1
|
Miranda LA, Winckler FC, da Silva TR, de Carvalho Nunes HR, Modolo GP, Ferreira NC, Favoretto DB, Aguiar L, Bazan SGZ, Edwards TGS, Pontes-Neto O, Luvizutto GJ, Bazan R. Long-term effect of non-invasive brain stimulation on hemispatial neglect, functional outcomes, and mortality after stroke: ELETRON trial extend. Clin Neurol Neurosurg 2025; 249:108705. [PMID: 39798330 DOI: 10.1016/j.clineuro.2024.108705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/21/2024] [Indexed: 01/15/2025]
Abstract
INTRODUCTION Our primary clinical trial indicated that anodal stimulation of the right posterior parietal region associated with specific and perceptual task training was superior to placebo in reducing stroke-induced hemispatial neglect (HN) immediately after the treatment protocol. However, our primary study did not investigate whether this benefit was maintained in the long term after stroke. Therefore, this study aimed to evaluate the long-term effects of the protocol applied in the ELETRON trial on outcomes associated with HN, functionality, and mortality. METHODS This was a pilot, multicenter, prospective, randomized, double-blind trial in patients with HN after stroke who underwent either active tDCS (anodal tDCS or C-tDCS) or sham tDCS in addition to specific and perceptual task training. The outcomes were evaluated on the last day of the session and after 1 year of stimulation (follow-up). Daily evolution rates were calculated as the difference between the values observed between the moments divided by the follow-up time for each individual. The primary outcome was the rate of HN evolution according to the BIT-C scale. The secondary outcome was CBS evolution rate. The exploratory outcomes were the evolution rate of functional disability and autonomy assessed by FIM and BI, quality of life assessed by EQ 5D, stroke severity using the NIHSS, and functional dependence assessed by mRS. Death was examined separately. A linear regression model with a time-adjusted identity link function was used to explain the evolution rates of each outcome of A-tDCS and C-tDCS as a function of sham tDCS. Survival models were adjusted to compare mortality groups. RESULTS The evolution rate of BIT-C was not different between A-tDCS (B = 3.18; CI: -4.84-11.19; p = 0.438) and C-tDCS (B = -0.95; CI: -8.97-7.07; p = 0.816) with sham. The secondary and exploratory outcomes showed the same pattern. In addition, there were no statistically significant differences in mortality over time between A-tDCS and S-tDCS (B = 0.322; 95 % CI 0.284-6.707; p = 0.689) and between C-tDCS and S-tDCS (B = -0.798; 95 % CI 0.063-3.195; p = 0.425). CONCLUSION The benefits of A-tDCS and C-tDCS were maintained for all long-term post-stroke outcomes. TRIAL REGISTRATION RBR-78jvzx - Brazilian Registry of Clinical Trials (Rebec), registered on March 13, 2016.
Collapse
Affiliation(s)
- Luana Aparecida Miranda
- Department of Internal Medicine, Botucatu Medical School (UNESP), Botucatu, São Paulo, Brazil
| | | | - Taís Regina da Silva
- Department of Internal Medicine, Botucatu Medical School (UNESP), Botucatu, São Paulo, Brazil
| | | | | | | | - Diandra B Favoretto
- Department of Neurosciences and Behavioral Sciences, Hospital das Clínicas, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luan Aguiar
- Department of Neurosciences and Behavioral Sciences, Hospital das Clínicas, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Taiza G S Edwards
- Department of Neurosciences and Behavioral Sciences, Hospital das Clínicas, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Octávio Pontes-Neto
- Department of Neurosciences and Behavioral Sciences, Hospital das Clínicas, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gustavo José Luvizutto
- Department of Applied Physical Therapy at Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Rodrigo Bazan
- Department of Neurocience and Mental Health, Botucatu Medical School (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
2
|
Geers L, Dormal V, Bonato M, Vandermeeren Y, Masson N, Andres M. Modulation of initial leftward bias in visual search by parietal tDCS. PLoS One 2024; 19:e0315715. [PMID: 39739719 DOI: 10.1371/journal.pone.0315715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 11/30/2024] [Indexed: 01/02/2025] Open
Abstract
Transcranial direct current stimulation (tDCS) has the potential to modulate spatial attention by enhancing the activity in one hemisphere relative to the other. This study aims to inform neurorehabilitation strategies for spatial attention disorders by investigating the impact of tDCS on the performance of healthy participants. Unlike prior research that focused on visual detection, we extended the investigation to visual search and visual imagery using computerized neuropsychological tests. Forty-eight participants had to actively search for targets in space (visual search) and notice differences between two mental images (visual imagery). Anodal stimulation was administered over the left parietal cortex for half of the participants and over the right parietal cortex for the other half. The results showed that tDCS modulated spatial attention in visual search but not in visual imagery. In the sham condition, visual search was characterized by a leftward bias in the selection of the first target and a left asymmetry in the overall spatial distribution of cancelled targets. Parietal tDCS modulated the initial leftward bias, enhancing it (more lateral) during right anodal stimulation and reducing it (more central) during left anodal stimulation. However, this effect was not reflected in the spatial distribution of the cancelled targets. The overall visual search performance marginally improved during right anodal stimulation, as evidenced by a greater percentage of cancelled targets compared to sham. Finally, the results revealed no left-right asymmetries in the visual imagery task, either after sham or anodal stimulation. The specific effect of parietal tDCS on the initiation of visual search offers a new perspective for targeted neurorehabilitation strategies and provides further insight into the different sensitivity of visual search measures classically used in brain-lesioned patients.
