1
|
Al-Marzooqi N, Al-Suhail H, AlRefai MO, Alhaj HA. Genomic factors associated with substance use disorder relapse: A critical review. Addict Behav Rep 2024; 20:100569. [PMID: 39553284 PMCID: PMC11568783 DOI: 10.1016/j.abrep.2024.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/01/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
Several genetic and epigenetic factors contribute to the elevated substance use disorder (SUD) relapse vulnerability, yet a comprehensive investigation into these factors is lacking. This review aims to delve into current literature to highlight key genomic factors associated with SUD relapse. Focusing on genetic predisposition and epigenetic modifications the review synthesized research findings of several genetic polymorphisms, histone modifications and DNA methylation patterns contributing to the initiation of SUD and the elevated relapse susceptibility. Notably, specific gene polymorphisms, such as Dopamine Receptor D2 gene (DRD2), Gamma-Aminobutyric Acid Receptor Alpha gene (GABRA2), Catechol-O-methyltransferase (COMT) gene, Dopamine Transporter (DAT1) gene and others were identified to be connected to various patterns of SUD relapse. Furthermore, SUD initiation and relapse has been shown to be influenced by epigenetics. Specifically, CpG hypermethylation has been associated with severe alcohol use disorder in the 5' untranslated region of the Bladder Cancer Associated Protein gene (BLCAP) and the upstream region of the Active BCR Related gene (ABR). Co-users of cannabis and tobacco showed notable variations in CpG site methylation, especially at the Aryl Hydrocarbon Receptor Repressor (AHRR), and factor II receptor-like 3 gene sites (F2RL3). In conclusion, there is good evidence of certain associations between genomic factors and relapse to SUD. However, further research is needed to ascertain causality effects of these factors and develop novel interventions for effective treatment and relapse prevention.
Collapse
Affiliation(s)
- Noora Al-Marzooqi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hanan Al-Suhail
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad O. AlRefai
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hamid A Alhaj
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
2
|
Franklin JP, Testen A, Mieczkowski PA, Hepperla A, Crynen G, Simon JM, Wood JD, Harder EV, Bellinger TJ, Witt EA, Powell NL, Reissner KJ. Investigating cocaine- and abstinence-induced effects on astrocyte gene expression in the nucleus accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606656. [PMID: 39149305 PMCID: PMC11326167 DOI: 10.1101/2024.08.05.606656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In recent years, astrocytes have been increasingly implicated in cellular mechanisms of substance use disorders (SUD). Astrocytes are structurally altered following exposure to drugs of abuse; specifically, astrocytes within the nucleus accumbens (NAc) exhibit significantly decreased surface area, volume, and synaptic colocalization after operant self-administration of cocaine and extinction or protracted abstinence (45 days). However, the mechanisms that elicit these morphological modifications are unknown. The current study aims to elucidate the molecular modifications that lead to observed astrocyte structural changes in rats across cocaine abstinence using astrocyte-specific RiboTag and RNA-seq, as an unbiased, comprehensive approach to identify genes whose transcription or translation change within NAc astrocytes following cocaine self-administration and extended abstinence. Using this method, our data reveal cellular processes including cholesterol biosynthesis that are altered specifically by cocaine self-administration and abstinence, suggesting that astrocyte involvement in these processes is changed in cocaine-abstinent rats. Overall, the results of this study provide insight into astrocyte functional adaptations that occur due to cocaine exposure or during cocaine withdrawal, which may pinpoint further mechanisms that contribute to cocaine-seeking behavior.
Collapse
Affiliation(s)
- Janay P Franklin
- Neuroscience Center, University of North Carolina at Chapel Hill
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill
| | - Anze Testen
- Department of Neuroscience, Medical University of South Carolina
| | | | - Austin Hepperla
- Department of Genetics, University of North Carolina at Chapel Hill
| | - Gogce Crynen
- Bioinformatics and Statistics Core, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology
| | - Jeremy M Simon
- Department of Data Science, Dana-Farber Institute Department of Biostatistics, Harvard T.H. Chan School of Public Health
| | - Jonathan D Wood
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill
| | - Eden V Harder
- Neuroscience Center, University of North Carolina at Chapel Hill
| | - Tania J Bellinger
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - Emily A Witt
- Department of Medical Neuroscience, Dalhousie University
| | - N LaShae Powell
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill
| | - Kathryn J Reissner
- Neuroscience Center, University of North Carolina at Chapel Hill
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill
| |
Collapse
|
3
|
Boroń A, Suchanecka A, Chmielowiec K, Śmiarowska M, Chmielowiec J, Strońska-Pluta A, Recław R, Grzywacz A. OPRM1 Gene Polymorphism in Women with Alcohol Use Disorder. Int J Mol Sci 2024; 25:3067. [PMID: 38474311 DOI: 10.3390/ijms25053067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
The main aims of the present study were to explore the relationship of the OPRM1 gene rs1074287 polymorphism in alcohol-dependent women with their personality traits and to try to find out whether any specific features may influence alcohol cravings and be a prognostic for alcohol dependency and treatment in AUD women. Our study found a notable correlation between openness and the interaction of the ORIM1 gene and AUD. The alcohol use disorder subjects with genotype AG showed a higher level of openness compared to the control group with genotypes AG (p = 0.0001) and AA (p = 0.0125). The alcohol use disorder subjects with the AA genotype displayed higher levels of openness than the control group with genotype AG (p = 0.0271). However, the alcohol use disorder subjects with the AA genotype displayed lower levels of openness than the control group with genotype GG (p = 0.0212). Our study indicates that openness as a personality trait is correlated with the OPRM1 gene rs1074287 polymorphism in alcohol-dependent women. These are the first data and results exploring such a relationship between opioid and alcohol pathways and the mental construction of AUD women. Personality traits such as openness to experience and neuroticism might play major roles in the addiction mechanism, especially in genetically predisposed females, independent of the reward system involved in the emotional disturbances that coexist with anxiety and depression.
Collapse
Affiliation(s)
- Agnieszka Boroń
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Aleksandra Suchanecka
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-045 Zielona Góra, Poland
| | | | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-045 Zielona Góra, Poland
| | - Aleksandra Strońska-Pluta
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Remigiusz Recław
- Foundation Strong in the Spirit, 60 Sienkiewicza St., 90-058 Łódź, Poland
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| |
Collapse
|
4
|
Meng P, Pan C, Cheng S, Li C, Yao Y, Liu L, Cheng B, Yang X, Zhang Z, Chen Y, Zhang J, Zhang H, Wen Y, Jia Y, Guo X, Zhang F. Evaluating the role of rare genetic variation in sleep duration. Sleep Health 2022; 8:536-541. [PMID: 35907708 DOI: 10.1016/j.sleh.2022.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/22/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To explore the roles of rare and high-impact variants in sleep duration. DESIGN Based on the recently released UK Biobank 200k exome dataset, an exome-wide association study was conducted to detect rare variants (minor allele frequency <0.01) contributing to sleep duration. Variant annotations were performed by the software tool ANNOVAR. Gene-based burden tests of sleep duration were conducted by the SKAT R-package. After quality control, 137,047 subjects were included in this study. CAUSALdb database was used to explore the related mental traits of identified genes. RESULTS We detected 730,572 variants with MAF < 1%, including 3873 frameshift variants, 3977 nonframeshift variants, 449,632 nonsynonymous variants, 1293 startloss variants, 10,254 stopgain variants, 413 stoploss variants, 261,130 synonymous variants, and 3102 variants are annotated as unknown. The burden test of exonic variants detected two exome-wide significant associations for sleep duration including TMIE at 3p21.31 (PBonferroni adjusted = 0.015) and ZIC2 at 13q32.3 (PBonferroni adjusted = 0.047). There are only nonsynonymous contained in TMIE; as for ZIC2, we detected 2 annotations of variants: nonsynonymous (PBonferroni adjusted =2.04 × 10-4) and nonframeshift (PBonferroni adjusted =0.85). TMIE and ZIC2 were reported to be associated with several mental traits, such as chronotype, depression, and brain natriuretic peptide in published study. CONCLUSION This study reported 2 novel candidate genes for a sleep duration, supporting the roles of rare genetic variants in the regulation of sleep duration.
