|
Kim R, Healey KL, Sepulveda-Orengo MT, Reissner KJ. Astroglial correlates of neuropsychiatric disease: From astrocytopathy to astrogliosis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:126-146. [PMID: 28989099 PMCID: PMC5889368 DOI: 10.1016/j.pnpbp.2017.10.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/24/2017] [Accepted: 10/04/2017] [Indexed: 01/22/2023]
Abstract
Complex roles for astrocytes in health and disease continue to emerge, highlighting this class of cells as integral to function and dysfunction of the nervous system. In particular, escalating evidence strongly implicates a range of changes in astrocyte structure and function associated with neuropsychiatric diseases including major depressive disorder, schizophrenia, and addiction. These changes can range from astrocytopathy, degeneration, and loss of function, to astrogliosis and hypertrophy, and can be either adaptive or maladaptive. Evidence from the literature indicates a myriad of changes observed in astrocytes from both human postmortem studies as well as preclinical animal models, including changes in expression of glial fibrillary protein, as well as changes in astrocyte morphology and astrocyte-mediated regulation of synaptic function. In this review, we seek to provide a comprehensive assessment of these findings and consequently evidence for common themes regarding adaptations in astrocytes associated with neuropsychiatric disease. While results are mixed across conditions and models, general findings indicate decreased astrocyte cellular features and gene expression in depression, chronic stress and anxiety, but increased inflammation in schizophrenia. Changes also vary widely in response to different drugs of abuse, with evidence reflective of features of astrocytopathy to astrogliosis, varying across drug classes, route of administration and length of withdrawal.
Collapse
Affiliation(s)
- Ronald Kim
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kati L Healey
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Marian T Sepulveda-Orengo
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States..
| |
Collapse
|
8
|
Leeboonngam T, Pramong R, Sae-Ung K, Govitrapong P, Phansuwan-Pujito P. Neuroprotective effects of melatonin on amphetamine-induced dopaminergic fiber degeneration in the hippocampus of postnatal rats. J Pineal Res 2018; 64. [PMID: 29149481 DOI: 10.1111/jpi.12456] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022]
Abstract
Chronic amphetamine (AMPH) abuse leads to damage of the hippocampus, the brain area associated with learning and memory process. Previous results have shown that AMPH-induced dopamine neurotransmitter release, reactive oxygen species formation, and degenerative protein aggregation lead to neuronal death. Melatonin, a powerful antioxidant, plays a role as a neuroprotective agent. The objective of this study was to investigate whether the protective effect of melatonin on AMPH-induced hippocampal damage in the postnatal rat acts through the dopaminergic pathway. Four-day-old postnatal rats were subcutaneously injected with 5-10 mg/kg AMPH and pretreated with 10 mg/kg melatonin prior to AMPH exposure for seven days. The results showed that melatonin decreased the AMPH-induced hippocampal neuronal degeneration in the dentate gyrus, CA1, and CA3. Melatonin attenuated the reduction in the expression of hippocampal synaptophysin, PSD-95, α-synuclein, and N-methyl-D-aspartate (NMDA) receptor protein and mRNA caused by AMPH. Melatonin attenuated the AMPH-induced reduction in dopamine transporter (DAT) protein expression in the hippocampus and the reduction in mRNA expression in the ventral tegmental area (VTA). Immunofluorescence demonstrated that melatonin not only prevented the AMPH-induced loss of DAT and NMDA receptor but also prevented AMPH-induced α-synuclein overexpression in the dentate gyrus, CA1, and CA3. Melatonin decreased the AMPH-induced reduction in the protein and mRNA of the NMDA receptor downstream signaling molecule, calcium/calmodulin-dependent protein kinase II (CaMKII), and the melatonin receptors (MT1 and MT2). This study showed that melatonin prevented AMPH-induced toxicity in the hippocampus of postnatal rats possibly via its antioxidative effect and mitochondrial protection.