Collapse
Affiliation(s)
- Laurie Geers
- Psychological Science Research Institute, UCLouvain, Louvain-la-Neuve, Belgium
- UCLouvain, Institute of Neuroscience (IoNS), NEUR Division, UCLouvain, Louvain-la-Neuve, Belgium
| | - Valérie Dormal
- Psychological Science Research Institute, UCLouvain, Louvain-la-Neuve, Belgium
- UCLouvain, Institute of Neuroscience (IoNS), NEUR Division, UCLouvain, Louvain-la-Neuve, Belgium
| | - Mario Bonato
- Department of General Psychology, University of Padova, Padua, Italy
| | - Yves Vandermeeren
- UCLouvain, Institute of Neuroscience (IoNS), NEUR Division, UCLouvain, Louvain-la-Neuve, Belgium
- CHU UCL Namur-Godinne Neurology Department, Stroke Unit & Neuromodulation Unit, UCLouvain, Louvain-la-Neuve, Belgium
| | - Nicolas Masson
- Psychological Science Research Institute, UCLouvain, Louvain-la-Neuve, Belgium
- UCLouvain, Institute of Neuroscience (IoNS), NEUR Division, UCLouvain, Louvain-la-Neuve, Belgium
| | - Michael Andres
- Psychological Science Research Institute, UCLouvain, Louvain-la-Neuve, Belgium
- UCLouvain, Institute of Neuroscience (IoNS), NEUR Division, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Sloane KL, Hamilton RH. Transcranial Direct Current Stimulation to Ameliorate Post-Stroke Cognitive Impairment. Brain Sci 2024; 14:614. [PMID: 38928614 PMCID: PMC11202055 DOI: 10.3390/brainsci14060614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Post-stroke cognitive impairment is a common and disabling condition with few effective therapeutic options. After stroke, neural reorganization and other neuroplastic processes occur in response to ischemic injury, which can result in clinical improvement through spontaneous recovery. Neuromodulation through transcranial direct current stimulation (tDCS) is a promising intervention to augment underlying neuroplasticity in order to improve cognitive function. This form of neuromodulation leverages mechanisms of neuroplasticity post-stroke to optimize neural reorganization and improve function. In this review, we summarize the current state of cognitive neurorehabilitation post-stroke, the practical features of tDCS, its uses in stroke-related cognitive impairment across cognitive domains, and special considerations for the use of tDCS in the post-stroke patient population.
Collapse
Affiliation(s)
- Kelly L. Sloane
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roy H. Hamilton
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Hooyman A, Haikalis NK, Wang P, Schambra HM, Lohse KR, Schaefer SY. Evidence and sources of placebo effects in transcranial direct current stimulation during a single session of visuospatial working memory practice. Sci Rep 2024; 14:9094. [PMID: 38643299 PMCID: PMC11032394 DOI: 10.1038/s41598-024-59927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) can be used to non-invasively augment cognitive training. However, the benefits of tDCS may be due in part to placebo effects, which have not been well-characterized. The purpose of this study was to determine whether tDCS can have a measurable placebo effect on cognitive training and to identify potential sources of this effect. Eighty-three right-handed adults were randomly assigned to one of three groups: control (no exposure to tDCS), sham tDCS, or active tDCS. The sham and active tDCS groups were double-blinded. Each group performed 20 min of an adapted Corsi Block Tapping Task (CBTT), a visuospatial working memory task. Anodal or sham tDCS was applied during CBTT training in a right parietal-left supraorbital montage. After training, active and sham tDCS groups were surveyed on expectations about tDCS efficacy. Linear mixed effects models showed that the tDCS groups (active and sham combined) improved more on the CBTT with training than the control group, suggesting a placebo effect of tDCS. Participants' tDCS expectations were significantly related to the placebo effect, as was the belief of receiving active stimulation. This placebo effect shows that the benefits of tDCS on cognitive training can occur even in absence of active stimulation. Future tDCS studies should consider how treatment expectations may be a source of the placebo effect in tDCS research, and identify ways to potentially leverage them to maximize treatment benefit.