Collapse
Affiliation(s)
- Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
5
|
Gondré-Lewis MC, Elman I, Alim T, Chapman E, Settles-Reaves B, Galvao C, Gold MS, Baron D, Kazmi S, Gardner E, Gupta A, Dennen C, Blum K. Frequency of the Dopamine Receptor D3 (rs6280) vs. Opioid Receptor µ1 (rs1799971) Polymorphic Risk Alleles in Patients with Opioid Use Disorder: A Preponderance of Dopaminergic Mechanisms? Biomedicines 2022; 10:870. [PMID: 35453620 PMCID: PMC9027142 DOI: 10.3390/biomedicines10040870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 02/05/2023] Open
Abstract
While opioids are a powerful class of drugs that inhibit transmission of pain signals, their use is tarnished by the current epidemic of opioid use disorder (OUD) and overdose deaths. Notwithstanding published reports, there remain gaps in our knowledge of opioid receptor mechanisms and their role in opioid seeking behavior. Thus, novel insights into molecular, neurogenetic and neuropharmacological bases of OUD are needed. We propose that an addictive endophenotype may not be entirely specific to the drug of choice but rather may be generalizable to altered brain reward circuits impacting net mesocorticolimbic dopamine release. We suggest that genetic or epigenetic alterations across dopaminergic reward systems lead to uncontrollable self-administration of opioids and other drugs. For instance, diminished availability via knockout of dopamine D3 receptor (DRD3) increases vulnerability to opioids. Building upon this concept via the use of a sophisticated polymorphic risk analysis in a human cohort of chronic opioid users, we found evidence for a higher frequency of polymorphic DRD3 risk allele (rs6280) than opioid receptor µ1 (rs1799971). In conclusion, while opioidergic mechanisms are involved in OUD, dopamine-related receptors may have primary influence on opioid-seeking behavior in African Americans. These findings suggest OUD-targeted novel and improved neuropharmacological therapies may require focus on DRD3-mediated regulation of dopaminergic homeostasis.
Collapse
Affiliation(s)
- Marjorie C. Gondré-Lewis
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA (C.G.)
| | - Igor Elman
- Department of Psychiatry, Cambridge Health Alliance/Harvard Medical School, Cambridge, MA 02139, USA or
| | - Tanya Alim
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC 20059, USA; (T.A.); (E.C.)
| | - Edwin Chapman
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC 20059, USA; (T.A.); (E.C.)
| | - Beverlyn Settles-Reaves
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA (C.G.)
| | - Carine Galvao
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA (C.G.)
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - David Baron
- Graduate College, Western University Health Sciences, Pomona, CA 91766, USA;
| | - Shan Kazmi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA or
| | - Eliot Gardner
- Neuropsychopharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA;
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
| | - Catherine Dennen
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA;
| | - Kenneth Blum
- Graduate College, Western University Health Sciences, Pomona, CA 91766, USA;
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA;
- Department of Clinical Psychology and Addiction, Institute of Psychology, Faculty of Education and Psychology, ELTE Eötvös Loránd University, Egyetem tér 1-3, 1053 Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT 05405, USA
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur 721172, West Bengal, India
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Centre, Dayton, OH 45324, USA
| |
Collapse
|
6
|
Hriatpuii V, Sema HP, Vankhuma C, Iyer M, Subramaniam MD, Rao KRSS, Vellingiri B, Kumar NS. Association of OPRM1 with addiction: a review on drug, alcohol and smoking addiction in worldwide population. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00249-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Drugs are chemicals which can disrupt the nerve cell functions of the brain. The present study aims to investigate the addiction related gene (OPRM1) in three types of addiction—drugs, alcohol and smoking. Pathway for the addiction was ascertained through KEGG database, and the hotspot mutations for various populations were identified from Gnomad-exomes database. In silico analyses like SIFT, Polyphen, Hope, I-mutant and mutation taster were performed to understand the amino acid substitution, protein function, stability and pathogenicity of the variants.
Main body
Addiction-related variants were found in exons 1, 2 and 3, while the exon 4 did not exhibit any addiction related variation. Among all the variants from this gene, rs1799971 (A118G) polymorphism was the most commonly studied variation for addiction in different populations worldwide. Population-wise allele and genotype frequencies, demographic and epidemiological studies have also been performed from different populations, and the possible association of these variants with addiction was evaluated.
Conclusion
Our findings suggest that OPRM1 polymorphism impact as pharmacogenetic predictor of response to naltrexone and can also address the genetic predisposition related to addiction in human beings.
Collapse
|
7
|
Fernàndez-Castillo N, Cabana-Domínguez J, Corominas R, Cormand B. Molecular genetics of cocaine use disorders in humans. Mol Psychiatry 2022; 27:624-639. [PMID: 34453125 PMCID: PMC8960411 DOI: 10.1038/s41380-021-01256-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
Drug addiction, one of the major health problems worldwide, is characterized by the loss of control in drug intake, craving, and withdrawal. At the individual level, drugs of abuse produce serious consequences on health and have a negative impact on the family environment and on interpersonal and work relationships. At a wider scale, they have significant socio-economic and public health consequences and they cause delinquency and citizen insecurity. Cocaine, a psychostimulant substance, is one of the most used illicit drugs, especially in America, Western Europe, and Australia. Cocaine use disorders (CUD) are complex multifactorial conditions driven by both genetic and environmental influences. Importantly, not all people who use cocaine develop CUD, and this is due, at least in part, to biological factors that are encoded in the genome of individuals. Acute and repeated use of cocaine induces epigenetic and gene expression changes responsible for the neuronal adaptations and the remodeling of brain circuits that lead to the transition from use to abuse or dependence. The purpose of this review is to delineate such factors, which should eventually help to understand the inter-individual variability in the susceptibility to cocaine addiction. Heritability estimates for CUD are high and genetic risk factors for cocaine addiction have been investigated by candidate gene association studies (CGAS) and genome-wide association studies (GWAS), reviewed here. Also, the high comorbidity that exists between CUD and several other psychiatric disorders is well known and includes phenotypes like schizophrenia, aggression, antisocial or risk-taking behaviors. Such comorbidities are associated with a worse lifetime trajectory, and here we report shared genetic factors that may contribute to them. Gene expression changes and epigenetic modifications induced by cocaine use and chronic abuse in humans are addressed by reviewing transcriptomic studies performed on neuronal cells and on postmortem brains. We report some genes which expression is altered by cocaine that also bear genetic risk variants for the disorder. Finally, we have a glance to the pharmacogenetics of CUD treatments, still in early stages. A better understanding of the genetic underpinnings of CUD will foster the search of effective treatments and help to move forward to personalized medicine.