Collapse
Affiliation(s)
- Tanawan Leeboonngam
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Ratchadaporn Pramong
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Kwankanit Sae-Ung
- Innovative Learning Center, Srinakharinwirot University, Bangkok, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakorn Pathom, Thailand
| | | |
Collapse
|
9
|
Occhieppo VB, Marchese NA, Rodríguez ID, Basmadjian OM, Baiardi G, Bregonzio C. Neurovascular unit alteration in somatosensory cortex and enhancement of thermal nociception induced by amphetamine involves central AT1receptor activation. Eur J Neurosci 2017; 45:1586-1593. [DOI: 10.1111/ejn.13594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Victoria Belén Occhieppo
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| | - Natalia Andrea Marchese
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| | - Iara Diamela Rodríguez
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| | - Osvaldo Martin Basmadjian
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología (IIBYT-CONICET); Universidad Nacional de Córdoba Facultad de Ciencias Químicas; Universidad Católica de Córdoba; Córdoba Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| |
Collapse
|
10
|
Suwanjang W, Abramov AY, Charngkaew K, Govitrapong P, Chetsawang B. Melatonin prevents cytosolic calcium overload, mitochondrial damage and cell death due to toxically high doses of dexamethasone-induced oxidative stress in human neuroblastoma SH-SY5Y cells. Neurochem Int 2016; 97:34-41. [PMID: 27155536 DOI: 10.1016/j.neuint.2016.05.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/31/2022]
Abstract
Stressor exposure activates the hypothalamic-pituitary-adrenal (HPA) axis and causes elevations in the levels of glucocorticoids (GC) from the adrenal glands. Increasing evidence has demonstrated that prolonged exposure to high GC levels can lead to oxidative stress, calcium deregulation, mitochondrial dysfunction and apoptosis in a number of cell types. However, melatonin, via its antioxidant activity, exhibits a neuroprotective effect against oxidative stress-induced cell death. Therefore, in the present study, we explored the protective effect of melatonin in GC-induced toxicity in human neuroblastoma SH-SY5Y cells. Cellular treatment with the toxically high doses of the synthetic GC receptor agonist, dexamethasone (DEX) elicited marked decreases in the levels of glutathione and increases in ROS production, lipid peroxidation and cell death. DEX toxicity also induced increases in the levels of cytosolic calcium and mitochondrial fusion proteins (Mfn1 and Opa1) but decreases in the levels of mitochondrial fission proteins (Fis1 and Drp1). Mitochondrial damage was observed in large proportions of the DEX-treated cells. Pretreatment of the cells with melatonin substantially prevented the DEX-induced toxicity. These results suggest that melatonin might exert protective effects against oxidative stress, cytosolic calcium overload and mitochondrial damage in DEX-induced neurotoxicity.
Collapse
Affiliation(s)
- Wilasinee Suwanjang
- Center for Innovation Development and Technology Transfer, Faculty of Medical Technology Mahidol University, Nakhonpathom, 73170, Thailand; Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, 73170, Thailand
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK
| | - Komgrid Charngkaew
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Bangkok, 10700, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, 73170, Thailand; Center for Neuroscience and Department for Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, 73170, Thailand.
| |
Collapse
|
11
|
Singhakumar R, Boontem P, Ekthuwapranee K, Sotthibundhu A, Mukda S, Chetsawang B, Govitrapong P. Melatonin attenuates methamphetamine-induced inhibition of neurogenesis in the adult mouse hippocampus: An in vivo study. Neurosci Lett 2015; 606:209-14. [PMID: 26366944 DOI: 10.1016/j.neulet.2015.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 12/26/2022]
Abstract
Methamphetamine (METH), a highly addictive psychostimulant drug, is known to exert neurotoxic effects to the dopaminergic neural system. Long-term METH administration impairs brain functions such as cognition, learning and memory. Newly born neurons in the dentate gyrus of the hippocampus play an important role in spatial learning and memory. Previous in vitro studies have shown that METH inhibits cell proliferation and neurogenesis in the hippocampus. On the other hand, melatonin, a major indole secreted by the pineal gland, enhances neurogenesis in both the subventricular zone and dentate gyrus. In this study, adult C57BL/6 mice were used to study the beneficial effects of melatonin on METH-induced alterations in neurogenesis and post-synaptic proteins related to learning and memory functions in the hippocampus. The results showed that METH caused a decrease in neuronal phenotypes as determined by the expressions of nestin, doublecortin (DCX) and beta-III tubulin while causing an increase in glial fibrillary acidic protein (GFAP) expression. Moreover, METH inhibited mitogen-activated protein kinase (MAPK) signaling activity and altered expression of the N-methyl-d-aspartate (NMDA) receptor subunits NR2A and NR2B as well as calcium/calmodulin-dependent protein kinase II (CaMKII). These effects could be attenuated by melatonin pretreatment. In conclusion, melatonin prevented the METH-induced reduction in neurogenesis, increase in astrogliogenesis and alteration of NMDA receptor subunit expression. These findings may indicate the beneficial effects of melatonin on the impairment of learning and memory caused by METH.