Collapse
Affiliation(s)
- Andrew Hooyman
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, MC 9709, Tempe, AZ, 85287, USA
| | - Nicole K Haikalis
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, MC 9709, Tempe, AZ, 85287, USA
| | - Peiyuan Wang
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, MC 9709, Tempe, AZ, 85287, USA
| | - Heidi M Schambra
- Department of Neurology and Department of Physical Medicine and Rehabilitation, Grossman School of Medicine, New York University, New York, NY, USA
| | - Keith R Lohse
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Sydney Y Schaefer
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, MC 9709, Tempe, AZ, 85287, USA.
| |
Collapse
|
5
|
Yan M, Liu J, Guo Y, Hou Q, Song J, Wang X, Yu W, Lü Y. Comparative efficacy of non-invasive brain stimulation for post-stroke cognitive impairment: a network meta-analysis. Aging Clin Exp Res 2024; 36:37. [PMID: 38345751 PMCID: PMC10861650 DOI: 10.1007/s40520-023-02662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/14/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Non-invasive brain stimulation (NIBS) is a burgeoning approach with the potential to significantly enhance cognition and functional abilities in individuals who have undergone a stroke. However, the current evidence lacks robust comparisons and rankings of various NIBS methods concerning the specific stimulation sites and parameters used. To address this knowledge gap, this systematic review and meta-analysis seek to offer conclusive evidence on the efficacy and safety of NIBS in treating post-stroke cognitive impairment. METHODS A systematic review of randomized control trials (RCT) was performed using Bayesian network meta-analysis. We searched RCT in the following databases until June 2022: Cochrane Central Register of Controlled Trials (CENTRAL), PUBMED, and EMBASE. We compared any active NIBS to control in terms of improving cognition function and activities of daily living (ADL) capacity following stroke. RESULTS After reviewing 1577 retrieved citations, a total of 26 RCTs were included. High-frequency (HF)-repetitive transcranial magnetic stimulation (rTMS) (mean difference 2.25 [95% credible interval 0.77, 3.66]) was identified as a recommended approach for alleviating the global severity of cognition. Dual-rTMS (27.61 [25.66, 29.57]) emerged as a favorable technique for enhancing ADL function. In terms of stimulation targets, the dorsolateral prefrontal cortex exhibited a higher ranking in relation to the global severity of cognition. CONCLUSIONS Among various NIBS techniques, HF-rTMS stands out as the most promising intervention for enhancing cognitive function. Meanwhile, Dual-rTMS is highly recommended for improving ADL capacity.
Collapse
Affiliation(s)
- Mengyu Yan
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu Zhong District, , Chongqing, 400016, China
- Institute of Neuroscience, Chongqing Medical University, No. 1 Yixuayuan Road, Yu Zhong District, Chongqing, 400016, China
| | - Jiarui Liu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu Zhong District, , Chongqing, 400016, China
| | - Yiming Guo
- Institute of Neuroscience, Chongqing Medical University, No. 1 Yixuayuan Road, Yu Zhong District, Chongqing, 400016, China
| | - Qingtao Hou
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu Zhong District, , Chongqing, 400016, China
| | - Jiaqi Song
- Institute of Neuroscience, Chongqing Medical University, No. 1 Yixuayuan Road, Yu Zhong District, Chongqing, 400016, China
| | - Xiaoqin Wang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu Zhong District, , Chongqing, 400016, China
| | - Weihua Yu
- Institute of Neuroscience, Chongqing Medical University, No. 1 Yixuayuan Road, Yu Zhong District, Chongqing, 400016, China.
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu Zhong District, , Chongqing, 400016, China.
| |
Collapse
|
6
|
Ai Y, Liu Y, Yin M, Zhang L, Luo J, Zhang S, Huang L, Zhang C, Liu G, Fang J, Zheng H, Li L, Hu X. Interactions between tDCS treatment and COMT Val158Met in poststroke cognitive impairment. Clin Neurophysiol 2024; 158:43-55. [PMID: 38176157 DOI: 10.1016/j.clinph.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/04/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE This study aimed to explore the effect of catechol-O-methyltransferase (COMT) Val158Met and brain-derived neurotrophic factor (BDNF) Val66Met to post-stroke cognitive impairment (PSCI) and the interaction with transcranial direct current stimulation (tDCS). METHODS Seventy-six patients with PSCI were randomly assigned to Group (1) (n = 38) to receive anodal tDCS of left dorsolateral prefrontal cortex or Group (2) (n = 38) to receive sham stimulation. The intensity of the tDCS was 2 mA, and the stimulations were applied over the left DLPFC for 10 sessions. The Montreal Cognitive Assessment (MoCA) and backward digit span test (BDST) were assessed before, immediately after, and one month after stimulation. RESULTS After stimulation, patients in the tDCS group showed better improvement in both MoCA and BDST than those in the sham group. The results of GLMs also supported the main effects of tDCS on general cognitive function and working memory. Then we found that COMT genotype may have a main effect on the improvement of MoCA and BDST, and there may be an interaction between COMT genotype and tDCS in enhancing BDST. In contrast, BDNF genotype showed no significant main or interaction effects on any scales. CONCLUSIONS These findings demonstrate that tDCS can improve cognition after stroke. Gene polymorphisms of COMT can affect the efficacy of tDCS on PSCI, but BDNF may not. SIGNIFICANCE This study found that COMT Val158Met has an interaction on the efficacy of prefrontal tDCS in cognitive function, which provides reference for future tDCS research and clinical application.