Collapse
Affiliation(s)
- Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain. .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain. .,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Judit Cabana-Domínguez
- grid.5841.80000 0004 1937 0247Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain ,grid.5841.80000 0004 1937 0247Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia Spain ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia Spain
| | - Roser Corominas
- grid.5841.80000 0004 1937 0247Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain ,grid.5841.80000 0004 1937 0247Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia Spain ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain. .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain. .,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
8
|
Graham DP, Harding MJ, Nielsen DA. Pharmacogenetics of Addiction Therapy. Methods Mol Biol 2022; 2547:437-490. [PMID: 36068473 DOI: 10.1007/978-1-0716-2573-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Drug addiction is a serious relapsing disease that has high costs to society and to the individual addicts. Treatment of these addictions is still in its nascency, with only a few examples of successful therapies. Therapeutic response depends upon genetic, biological, social, and environmental components. A role for genetic makeup in the response to treatment has been shown for several addiction pharmacotherapies with response to treatment based on individual genetic makeup. In this chapter, we will discuss the role of genetics in pharmacotherapies, specifically for cocaine, alcohol, and opioid dependences. The continued elucidation of the role of genetics should aid in the development of new treatments and increase the efficacy of existing treatments.
Collapse
Affiliation(s)
- David P Graham
- Michael E. DeBakey Veterans Affairs Medical Center, and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Mark J Harding
- Michael E. DeBakey Veterans Affairs Medical Center, and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - David A Nielsen
- Michael E. DeBakey Veterans Affairs Medical Center, and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Hauser AS. Personalized Medicine Through GPCR Pharmacogenomics. COMPREHENSIVE PHARMACOLOGY 2022:191-219. [DOI: 10.1016/b978-0-12-820472-6.00100-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Davis KD, Aghaeepour N, Ahn AH, Angst MS, Borsook D, Brenton A, Burczynski ME, Crean C, Edwards R, Gaudilliere B, Hergenroeder GW, Iadarola MJ, Iyengar S, Jiang Y, Kong JT, Mackey S, Saab CY, Sang CN, Scholz J, Segerdahl M, Tracey I, Veasley C, Wang J, Wager TD, Wasan AD, Pelleymounter MA. Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities. Nat Rev Neurol 2020; 16:381-400. [PMID: 32541893 PMCID: PMC7326705 DOI: 10.1038/s41582-020-0362-2] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Pain medication plays an important role in the treatment of acute and chronic pain conditions, but some drugs, opioids in particular, have been overprescribed or prescribed without adequate safeguards, leading to an alarming rise in medication-related overdose deaths. The NIH Helping to End Addiction Long-term (HEAL) Initiative is a trans-agency effort to provide scientific solutions to stem the opioid crisis. One component of the initiative is to support biomarker discovery and rigorous validation in collaboration with industry leaders to accelerate high-quality clinical research into neurotherapeutics and pain. The use of objective biomarkers and clinical trial end points throughout the drug discovery and development process is crucial to help define pathophysiological subsets of pain, evaluate target engagement of new drugs and predict the analgesic efficacy of new drugs. In 2018, the NIH-led Discovery and Validation of Biomarkers to Develop Non-Addictive Therapeutics for Pain workshop convened scientific leaders from academia, industry, government and patient advocacy groups to discuss progress, challenges, gaps and ideas to facilitate the development of biomarkers and end points for pain. The outcomes of this workshop are outlined in this Consensus Statement.
Collapse
Affiliation(s)
- Karen D Davis
- Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David Borsook
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Robert Edwards
- Pain Management Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Georgene W Hergenroeder
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, NIH, Rockville, MD, USA
| | - Smriti Iyengar
- Division of Translational Research, National Institute of Neurological Disorders and Stroke, NIH, Rockville, MD, USA
| | - Yunyun Jiang
- The Biostatistics Center, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Jiang-Ti Kong
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean Mackey
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Carl Y Saab
- Department of Neuroscience and Department of Neurosurgery, Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Christine N Sang
- Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joachim Scholz
- Neurocognitive Disorders, Pain and New Indications, Biogen, Cambridge, MA, USA
| | | | - Irene Tracey
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU School of Medicine, New York, NY, USA
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Ajay D Wasan
- Anesthesiology and Perioperative Medicine and Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary Ann Pelleymounter
- Division of Translational Research, National Institute of Neurological Disorders and Stroke, NIH, Rockville, MD, USA
| |
Collapse
|
11
|
Li Z, Tang J, Wen W, Wu W, Wang J, Xu J, Yu Y, He Z, Pan X, Wei H, Zhu Y, Hu S, Cao J, Shen H, Que J, Wang W, Zhu Q, Chen L. Systematic analysis of genetic variants in cancer-testis genes identified two novel lung cancer susceptibility loci in Chinese population. J Cancer 2020; 11:1985-1993. [PMID: 32194810 PMCID: PMC7052880 DOI: 10.7150/jca.40002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/25/2019] [Indexed: 12/29/2022] Open
Abstract
Cancer-testis (CT) genes played important roles in the progression of malignant tumors and were recognized as promising therapeutic targets. However, the roles of genetic variants in CT genes in lung cancer susceptibility have not been well depicted. This study aimed to evaluate the associations between genetic variants in CT genes and lung cancer risk in Chinese population. A total of 22,556 qualified SNPs from 268 lung cancer associated CT genes were initially evaluated based on our previous lung cancer GWAS (Genome-wide association studies) with 2,331 cases and 3,077 controls. As a result, 17 candidate SNPs were further genotyped in 1,056 cases and 1,053 controls using Sequenom platform. Two variants (rs6941653, OPRM1, T > C, screening: OR = 1.24, 95%CI: 1.12-1.38, P = 2.40×10-5; validation: OR = 1.18, 95%CI: 1.01-1.37, P = 0.039 and rs402969, NLRP8, C > T, screening: OR = 1.15, 95%CI: 1.04-1.26, P = 0.006; validation: OR = 1.16, 95%CI: 1.02-1.33, P = 0.028) were identified as novel lung cancer susceptibility variants. Stratification analysis indicated that the effect of rs6941653 was stronger in lung squamous cell carcinoma (OR = 1.36) than that in lung adenocarcinoma (OR = 1.15, I2 = 77%, P = 0.04). Finally, functional annotations, differential gene expression analysis, pathway and gene ontology analyses were performed to suggest the potential functions of our identified variants and genes. In conclusion, this study identified two novel lung cancer risk variants in Chinese population and provided deeper insight into the roles of CT genes in lung tumorigenesis.