Collapse
Affiliation(s)
- Rachen Singhakumar
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Parichart Boontem
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Kasima Ekthuwapranee
- Faculty of Health Sciences, Srinakharinwirot University, Ongkharak, Nakhonnayok 26120, Thailand
| | - Areechun Sotthibundhu
- Chulabhorn International College of Medicine, Thammasat University, Patumthani 12120, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand; Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
12
|
Melatonin Protects Methamphetamine-Induced Neuroinflammation Through NF-κB and Nrf2 Pathways in Glioma Cell Line. Neurochem Res 2015; 40:1448-56. [DOI: 10.1007/s11064-015-1613-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 03/04/2015] [Accepted: 05/12/2015] [Indexed: 11/26/2022]
|
13
|
Ekthuwapranee K, Sotthibundhu A, Govitrapong P. Melatonin attenuates methamphetamine-induced inhibition of proliferation of adult rat hippocampal progenitor cells in vitro. J Pineal Res 2015; 58:418-28. [PMID: 25752339 DOI: 10.1111/jpi.12225] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/03/2015] [Indexed: 01/09/2023]
Abstract
Methamphetamine (METH) is an extremely addictive stimulatory drug. A recent study suggested that METH may cause an impairment in the proliferation of hippocampal neural progenitor cells, but the underlying mechanism of this effect remains unknown. Blood and cerebrospinal levels of melatonin derive primarily from the pineal gland, and that performs many biological functions. Our previous study demonstrated that melatonin promotes the proliferation of progenitor cells originating from the hippocampus. In this study, hippocampal progenitor cells from adult Wistar rats were used to determine the effects of METH on cell proliferation and the mechanisms underlying these effects. We investigated the effects of melatonin on the METH-induced alteration in cell proliferation. The results demonstrated that 500 μm METH induced a decrease (63.0%) in neurosphere cell proliferation and altered the expression of neuronal phenotype markers in the neurosphere cell population. Moreover, METH induced an increase in the protein expression of the tumor suppressor p53 (124.4%) and the cell cycle inhibitor p21(CIP) (1) (p21) (128.1%), resulting in the accumulation of p21 in the nucleus. We also found that METH altered the expression of the N-methyl-d-aspartate (NMDA) receptor subunits NR2A (79.6%) and NR2B (126.7%) and Ca(2+) /calmodulin-dependent protein kinase II (CAMKII) (74.0%). In addition, pretreatment with 1 μm melatonin attenuated the effects induced by METH treatment. According to these results, we concluded that METH induces a reduction in cell proliferation by upregulating the cell cycle regulators p53/p21 and promoting the accumulation of p21 in the nucleus and that melatonin ameliorates these negative effects of METH.
Collapse
Affiliation(s)
- Kasima Ekthuwapranee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | | | | |
Collapse
|
14
|
Ahmed MAE, Ahmed HI, El-Morsy EM. Melatonin protects against diazinon-induced neurobehavioral changes in rats. Neurochem Res 2013; 38:2227-36. [PMID: 23979727 DOI: 10.1007/s11064-013-1134-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/08/2013] [Accepted: 08/14/2013] [Indexed: 12/29/2022]
Abstract
Diazinon is an organophosphorous pesticide with a prominent toxicity on many body organs. Multiple mechanisms contribute to diazinon-induced deleterious effects. Inhibition of acetyl-cholinesterase, cholinergic hyperstimulation, and formation of reactive oxygen species may play a role. On the other hand, melatonin is a pineal hormone with a well-known potent antioxidant activity and a remarkable modulatory effect on many behavioral processes. The present study revealed that oral diazinon administration (25 mg/kg) increased anxiety behavior in rats subjected to elevated plus maze and open-field tests possibly via the induction of changes in brain monoamines levels (dopamine, norepinephrine, and serotonin). Additionally, brain lipid peroxides measured as malondialdehyde (MDA) and tumor necrosis factor alpha (TNF-α) levels were elevated, while the activity of brain glutathione peroxidase enzyme was reduced by diazinon. Co-administration of oral melatonin (10 mg/kg) significantly attenuated the anxiogenic activity of diazinon, rebalanced brain monoamines levels, decreased brain MDA and TNF-α levels, and increased the activity of brain glutathione peroxidase enzyme.
Collapse
Affiliation(s)
- Maha A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 6th of October City, Egypt,
| | | | | |
Collapse
|
15
|
Sarlak G, Jenwitheesuk A, Chetsawang B, Govitrapong P. Effects of Melatonin on Nervous System Aging: Neurogenesis and Neurodegeneration. J Pharmacol Sci 2013; 123:9-24. [DOI: 10.1254/jphs.13r01sr] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|