Collapse
Affiliation(s)
- Yinan Ai
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Yuanwen Liu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Mingyu Yin
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Shuxian Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Li Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Chanjuan Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Guirong Liu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Jie Fang
- Xiamen Humanity Rehabilitation Hospital, Xiamen 361009, Fujian Province, PR China.
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Lili Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| |
Collapse
|
7
|
Millot S, Beis JM, Pierret J, Badin M, Sabau V, Bensoussan L, Paysant J, Ceyte H. Innovative Therapy Combining Neck Muscle Vibration and Transcranial Direct Current Stimulation in Association with Conventional Rehabilitation in Left Unilateral Spatial Neglect Patients: HEMISTIM Protocol for a Randomized Controlled Trial. Brain Sci 2023; 13:brainsci13040678. [PMID: 37190643 DOI: 10.3390/brainsci13040678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Unilateral spatial neglect (USN) rehabilitation requires the development of new methods that can be easily integrated into conventional practice. The aim of the HEMISTIM protocol is to assess immediate and long-term recovery induced by an innovative association of left-side neck-muscle vibration (NMV) and anodal transcranial Direct Current Stimulation (tDCS) on the ipsilesional posterior parietal cortex during occupational therapy sessions in patients with left USN. Participants will be randomly assigned to four groups: control, Left-NMV, Left-NMV + sham-tDCS or Left-NMV + anodal-tDCS. NMV and tDCS will be applied during the first 15 min of occupational therapy sessions, three days a week for three weeks. USN will be assessed at baseline, just at the end of the first experimental session, after the first and third weeks of the protocol and three weeks after its ending. Our primary outcome will be the evolution of the functional Catherine Bergego Scale score. Secondary outcome measures include five tests that investigate different neuropsychological aspects of USN. Left NMV, by activating multisensory integration neuronal networks, might enhance effects obtained by conventional therapy since post-effects were shown when it was combined with upper limb movements. We expect to reinforce lasting intermodal recalibration through LTP-like plasticity induced by anodal tDCS.
Collapse
Affiliation(s)
- Sarah Millot
- UGECAM Nord-Est, Institut Régional de Médecine Physique et de Réadaptation, Centre de Médecine Physique et de Réadaptation, Lay Saint-Christophe, France
- Université de Lorraine, DevAH, Nancy, France
| | - Jean-Marie Beis
- UGECAM Nord-Est, Institut Régional de Médecine Physique et de Réadaptation, Centre de Médecine Physique et de Réadaptation, Lay Saint-Christophe, France
- Université de Lorraine, DevAH, Nancy, France
| | - Jonathan Pierret
- UGECAM Nord-Est, Institut Régional de Médecine Physique et de Réadaptation, Centre de Médecine Physique et de Réadaptation, Lay Saint-Christophe, France
- Université de Lorraine, DevAH, Nancy, France
| | - Marina Badin
- UGECAM Nord-Est, Institut Régional de Médecine Physique et de Réadaptation, Centre de Médecine Physique et de Réadaptation, Lay Saint-Christophe, France
| | - Verginia Sabau
- UGECAM PACA-Corse, Centre Helio Marin, Vallauris, France
| | - Laurent Bensoussan
- Aix Marseille Univ, CNRS, INT, Marseille, France
- UGECAM PACA, Institut Universitaire de Réadaptation de Valmante Sud, Marseille, France
| | - Jean Paysant
- UGECAM Nord-Est, Institut Régional de Médecine Physique et de Réadaptation, Centre de Médecine Physique et de Réadaptation, Lay Saint-Christophe, France
- Université de Lorraine, DevAH, Nancy, France
| | | |
Collapse
|
8
|
Zhao Y, Li W, Huang D, Zhang W, Zhang S, Liu Q, Lv P, Yin Y. The therapeutic effect of transcranial direct current stimulation combined with cognitive training on patients with unilateral neglect after stroke. NeuroRehabilitation 2023; 52:477-483. [PMID: 37005898 DOI: 10.3233/nre-220265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
BACKGROUND: Unilateral neglect (UN) is a frequent cognitive disability following a stroke. Additional research is needed to determine the most effective cognitive rehabilitation techniques. OBJECTIVE: Based on the unilateral neglect neural network, we aim to explore the effect of a new model of transcranial direct current stimulation (tDCS) combined with cognitive training on stroke patients with unilateral neglect. METHODS: Thirty stroke patients with UN after stroke were randomly divided into three groups. All patients received cognitive training for UN and transcranial direct current stimulation with an anode placed on the corresponding part of the right hemisphere for 2 weeks. Treatment group A received multi-site tDCS from the inferior parietal lobule, middle temporal gyrus to prefrontal lobe. Group B received single-site tDCS of the inferior parietal lobule. The improvement of UN symptoms was evaluated by the scores of the Deviation index and Behavioral Inattention Test conventional tests. RESULTS: All groups showed improvements in all tests, and the scores of the treatment groups were statistically significant compared with the control group. CONCLUSION: Both single-site tDCS and multi-site tDCS have therapeutic effects on UN after stroke, and the difference in the therapeutic effects of the two modes still needs to be further explored.