Collapse
Affiliation(s)
- Zhihua Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jianwei Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wei Wen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Weibing Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jun Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jing Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yue Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhicheng He
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xianglong Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Haixing Wei
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yining Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shuo Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jing Cao
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, International Joint Research Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center of Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Que
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Quan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
12
|
Abijo T, Blum K, Gondré-Lewis MC. Neuropharmacological and Neurogenetic Correlates of Opioid Use Disorder (OUD) As a Function of Ethnicity: Relevance to Precision Addiction Medicine. Curr Neuropharmacol 2020; 18:578-595. [PMID: 31744450 PMCID: PMC7457418 DOI: 10.2174/1570159x17666191118125702] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/31/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Over 100 people die daily from opioid overdose and $78.5B per year is spent on treatment efforts, however, the real societal cost is multifold greater. Alternative strategies to eradicate/manage drug misuse and addiction need consideration. The perception of opioid addiction as a social/criminal problem has evolved to evidence-based considerations of them as clinical disorders with a genetic basis. We present evaluations of the genetics of addiction with ancestryspecific risk profiles for consideration. OBJECTIVE Studies of gene variants associated with predisposition to substance use disorders (SUDs) are monolithic, and exclude many ethnic groups, especially Hispanics and African Americans. We evaluate gene polymorphisms that impact brain reward and predispose individuals to opioid addictions, with a focus on the disparity of research which includes individuals of African and Hispanic descent. METHODOLOGY PubMed and Google Scholar were searched for: Opioid Use Disorder (OUD), Genome- wide association studies (GWAS); genetic variants; polymorphisms, restriction fragment length polymorphisms (RFLP); genomics, epigenetics, race, ethnic group, ethnicity, ancestry, Caucasian/ White, African American/Black, Hispanic, Asian, addictive behaviors, reward deficiency syndrome (RDS), mutation, insertion/deletion, and promotor region. RESULTS Many studies exclude non-White individuals. Studies that include diverse populations report ethnicity-specific frequencies of risk genes, with certain polymorphisms specifically associated with Caucasian and not African-American or Hispanic susceptibility to OUD or SUDs, and vice versa. CONCLUSION To adapt precision medicine-based addiction management in a blended society, we propose that ethnicity/ancestry-informed genetic variations must be analyzed to provide real precision- guided therapeutics with the intent to attenuate this uncontrollable fatal epidemic.
Collapse
Affiliation(s)
| | | | - Marjorie C. Gondré-Lewis
- Address correspondence to this author at the Department of Anatomy, Howard University College of Medicine, 520 W St NW, Washington DC 20059 USA; Tel/Fax: +1-202-806-5274; E-mail:
| |
Collapse
|
13
|
Tolami HF, Sharafshah A, Tolami LF, Keshavarz P. Haplotype-Based Association and In Silico Studies of OPRM1 Gene Variants with Susceptibility to Opioid Dependence Among Addicted Iranians Undergoing Methadone Treatment. J Mol Neurosci 2019; 70:504-513. [PMID: 31853823 DOI: 10.1007/s12031-019-01443-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022]
Abstract
The associations of OPRM1 gene variants with opioid dependence have been demonstrated. This study investigated the association of rs495491, rs1799971 (A118G), rs589046, and rs10457090 variants of OPRM1 gene with opium dependence and their haplotypes among addicted individuals undergoing methadone treatment. Moreover, we investigated whether any of these variants were associated with libido dysfunction or insomnia among addicted people. A total of 404 individuals were genotyped by amplification refractory mutation system (ARMS) PCR. In silico studies were designed through homology modeling of A118G structures (N40 and D40) and docked with 41 FDA-approved drugs of OPRM1 protein by SWISS-MODEL, COACH, MolProbity, ProSA, Errat, Glide XP, and Autodock 4. Results revealed that rs495491, A118G, rs589046, and rs10457090 were significantly associated with opium dependence under recessive (P = 6.66E-10), dominant (P = 0.017), co-dominant (P = 0.001), and recessive (P = 9.28E-6) models of inheritance, respectively. Further analyses indicated three significant haplotypes including A-A-A-C (P-permutation < 1E-9), G-G-A-C (P-permutation = 0.04), and G-A-G-C (P-permutation = 8.69E-4). Genotype-phenotype associations of OPRM1 variants with insomnia and libido dysfunction showed no significant association. Docking showed the higher binding affinity of N40 rather than D40 model; however, methadone and morphine were bonded with D40 structure more powerful. Consequently, rs495491, A118G, rs589046, and rs10457090 were associated with opioid dependence among Iranians; also, A118G might be the most remarkable marker of OPRM1 owing to its vital structural roles.
Collapse
Affiliation(s)
- Hedyeh Fazel Tolami
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Sharafshah
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Laleh Fazel Tolami
- Medical and Emergency Management Center of Guilan, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvaneh Keshavarz
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
14
|
Zhao S, Chen F, Feng A, Han W, Zhang Y. Risk Factors and Prevention Strategies for Postoperative Opioid Abuse. Pain Res Manag 2019; 2019:7490801. [PMID: 31360271 PMCID: PMC6652031 DOI: 10.1155/2019/7490801] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 06/25/2019] [Indexed: 02/06/2023]
Abstract
Worldwide, 80% of patients who undergo surgery receive opioid analgesics as the fundamental agent for pain relief. However, the irrational use of opioids leads to excessive drug dependence and drug abuse, resulting in an increased mortality rate and huge economic loss. The crisis of opioid overuse remains a great challenge. In this review, we summarize several key factors in opioid abuse, including race, region, income, genetic factors, age and gender, smoking and alcohol abuse, history of chronic pain and analgesic drug abuse, surgery, neuropsychiatric illness, depression and antidepressant use, human factors, national policies, hospital regulations, and health insurance under treatment of pain. Furthermore, we present several prevention strategies, such as perioperative measures, opioid substitutes, treatment of the primary illness, emotional regulation, use of opioid antagonists, efforts of the state, hospitals, doctors and pharmacy benefit managers, gene therapy, and vaccines. Greater understanding and better assessment are required of the risks associated with opioid abuse to ensure the safety and analgesic effects of pain treatment after surgery.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| | - Fan Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Anqi Feng
- Department of Anesthesiology, Second Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Han
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| | - Yuan Zhang
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Ahmed S, Choudhry Z, Bhatti JA. Impact of genetic polymorphisms on opioid misuse: a scoping review. Pharmacogenomics 2019; 20:685-703. [PMID: 31250732 DOI: 10.2217/pgs-2018-0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/27/2019] [Indexed: 01/18/2023] Open
Abstract
We conducted a scoping review on genetic polymorphisms associated with opioid intake-related adverse patient outcomes including behavioral, physiological and clinical outcomes. We searched for studies on Medline®, EMBASE®, CINAHL®, Psychinfo® and SNPedia® from January 2006 to January 2018. Our study identified 33 genes and 71 SNPs associated with opioid-intake related adverse patient outcomes: four studies showing associations of nine SNPs with clinical events (e.g., arrhythmia, length of stay and deaths); six studies showing associations of 13 SNPs with respiratory depression and 25 studies showing associations of 50 SNPs with opioid misuse behaviors. Available pharmacogenetic-tests covered polymorphisms associated with opioids metabolism and ignored polymorphisms associated with opioids transport, receptor-binding and signaling that were linked with respiratory depression and misuse behaviors.