Collapse
Affiliation(s)
- Yue Zhao
- North China University of Science and Technology, Tangshan, China
- Hebei Medical University, Shijiazhuang, China
| | - Weibo Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dai Huang
- Hebei General Hospital, Shijiazhuang, China
| | | | - Shaohua Zhang
- The Eighth Hospital of Hebei Province, Shijiazhuang, China
| | | | - Peiyuan Lv
- Hebei General Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, China
| | - Yu Yin
- North China University of Science and Technology, Tangshan, China
- Hebei Medical University, Shijiazhuang, China
- Hebei General Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, China
| |
Collapse
|
9
|
Li KP, Wu JJ, Zhou ZL, Xu DS, Zheng MX, Hua XY, Xu JG. Noninvasive Brain Stimulation for Neurorehabilitation in Post-Stroke Patients. Brain Sci 2023; 13:brainsci13030451. [PMID: 36979261 PMCID: PMC10046557 DOI: 10.3390/brainsci13030451] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Characterized by high morbidity, mortality, and disability, stroke usually causes symptoms of cerebral hypoxia due to a sudden blockage or rupture of brain vessels, and it seriously threatens human life and health. Rehabilitation is the essential treatment for post-stroke patients suffering from functional impairments, through which hemiparesis, aphasia, dysphagia, unilateral neglect, depression, and cognitive dysfunction can be restored to various degrees. Noninvasive brain stimulation (NIBS) is a popular neuromodulatory technology of rehabilitation focusing on the local cerebral cortex, which can improve clinical functions by regulating the excitability of corresponding neurons. Increasing evidence has been obtained from the clinical application of NIBS, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). However, without a standardized protocol, existing studies on NIBS show a wide variation in terms of stimulation site, frequency, intensity, dosage, and other parameters. Its application for neurorehabilitation in post-stroke patients is still limited. With advances in neuronavigation technologies, functional near-infrared spectroscopy, and functional MRI, specific brain regions can be precisely located for stimulation. On the basis of our further understanding on neural circuits, neuromodulation in post-stroke rehabilitation has also evolved from single-target stimulation to co-stimulation of two or more targets, even circuits and the network. The present study aims to review the findings of current research, discuss future directions of NIBS application, and finally promote the use of NIBS in post-stroke rehabilitation.
Collapse
Affiliation(s)
- Kun-Peng Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zong-Lei Zhou
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Dong-Sheng Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| |
Collapse
|
10
|
da Silva T, Luvizutto G, Martins L, da Costa R, de Souza J, Winckler F, Sartor L, Modolo G, Ferreira N, Rodrigues J, Kanda R, Fogaroli M, Borges G, Rizzatti G, Ribeiro P, Pires D, Favoretto D, Aguiar L, Bazan S, Betting L, Antunes L, Nunes H, Pereira V, Edwards T, Pontes-Neto O, Conforto A, Bazan R. Barriers to patient recruitment in a poststroke neurorehabilitation multicenter trial in Brazil. Braz J Med Biol Res 2023; 56:e12326. [PMID: 36722659 PMCID: PMC9883007 DOI: 10.1590/1414-431x2023e12326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/26/2022] [Indexed: 01/31/2023] Open
Abstract
There is a high demand for stroke rehabilitation in the Brazilian public health system, but most studies that have addressed rehabilitation for unilateral spatial neglect (USN) after stroke have been performed in high-income countries. Therefore, the aim of this study was to analyze USN patient recruitment in a multicenter noninvasive brain stimulation clinical trial performed in Brazil and to provide study design recommendations for future studies. We evaluated the reasons for exclusion of patients from a multicenter, randomized, double-blinded clinical trial of rehabilitation of USN patients after stroke. Clinical and demographic variables were compared between the included and excluded patients. A descriptive statistical analysis was performed. Only 173 of the 1953 potential neglect patients (8.8%) passed the initial screening. After screening evaluation, 87/173 patients (50.3%) were excluded for clinical reasons. Cognitive impairment led to the exclusion of 21/87 patients (24.1%). Low socioeconomic status led to the exclusion of 37/173 patients (21.4%). Difficulty obtaining transportation to access treatment was the most common reason for their exclusion (16/37 patients, 43.3%). The analyzed Brazilian institutions have potential for conducting studies of USN. The recruitment of stroke survivors with USN was restricted by the study design and limited financial support. A history of cognitive impairment, intracranial stenting or craniectomy, and lack of transportation were the most common barriers to participating in a multicenter noninvasive brain stimulation trial among patients with USN after stroke.
Collapse
Affiliation(s)
- T.R. da Silva
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil,Departamento de Reabilitação, Hospital das Clínicas, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - G.J. Luvizutto
- Departamento de Fisioterapia Aplicada, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brasil
| | - L.G. Martins
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - R.D.M. da Costa
- Departamento de Reabilitação, Hospital das Clínicas, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - J.T. de Souza
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - F.C. Winckler
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - L.C.A. Sartor
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - G.P. Modolo
- Departamento de Neurologia, Psicologia e Psiquiatria, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - N.C. Ferreira
- Departamento de Neurologia, Psicologia e Psiquiatria, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - J.C.S. Rodrigues
- Departamento de Reabilitação, Hospital das Clínicas, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - R.G. Kanda
- Departamento de Neurologia, Psicologia e Psiquiatria, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - M.O. Fogaroli
- Departamento de Neurologia, Psicologia e Psiquiatria, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - G.F. Borges
- Departamento de Neurologia, Psicologia e Psiquiatria, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - G.R.S. Rizzatti
- Departamento de Neurologia, Psicologia e Psiquiatria, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - P.W. Ribeiro
- Departamento de Neurologia, Psicologia e Psiquiatria, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - D.S. Pires
- Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - D.B. Favoretto
- Departamento de Neurociências e Ciências do Comportamento, Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - L.R. Aguiar
- Departamento de Neurociências e Ciências do Comportamento, Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - S.G.Z. Bazan
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - L.E.G. Betting
- Departamento de Neurologia, Psicologia e Psiquiatria, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - L.C.O. Antunes
- Departamento de Reabilitação, Hospital das Clínicas, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - H.R.C. Nunes
- Departamento de Saúde Pública, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - V.M. Pereira
- Department of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - T.G.S. Edwards
- Departamento de Neurociências e Ciências do Comportamento, Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - O. Pontes-Neto
- Departamento de Neurociências e Ciências do Comportamento, Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A.B. Conforto
- Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - R. Bazan
- Departamento de Neurologia, Psicologia e Psiquiatria, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| |
Collapse
|
11
|
Li L, Huang H. Noninvasive neuromodulation for unilateral neglect after stroke: a systematic review and network meta-analysis. Neurol Sci 2022; 43:5861-5874. [PMID: 35660991 DOI: 10.1007/s10072-022-06187-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To systematically evaluate the effect of noninvasive neuromodulation (NINM) on unilateral neglect (UN) after stroke and compare the effects of different NINMs. METHODS Randomized controlled trials (RCTs) on the effect of NINM on UN after stroke were retrieved from the PubMed, Embase, Cochrane Library, Web of Science, CNKI, Wanfang Data, VIP, and CBM databases from inception to January 2022. The risk of bias and quality of the trials were assessed following the Cochrane Handbook of Systematic Reviews and the physiotherapy evidence database PEDro Scale. Statistical analysis was conducted with Stata 16.0 and R 4.0.2. This study was registered on PROSPERO (No. CRD42021295336). RESULTS A total of 12 RCTs involving 291 patients were included. Meta-analysis showed that NINM could reduce the line bisection test (LBT) score (SMD = - 1.56, 95% CI - 2.10 ~ - 1.03, P < 0.05), the line cancellation test score (SMD = - 1.83, 95% CI - 2.39 ~ - 1.27, P < 0.05), and the star cancellation test score (SMD = - 2.85, 95% CI - 4.93 ~ - 0.76, P < 0.05). Network meta-analysis showed that the best probabilistic ranking of the effects of different NINMs on the LBT score was theta-burst stimulation (TBS) (P = 0.915) > repetitive transcranial magnetic stimulation (P = 0.068) > transcranial direct current stimulation (P = 0.018). CONCLUSION Existing evidence showed that NINM could improve UN after stroke and that TBS was best. Due to the number of included studies and sample size, more large-sample, multicenter, double-blinded, high-quality clinical RCTs are still needed in the future to further confirm the results of this research.
Collapse
Affiliation(s)
- Lingling Li
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Hailiang Huang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| |
Collapse
|
12
|
González-Rodriguez B, Serradell-Ribé N, Viejo-Sobera R, Romero-Muñoz JP, Marron EM. Transcranial direct current stimulation in neglect rehabilitation after stroke: a systematic review. J Neurol 2022; 269:6310-6329. [PMID: 36138161 PMCID: PMC9618519 DOI: 10.1007/s00415-022-11338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022]
Abstract
Hemispatial neglect is one of the most frequent attention disorders after stroke. The presence of neglect is associated with longer hospital stays, extended rehabilitation periods, and poorer functional recovery. Transcranial direct current stimulation (tDCS) is a new technique with promising results in neglect rehabilitation; therefore, the objective of this systematic review, performed following the PRISMA guidelines, is to evaluate the effectiveness of tDCS on neglect recovery after stroke. The search was done in MEDLINE (PubMed), Web of Science, Scopus, Cochrane Library, and BioMed Central databases. A total of 311 articles were found; only 11 met the inclusion criteria, including 152 post-stroke patients in total. Methodological quality and risk of bias were assessed for all the studies, and methodological characteristics of the studies, sample sizes, methods, main results, and other relevant data were extracted. tDCS intervention ranged from one to twenty sessions distributed in 1 day to 4 weeks, with intensity ranged from 1 to 2 mA. We found moderate evidence for the efficacy of tDCS in the rehabilitation of hemispatial neglect after a stroke, being more effective in combination with other interventions. Nonetheless, the limited number of studies and some studies' design characteristics makes it risky to draw categorical conclusions. Since scientific evidence is still scarce, further research is needed to determine the advantage of this treatment in acute, sub-acute and chronic stroke patients. Future studies should include larger samples, longer follow-ups, and broader neurophysiological assessments, with the final aim of establishing the appropriate use of tDCS as an adjuvant intervention in neurorehabilitation settings.