Collapse
Affiliation(s)
- Sanjida Ahmed
- Sunnybrook Research Institute, Evaluative Clinical Sciences, G1-06, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Zia Choudhry
- Sunnybrook Research Institute, Evaluative Clinical Sciences, G1-06, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Junaid A Bhatti
- Sunnybrook Research Institute, Evaluative Clinical Sciences, G1-06, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
- University of Toronto, Department of Surgery, 149 College Street, 5th Floor, Toronto, ON, M5T 1P5, Canada
- Institute for Clinical Evaluative Sciences, G1-06, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| |
Collapse
|
16
|
Huang CC, Kuo SC, Yeh TC, Yeh YW, Chen CY, Liang CS, Tsou CC, Lin CL, Ho PS, Huang SY. OPRD1 gene affects disease vulnerability and environmental stress in patients with heroin dependence in Han Chinese. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:109-116. [PMID: 30171993 DOI: 10.1016/j.pnpbp.2018.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/24/2022]
Abstract
Exposure to stress not only increases the vulnerability to heroin dependence (HD) but also provokes relapse. The etiology of HD and the role of life stress remain unclear, but prior studies suggested that both genetic and environmental factors are important. Opioid related genes, including OPRM1, OPRD1, OPRK1, and POMC, are obvious candidates for HD. Therefore, this study was conducted to explore whether the genetic polymorphisms of the candidates could affect vulnerability to HD and response to life stress in patients with HD. Ten polymorphisms of the opioid related genes were analyzed in 801 patients and 530 controls. The Life Event Questionnaire was used to assess the perspective and response to life stress in the past year. The genotype distribution and allelic frequency analyses showed that the minor C allele of rs2234918 in OPRD1 is over-represented in the HD group (P = .006 and P = .002, respectively). This finding was further confirmed by logistic regression analysis, showing that C allele carriers have a 1.42 times greater risk for HD compared to T/T homozygotes. A subgroup of 421 patients and 135 controls were eligible for life stress assessment. Patients with HD have a higher occurrence of negative events (No), negative events score (Ns), and average negative event score (Na) than those of controls (all P < .001), but there was no difference regarding positive recent events between the two groups. Gene-stress assessment in the HD group showed that T/T homozygotes of OPRD1 rs2236857 have more severe stress than C allele carriers (Ns, P = .004 and Na, P = .047). Our results indicate that the OPRD1 gene may not only play a role in the pathogenesis of HD but also affect the response to life stress among patients with HD in our Han Chinese population. Patients with the risk genotype may need additional psychosocial intervention for relapse prevention.
Collapse
Affiliation(s)
- Chang-Chih Huang
- Department of Psychiatry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shin-Chang Kuo
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan
| | - Ta-Chuan Yeh
- Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan
| | - Yi-Wei Yeh
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan
| | - Chun-Yen Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan
| | - Chih-Sung Liang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan
| | - Chang-Chih Tsou
- Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan
| | - Chun-Long Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Pei-Shen Ho
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan
| | - San-Yuan Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan.
| |
Collapse
|
17
|
Burns JA, Kroll DS, Feldman DE, Kure Liu C, Manza P, Wiers CE, Volkow ND, Wang GJ. Molecular Imaging of Opioid and Dopamine Systems: Insights Into the Pharmacogenetics of Opioid Use Disorders. Front Psychiatry 2019; 10:626. [PMID: 31620026 PMCID: PMC6759955 DOI: 10.3389/fpsyt.2019.00626] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Opioid use in the United States has steadily risen since the 1990s, along with staggering increases in addiction and overdose fatalities. With this surge in prescription and illicit opioid abuse, it is paramount to understand the genetic risk factors and neuropsychological effects of opioid use disorder (OUD). Polymorphisms disrupting the opioid and dopamine systems have been associated with increased risk for developing substance use disorders. Molecular imaging studies have revealed how these polymorphisms impact the brain and contribute to cognitive and behavioral differences across individuals. Here, we review the current molecular imaging literature to assess how genetic variations in the opioid and dopamine systems affect function in the brain's reward, cognition, and stress pathways, potentially resulting in vulnerabilities to OUD. Continued research of the functional consequences of genetic variants and corresponding alterations in neural mechanisms will inform prevention and treatment of OUD.
Collapse
Affiliation(s)
- Jamie A Burns
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | | | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,National Institute on Drug Abuse, Bethesda, MD, United States
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| |
Collapse
|
18
|
Abstract
The opioid epidemic is at the epicenter of the drug crisis, resulting in an inconceivable number of overdose deaths and exorbitant associated medical costs that have crippled many communities across the socioeconomic spectrum in the United States. Classic medications for the treatment of opioid use disorder predominantly target the opioid system and thus have been underutilized, in part due to their own potential for abuse and heavy regulatory burden for patients and clinicians. Opioid antagonists are now evolving in their use, not only to prevent acute overdoses but as extended-use treatment options. Strategies that target specific genetic and epigenetic factors, along with novel nonopioid medications, hold promise as future therapeutic interventions for opioid abuse. Success in increasing the treatment options in the clinical toolbox will, hopefully, help to end the historical pattern of recurring opioid epidemics. [AJP at 175: Remembering Our Past As We Envision Our Future Drug Addiction in Relation to Problems of Adolescence Zimmering and colleagues wrote in the midst of an opiate epidemic among young people that "only the human being, or rather certain types of human beings, will return to the enslaving, self-destructive habit." (Am J Psychiatry 1952; 109:272-278 )].
Collapse
Affiliation(s)
- Yasmin L. Hurd
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine, Addiction Institute, Mount Sinai Behavioral Health System, New York
| | - Charles P. O’Brien
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Abstract
Drug addiction or substance-use disorder is a chronically relapsing disorder that progresses through binge/intoxication, withdrawal/negative affect and preoccupation/anticipation stages. These stages represent diverse neurobiological mechanisms that are differentially involved in the transition from recreational to compulsive drug use and from positive to negative reinforcement. The progression from recreational to compulsive substance use is associated with downregulation of the brain reward systems and upregulation of the brain stress systems. Individual differences in the neurobiological systems that underlie the processing of reward, incentive salience, habits, stress, pain, and executive function may explain (i) the vulnerability to substance-use disorder; (ii) the diversity of emotional, motivational, and cognitive profiles of individuals with substance-use disorders; and (iii) heterogeneous responses to cognitive and pharmacological treatments. Characterization of the neuropsychological mechanisms that underlie individual differences in addiction-like behaviors is the key to understanding the mechanisms of addiction and development of personalized pharmacotherapy.
Collapse
Affiliation(s)
- Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland, USA
| |
Collapse
|
20
|
Alblooshi H, Hulse G, Osman W, El Kashef A, Shawky M, Al Ghaferi H, Al Safar H, Tay GK. The frequency of DRD2 rs1076560 and OPRM1 rs1799971 in substance use disorder patients from the United Arab Emirates. Ann Gen Psychiatry 2018; 17:22. [PMID: 29881439 PMCID: PMC5984335 DOI: 10.1186/s12991-018-0192-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 05/25/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Dopaminergic and opioid systems are involved in mediating drug reward and reinforcement of various types of substances including psychoactive compounds. Genes of both systems have been candidate for investigation for associations with substance use disorder (SUD) in various populations. This study is the first study to determine the allele frequency and the genetic association of the DRD2 rs1076560 SNP and OPRM1 rs1799971 SNP variants in clinically diagnosed patients with SUD from the United Arab Emirates (UAE). METHODS A cross-sectional case-control cohort that consisted of 512 male subjects was studied. Two hundred and fifty patients with SUD receiving treatment at the UAE National Rehabilitation Center were compared to 262 controls with no prior history of mental health and SUD. DNA from each subject was extracted and genotyped using the TaqMan ® SNP genotyping assay. RESULTS There were no significant associations observed for DRD2 rs1076560 SNP, OPRM1 rs1799971 SNP, and combined genotypes of both SNPs in the SUD group. CONCLUSION Further research is required with refinements to the criteria of the clinical phenotypes. Genetic studies have to be expanded to include other variants of the gene, the interaction with other genes, and possible epigenetic relationships.
Collapse
Affiliation(s)
- Hiba Alblooshi
- 1School of Human Sciences, The University of Western Australia, Crawley, WA Australia.,2School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Crawley, WA Australia
| | - Gary Hulse
- 2School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Crawley, WA Australia.,3School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
| | - Wael Osman
- 4Center of Biotechnology, Khalifa University of Science, Technology and Research, PO Box 1227788, Abu Dhabi, United Arab Emirates
| | - Ahmed El Kashef
- United Arab Emirates National Rehabilitation Center, Abu Dhabi, United Arab Emirates
| | - Mansour Shawky
- United Arab Emirates National Rehabilitation Center, Abu Dhabi, United Arab Emirates
| | - Hamad Al Ghaferi
- United Arab Emirates National Rehabilitation Center, Abu Dhabi, United Arab Emirates
| | - Habiba Al Safar
- 4Center of Biotechnology, Khalifa University of Science, Technology and Research, PO Box 1227788, Abu Dhabi, United Arab Emirates.,6Faculty of Biomedical Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi, United Arab Emirates
| | - Guan K Tay
- 2School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Crawley, WA Australia.,3School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia.,4Center of Biotechnology, Khalifa University of Science, Technology and Research, PO Box 1227788, Abu Dhabi, United Arab Emirates.,6Faculty of Biomedical Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi, United Arab Emirates
| |
Collapse
|
21
|
Kringel D, Ultsch A, Zimmermann M, Jansen JP, Ilias W, Freynhagen R, Griessinger N, Kopf A, Stein C, Doehring A, Resch E, Lötsch J. Emergent biomarker derived from next-generation sequencing to identify pain patients requiring uncommonly high opioid doses. THE PHARMACOGENOMICS JOURNAL 2017; 17:419-426. [PMID: 27139154 PMCID: PMC5637232 DOI: 10.1038/tpj.2016.28] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/05/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
Next-generation sequencing (NGS) provides unrestricted access to the genome, but it produces 'big data' exceeding in amount and complexity the classical analytical approaches. We introduce a bioinformatics-based classifying biomarker that uses emergent properties in genetics to separate pain patients requiring extremely high opioid doses from controls. Following precisely calculated selection of the 34 most informative markers in the OPRM1, OPRK1, OPRD1 and SIGMAR1 genes, pattern of genotypes belonging to either patient group could be derived using a k-nearest neighbor (kNN) classifier that provided a diagnostic accuracy of 80.6±4%. This outperformed alternative classifiers such as reportedly functional opioid receptor gene variants or complex biomarkers obtained via multiple regression or decision tree analysis. The accumulation of several genetic variants with only minor functional influences may result in a qualitative consequence affecting complex phenotypes, pointing at emergent properties in genetics.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/therapeutic use
- Biomarkers, Pharmacological/analysis
- Chronic Pain/drug therapy
- Chronic Pain/genetics
- Dose-Response Relationship, Drug
- Genotype
- High-Throughput Nucleotide Sequencing
- Humans
- Pharmacogenomic Testing
- Pharmacogenomic Variants
- Receptors, Opioid/genetics
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, mu/genetics
- Receptors, sigma/genetics
- Sigma-1 Receptor
Collapse
Affiliation(s)
- D Kringel
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt am Main, Germany
| | - A Ultsch
- DataBionics Research Group, University of Marburg, Marburg, Germany
| | - M Zimmermann
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | | | - W Ilias
- Department of Anaesthesiology and Intensive Care Medicine, Vienna, Austria
| | - R Freynhagen
- Zentrum für Anästhesiologie, Intensivmedizin, Schmerztherapie & Palliativmedizin, Benedictus Krankenhaus Tutzing, Tutzing, Germany
- Klinik für Anästhesiologie, Technische Universität München, München, Germany
| | - N Griessinger
- Department of Anesthesiology, University Hospital Erlangen, Erlangen, Germany
| | - A Kopf
- Department of Anesthesiology and Critical Care Medicine, Freie Universität Berlin–Charité, Berlin, Germany
| | - C Stein
- Department of Anesthesiology and Critical Care Medicine, Freie Universität Berlin–Charité, Berlin, Germany
| | - A Doehring
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt am Main, Germany
| | - E Resch
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | - J Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| |
Collapse
|
22
|
George O. Individual differences in the neuropsychopathology of addiction. DIALOGUES IN CLINICAL NEUROSCIENCE 2017; 19:217-229. [PMID: 29302219 PMCID: PMC5741105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Drug addiction or substance-use disorder is a chronically relapsing disorder that progresses through binge/intoxication, withdrawal/negative affect and preoccupation/anticipation stages. These stages represent diverse neurobiological mechanisms that are differentially involved in the transition from recreational to compulsive drug use and from positive to negative reinforcement. The progression from recreational to compulsive substance use is associated with downregulation of the brain reward systems and upregulation of the brain stress systems. Individual differences in the neurobiological systems that underlie the processing of reward, incentive salience, habits, stress, pain, and executive function may explain (i) the vulnerability to substance-use disorder; (ii) the diversity of emotional, motivational, and cognitive profiles of individuals with substance-use disorders; and (iii) heterogeneous responses to cognitive and pharmacological treatments. Characterization of the neuropsychological mechanisms that underlie individual differences in addiction-like behaviors is the key to understanding the mechanisms of addiction and development of personalized pharmacotherapy.
Collapse
Affiliation(s)
- Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
23
|
Ebrahimi G, Asadikaram G, Akbari H, Nematollahi MH, Abolhassani M, Shahabinejad G, Khodadadnejad L, Hashemi M. Elevated levels of DNA methylation at the OPRM1 promoter region in men with opioid use disorder. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2017; 44:193-199. [DOI: 10.1080/00952990.2016.1275659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ghasem Ebrahimi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamed Akbari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Moslem Abolhassani
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamabbas Shahabinejad
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Leyla Khodadadnejad
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences. Zahedan, Iran
| |
Collapse
|
24
|
Shakiba M, Hashemi M, Rahbari Z, Mahdar S, Danesh H, Bizhani F, Bahari G. Lack of Association between Human µ-Opioid Receptor (<em>OPRM1</em>) Gene Polymorphisms and Heroin Addiction in A Sample of Southeast Iranian Population. AIMS MEDICAL SCIENCE 2017. [DOI: 10.3934/medsci.2017.2.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Kringel D, Lötsch J. Next-generation sequencing of human opioid receptor genes based on a custom AmpliSeq™ library and ion torrent personal genome machine. Clin Chim Acta 2016; 463:32-38. [PMID: 27725223 PMCID: PMC5352731 DOI: 10.1016/j.cca.2016.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/12/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND The opioid system is involved in the control of pain, reward, addictive behaviors and vegetative effects. Opioids exert their pharmacological actions through the agonistic binding at opioid receptors and variation in the coding genes has been found to modulate opioid receptor expression or signaling. However, a limited selection of functional opioid receptor variants is perceived as insufficient in providing a genetic diagnosis of clinical phenotypes and therefore, unrestricted access to opioid receptor genetics is required. METHODS Next-generation sequencing (NGS) workflow was based on a custom AmpliSeq™ panel and designed for sequencing of human genes related to the opioid receptor group (OPRM1, OPRD1, OPRK1, SIGMA1, OPRL1) on an Ion PGM™ Sequencer. A cohort of 79 previously studied chronic pain patients was screened to evaluate and validate the detection of exomic sequences of the coding genes with 25 base pair exon padding. In-silico analysis was performed using SNP and Variation Suite® software. RESULTS The amplicons covered approximately 90% of the target sequence. A median of 2.54×106 reads per run was obtained generating a total of 35,447 nucleotide reads from each DNA sample. This identified approximately 100 chromosome loci where nucleotides deviated from the reference sequence GRCh37 hg19, including functional variants such as the OPRM1 rs1799971 SNP (118 A>G) as the most scientifically regarded variant or rs563649 SNP coding for μ-opioid receptor splice variants. Correspondence between NGS and Sanger derived nucleotide sequences was 100%. CONCLUSION Results suggested that the NGS approach based on AmpliSeq™ libraries and Ion PGM sequencing is a highly efficient mutation detection method. It is suitable for large-scale sequencing of opioid receptor genes. The method includes the variants studied so far for functional associations and adds a large amount of genetic information as a basis for complete analysis of human opioid receptor genetics and its functional consequences.