Collapse
Affiliation(s)
- B González-Rodriguez
- Brain Damage Unit, Beata María Ana Hospital, Madrid, Spain.,Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - N Serradell-Ribé
- Faculty of Health Sciences, Cognitive NeuroLab, Universitat Oberta de Catalunya, Madrid, Barcelona, Spain
| | - R Viejo-Sobera
- Faculty of Health Sciences, Cognitive NeuroLab, Universitat Oberta de Catalunya, Madrid, Barcelona, Spain
| | - J P Romero-Muñoz
- Brain Damage Unit, Beata María Ana Hospital, Madrid, Spain.,Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Elena M Marron
- Faculty of Health Sciences, Cognitive NeuroLab, Universitat Oberta de Catalunya, Madrid, Barcelona, Spain.
| |
Collapse
|
13
|
da Silva TR, de Carvalho Nunes HR, Martins LG, da Costa RDM, de Souza JT, Winckler FC, Sartor LCA, Modolo GP, Ferreira NC, da Silva Rodrigues JC, Kanda R, Fogarolli MO, Borges GF, Rizzatti GRS, Ribeiro PW, Favoretto DB, Aguiar L, Zanati Bazan SG, Betting LEG, de Oliveira Antunes LC, Mendes Pereira V, Santos TEG, Pontes-Neto O, Conforto AB, Bazan R, Luvizutto GJ. Brain stimulation can reduce unilateral spatial neglect after stroke: ELETRON trial. Ann Neurol 2022; 92:400-410. [PMID: 35688801 DOI: 10.1002/ana.26430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Rehabilitation top-down techniques based on brain stimulation present variable outcomes in unilateral spatial neglect (USN) after stroke. This study aimed to examine the effects of physical therapy after anodal and cathodal direct current stimulation (A-tDCS and C-tDCS, respectively) to improve visuospatial and functional impairments in individuals with USN after stroke. METHODS This double-blinded, pilot randomized clinical trial enrolled patients with USN after ischemic stroke. Randomization was stratified according to Behavior Inattention Test Conventional (BIT-C) and Catherine Bergego Scale (CBS). Outpatient physical therapy was conducted for 7.5 weeks after 20 min of tDCS. The primary outcome was the USN degree evaluated by the BIT-C. Secondary outcomes were the difference in CBS score, stroke severity [National Institutes of Health Stroke Scale (NIHSS)], disability [modified Rankin Scale (mRS)], autonomy [Barthel Index (BI), functional independence measure (FIM)], and quality of life (EQ-5D). Outcomes were analyzed using ANCOVA model corrected by age, baseline NIHSS and baseline BIT-C. Pairwise posthoc comparisons were performed using Bonferroni correction. RESULTS In the primary outcomes, A-tDCS led to greater improvement in BIT-C after intervention (MD: 18.4; 95%CI: 3.9-32.8; p=0.008) compared to sham. However, no significant differences were observed between A-tDCS and C-tDCS (MD: 13.9; 95%CI: -0.3-28.1; p=0.057), or C-tDCS and sham (MD: 4.5; 95%CI: -9.7-18.8; p=0.99). There were no significant differences between groups in terms of secondary outcomes. CONCLUSIONS A-tDCS associated with physical therapy can decrease the severity of USN after stroke. However, these preliminary findings must be confirmed by collecting additional evidence in a larger phase III trial. REGISTRATION URL: https://ensaiosclinicos.gov.br/; Unique Identifier RBR-78jvzx This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rafael Kanda
- Department of Neurology, Psychology and Psychiatry at Botucatu Medical School (UNESP)
| | | | | | | | | | - Diandra B Favoretto
- Department of Neurosciences and Behavioural Sciences, Hospital das Clínicas, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luan Aguiar
- Department of Neurosciences and Behavioural Sciences, Hospital das Clínicas, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | - Taiza E Grespan Santos
- Department of Neurosciences and Behavioural Sciences, Hospital das Clínicas, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Octávio Pontes-Neto
- Department of Neurosciences and Behavioural Sciences, Hospital das Clínicas, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Adriana Bastos Conforto
- Hospital das Clínicas São Paulo University and Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Rodrigo Bazan
- Department of Neurology, Psychology and Psychiatry at Botucatu Medical School (UNESP)
| | - Gustavo José Luvizutto
- Department of Applied Physical Therapy, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| |
Collapse
|
14
|