Collapse
Affiliation(s)
- Dario Kringel
- Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Schwantes-An TH, Zhang J, Chen LS, Hartz SM, Culverhouse RC, Chen X, Coon H, Frank J, Kamens HM, Konte B, Kovanen L, Latvala A, Legrand LN, Maher BS, Melroy WE, Nelson EC, Reid MW, Robinson JD, Shen PH, Yang BZ, Andrews JA, Aveyard P, Beltcheva O, Brown SA, Cannon DS, Cichon S, Corley RP, Dahmen N, Degenhardt L, Foroud T, Gaebel W, Giegling I, Glatt SJ, Grucza RA, Hardin J, Hartmann AM, Heath AC, Herms S, Hodgkinson CA, Hoffmann P, Hops H, Huizinga D, Ising M, Johnson EO, Johnstone E, Kaneva RP, Kendler KS, Kiefer F, Kranzler HR, Krauter KS, Levran O, Lucae S, Lynskey MT, Maier W, Mann K, Martin NG, Mattheisen M, Montgomery GW, Müller-Myhsok B, Murphy MF, Neale MC, Nikolov MA, Nishita D, Nöthen MM, Nurnberger J, Partonen T, Pergadia ML, Reynolds M, Ridinger M, Rose RJ, Rouvinen-Lagerström N, Scherbaum N, Schmäl C, Soyka M, Stallings MC, Steffens M, Treutlein J, Tsuang M, Wall TL, Wodarz N, Yuferov V, Zill P, Bergen AW, Chen J, Cinciripini PM, Edenberg HJ, Ehringer MA, Ferrell RE, Gelernter J, Goldman D, Hewitt JK, Hopfer CJ, Iacono WG, Kaprio J, Kreek MJ, Kremensky IM, Madden PAF, McGue M, Munafò MR, Philibert RA, et alSchwantes-An TH, Zhang J, Chen LS, Hartz SM, Culverhouse RC, Chen X, Coon H, Frank J, Kamens HM, Konte B, Kovanen L, Latvala A, Legrand LN, Maher BS, Melroy WE, Nelson EC, Reid MW, Robinson JD, Shen PH, Yang BZ, Andrews JA, Aveyard P, Beltcheva O, Brown SA, Cannon DS, Cichon S, Corley RP, Dahmen N, Degenhardt L, Foroud T, Gaebel W, Giegling I, Glatt SJ, Grucza RA, Hardin J, Hartmann AM, Heath AC, Herms S, Hodgkinson CA, Hoffmann P, Hops H, Huizinga D, Ising M, Johnson EO, Johnstone E, Kaneva RP, Kendler KS, Kiefer F, Kranzler HR, Krauter KS, Levran O, Lucae S, Lynskey MT, Maier W, Mann K, Martin NG, Mattheisen M, Montgomery GW, Müller-Myhsok B, Murphy MF, Neale MC, Nikolov MA, Nishita D, Nöthen MM, Nurnberger J, Partonen T, Pergadia ML, Reynolds M, Ridinger M, Rose RJ, Rouvinen-Lagerström N, Scherbaum N, Schmäl C, Soyka M, Stallings MC, Steffens M, Treutlein J, Tsuang M, Wall TL, Wodarz N, Yuferov V, Zill P, Bergen AW, Chen J, Cinciripini PM, Edenberg HJ, Ehringer MA, Ferrell RE, Gelernter J, Goldman D, Hewitt JK, Hopfer CJ, Iacono WG, Kaprio J, Kreek MJ, Kremensky IM, Madden PAF, McGue M, Munafò MR, Philibert RA, Rietschel M, Roy A, Rujescu D, Saarikoski ST, Swan GE, Todorov AA, Vanyukov MM, Weiss RB, Bierut LJ, Saccone NL. Association of the OPRM1 Variant rs1799971 (A118G) with Non-Specific Liability to Substance Dependence in a Collaborative de novo Meta-Analysis of European-Ancestry Cohorts. Behav Genet 2016; 46:151-69. [PMID: 26392368 PMCID: PMC4752855 DOI: 10.1007/s10519-015-9737-3] [Show More Authors] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 08/17/2015] [Indexed: 12/20/2022]
Abstract
The mu1 opioid receptor gene, OPRM1, has long been a high-priority candidate for human genetic studies of addiction. Because of its potential functional significance, the non-synonymous variant rs1799971 (A118G, Asn40Asp) in OPRM1 has been extensively studied, yet its role in addiction has remained unclear, with conflicting association findings. To resolve the question of what effect, if any, rs1799971 has on substance dependence risk, we conducted collaborative meta-analyses of 25 datasets with over 28,000 European-ancestry subjects. We investigated non-specific risk for "general" substance dependence, comparing cases dependent on any substance to controls who were non-dependent on all assessed substances. We also examined five specific substance dependence diagnoses: DSM-IV alcohol, opioid, cannabis, and cocaine dependence, and nicotine dependence defined by the proxy of heavy/light smoking (cigarettes-per-day >20 vs. ≤ 10). The G allele showed a modest protective effect on general substance dependence (OR = 0.90, 95% C.I. [0.83-0.97], p value = 0.0095, N = 16,908). We observed similar effects for each individual substance, although these were not statistically significant, likely because of reduced sample sizes. We conclude that rs1799971 contributes to mechanisms of addiction liability that are shared across different addictive substances. This project highlights the benefits of examining addictive behaviors collectively and the power of collaborative data sharing and meta-analyses.
Collapse
Affiliation(s)
- Tae-Hwi Schwantes-An
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8232, St. Louis, MO, 63110, USA
- Genometrics Section, Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, US National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Juan Zhang
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8232, St. Louis, MO, 63110, USA
- Key Laboratory of Brain Function and Disease, School of Life Sciences, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sarah M Hartz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Robert C Culverhouse
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiangning Chen
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Hilary Coon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Helen M Kamens
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Bettina Konte
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Leena Kovanen
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Antti Latvala
- Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
| | - Lisa N Legrand
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Brion S Maher
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Whitney E Melroy
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mark W Reid
- Oregon Research Institute, Eugene, OR, 97403, USA
| | - Jason D Robinson
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pei-Hong Shen
- Section of Human Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Bao-Zhu Yang
- Department of Psychiatry, Yale University, New Haven, CT, 06516, USA
| | | | - Paul Aveyard
- Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, United Kingdom
| | - Olga Beltcheva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Sandra A Brown
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dale S Cannon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA
| | - Sven Cichon
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Division of Medical Genetics, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4003, Switzerland
| | - Robin P Corley
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
| | - Norbert Dahmen
- Ökumenisches Hainich-Klinikum, Mühlhausen/Thüringen, Germany
| | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales, Randwick, NSW, 2031, Australia
- School of Population and Global Health, University of Melbourne, Melbourne, 3010, Australia
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Ina Giegling
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Stephen J Glatt
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Richard A Grucza
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jill Hardin
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA, 94025, USA
| | - Annette M Hartmann
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Stefan Herms
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Division of Medical Genetics, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4003, Switzerland
| | - Colin A Hodgkinson
- Section of Human Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Per Hoffmann
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Division of Medical Genetics, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4003, Switzerland
| | - Hyman Hops
- Oregon Research Institute, Eugene, OR, 97403, USA
| | - David Huizinga
- Institute of Behavioral Science, University of Colorado, Boulder, CO, 80309, USA
| | - Marcus Ising
- Max-Planck-Institute of Psychiatry, 80804, Munich, Germany
| | - Eric O Johnson
- Behavioral Health Research Division, Research Triangle Institute International, Durham, NC, 27709, USA
| | - Elaine Johnstone
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Radka P Kaneva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Kenneth S Kendler
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Henry R Kranzler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ken S Krauter
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Orna Levran
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, 10065, USA
| | - Susanne Lucae
- Max-Planck-Institute of Psychiatry, 80804, Munich, Germany
| | - Michael T Lynskey
- Addictions Department, Institute of Psychiatry, King's College London, London, SE5 8BB, UK
| | | | - Karl Mann
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Nicholas G Martin
- Department of Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, QLD, 4029, Australia
| | - Manuel Mattheisen
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Harvard School of Public Health, Boston, MA, 02115, USA
- Aarhus University, Aarhus, 8000, Denmark
| | - Grant W Montgomery
- Department of Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, QLD, 4029, Australia
| | | | - Michael F Murphy
- Childhood Cancer Research Group, University of Oxford, Oxford, OX3 7LG, UK
| | - Michael C Neale
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Momchil A Nikolov
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Denise Nishita
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA, 94025, USA
| | - Markus M Nöthen
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
| | - John Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Timo Partonen
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Michele L Pergadia
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Maureen Reynolds
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Monika Ridinger
- Department of Psychiatry, University Medical Center Regensburg, University of Regensburg, 8548, Regensburg, Germany
- Psychiatric Hospital, Konigsfelden, Windisch, Switzerland
| | - Richard J Rose
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Noora Rouvinen-Lagerström
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Norbert Scherbaum
- Addiction Research Group at the Department of Psychiatry and Psychotherapy, LVR Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Christine Schmäl
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Michael Soyka
- Department of Psychiatry, University of Munich, 3860, Munich, Germany
- Private Hospital Meiringen, Meiringen, Switzerland
| | - Michael C Stallings
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Psychology & Neuroscience, University of Colorado, Boulder, CO, 80309, USA
| | - Michael Steffens
- Research Department, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Ming Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tamara L Wall
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Norbert Wodarz
- Department of Psychiatry, University Medical Center Regensburg, University of Regensburg, 8548, Regensburg, Germany
| | - Vadim Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, 10065, USA
| | | | - Andrew W Bergen
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA, 94025, USA
| | - Jingchun Chen
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Paul M Cinciripini
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
| | - Robert E Ferrell
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University, New Haven, CT, 06516, USA
- Department of Genetics, Yale University, New Haven, CT, 06516, USA
- Department of Neurobiology, Yale University, New Haven, CT, 06516, USA
| | - David Goldman
- Section of Human Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Psychology & Neuroscience, University of Colorado, Boulder, CO, 80309, USA
| | - Christian J Hopfer
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jaakko Kaprio
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
- Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
- Institute for Molecular Medicine FIMM, University of Helsinki, 00014, Helsinki, Finland
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, 10065, USA
| | - Ivo M Kremensky
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Pamela A F Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit, UK Centre for Tobacco and Alcohol Studies, and School of Experimental Psychology, University of Bristol, Bristol, BS8 1TU, UK
| | | | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Alec Roy
- Psychiatry Service, Department of Veteran Affairs, New Jersey VA Health Care System, East Orange, NJ, 07018, USA
| | - Dan Rujescu
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Sirkku T Saarikoski
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Gary E Swan
- Department of Medicine, Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Alexandre A Todorov
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael M Vanyukov
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert B Weiss
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nancy L Saccone
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8232, St. Louis, MO, 63110, USA.
| |
Collapse
|
27
|
Abstract
There exists a continuous spectrum of overeating, where at the extremes there are casual overindulgences and at the other a 'pathological' drive to consume palatable foods. It has been proposed that pathological eating behaviors may be the result of addictive appetitive behavior and loss of ability to regulate the consumption of highly processed foods containing refined carbohydrates, fats, salt, and caffeine. In this review, we highlight the genetic similarities underlying substance addiction phenotypes and overeating compulsions seen in individuals with binge eating disorder. We relate these similarities to findings from neuroimaging studies on reward processing and clinical diagnostic criteria based on addiction phenotypes. The abundance of similarities between compulsive overeating and substance addictions puts forth a case for a 'food addiction' phenotype as a valid, diagnosable disorder.
Collapse
|
28
|
Bauer IE, Soares JC, Nielsen DA. The role of opioidergic genes in the treatment outcome of drug addiction pharmacotherapy: A systematic review. Am J Addict 2015; 24:15-23. [DOI: 10.1111/ajad.12172] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/21/2014] [Accepted: 10/01/2014] [Indexed: 12/25/2022] Open
Affiliation(s)
- Isabelle E. Bauer
- Department of Psychiatry and Behavioral Science; University of Texas Health Sciences Center; Houston Texas
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Science; University of Texas Health Sciences Center; Houston Texas
| | - David A. Nielsen
- Menninger Department of Psychiatry and Behavioral Sciences; Baylor College of Medicine and the Michael E. DeBakey Veterans Affairs Medical Center; Houston Texas
| |
Collapse
|
29
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
30
|
Abstract
Addiction to MOP-r agonists such as heroin (and also addiction to prescription opioids) has reemerged as an epidemic in the twenty first century, causing massive morbidity. Understanding the genetics contributing to susceptibility to this disease is crucial for the identification of novel therapeutic targets, and also for discovery of genetic markers which would indicate relative protection or vulnerability from addiction, and relative responsiveness to pharmacotherapy. This information could thus eventually inform clinical practice. In this review, we focus primarily on association studies of heroin and opiate addiction, and further describe the studies which have been replicated in this field, and are thus more likely to be useful for translational efforts.
Collapse
Affiliation(s)
- Brian Reed
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | | | | | | | | |
Collapse
|