Olgiati E, Malhotra PA. Using non-invasive transcranial direct current stimulation for neglect and associated attentional deficits following stroke. Neuropsychol Rehabil 2022; 32:732-763. [PMID: 32892712 DOI: 10.1080/09602011.2020.1805335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Neglect is a disabling neuropsychological syndrome that is frequently observed following right-hemispheric stroke. Affected individuals often present with multiple attentional deficits, ranging from reduced orienting towards contralesional space to a generalized impairment in maintaining attention over time. Although a degree of spontaneous recovery occurs in most patients, in some individuals this condition can be treatment-resistant with prominent ongoing non-spatial deficits. Further, there is a large inter-individual variability in response to different therapeutic approaches. Given its potential to alter neuronal excitability and affect neuroplasticity, non-invasive brain stimulation is a promising tool that could potentially be utilized to facilitate recovery. However, there are many outstanding questions regarding its implementation in this heterogeneous patient group. Here we provide a critical overview of the available evidence on the use of non-invasive electrical brain stimulation, focussing on transcranial direct current stimulation (tDCS), to improve neglect and associated attentional deficits after right-hemispheric stroke. At present, there is insufficient robust evidence supporting the clinical use of tDCS to alleviate symptoms of neglect. Future research would benefit from careful study design, enhanced precision of electrical montages, multi-modal approaches exploring predictors of response, tailored dose-control applications and increased efforts to evaluate standalone tDCS versus its incorporation into combination therapy.
Collapse
Affiliation(s)
- Elena Olgiati
- Department of Brain Sciences, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Paresh A Malhotra
- Department of Brain Sciences, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, London, UK.,UK Dementia Research Institute, Care Research & Technology Centre, Imperial College London and University of Surrey, London, UK
| |
Collapse
|
15
|
Gorsler A, Grittner U, Rackoll T, Külzow N. Efficacy of Unilateral and Bilateral Parietal Transcranial Direct Current Stimulation on Right Hemispheric Stroke Patients With Neglect Symptoms: A Proof-of-Principle Study. BRAIN & NEUROREHABILITATION 2022; 15:e19. [PMID: 36743202 PMCID: PMC9833469 DOI: 10.12786/bn.2022.15.e19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/02/2022] [Accepted: 04/10/2022] [Indexed: 11/08/2022] Open
Abstract
Different transcranial direct current stimulation (tDCS) protocols have been tested to improve visuospatial neglect (VSN). So far, methodological heterogenity limits reliable conclusions about optimal stimualtion set-up. With this proof-of-principle study behavioral effects of two promising (uni- vs. bilateral) stimulation protocols were directly compared to gain more data for an appropriate tDCS protocol in subacute neglect patients. Notably, each tDCS set-up was combined with an identical sham condition to improve comparability. In a double-blind sham-controlled cross-over study 11 subacute post-stroke neglect patients received 20 minutes or 30 seconds (sham) tDCS (2 mA, 0.8 A/m2) parallel to neglect therapy randomized in unilateral (anode-reference: P4-Fp2 10-20 electroencephalography [EEG] system) and bilateral manner (anode-cathode: P4-P3) and 48h wash-out in-between. Before and immediately after stimulation performance were measured in cancellation task (bell test), and line bisection (deviation error). Significant difference between active and assigned sham condition was found in line bisection but not cancellation task. Particularly, deviation error was reduced after bilateral tDCS (hedges g* = 0.6) compared to bilateral sham, no such advantage were obtained for unilateral stimulation (hedges g* = 0.2). Using a direct comparison approach findings add further evidence that stimulating both hemispheres (bilateral) is superior in alleviating VSN symptoms than unilateral stimulation in subacute neglect.
Collapse
Affiliation(s)
- Anna Gorsler
- Kliniken Beelitz GmbH, Clinic for Neurological Rehabilitation, Beelitz-Heilstätten, Germany
| | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Torsten Rackoll
- BIH-QUEST Center for Responsible Research, Charité-Universitätsmedizin, Berlin, Berlin, Germany
| | - Nadine Külzow
- Kliniken Beelitz GmbH, Clinic for Neurological Rehabilitation, Beelitz-Heilstätten, Germany
| |
Collapse
|
16
|
Khan A, Yuan K, Bao SC, Ti CHE, Tariq A, Anjum N, Tong RKY. Can Transcranial Electrical Stimulation Facilitate Post-stroke Cognitive Rehabilitation? A Systematic Review and Meta-Analysis. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:795737. [PMID: 36188889 PMCID: PMC9397778 DOI: 10.3389/fresc.2022.795737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/11/2022] [Indexed: 01/12/2023]
Abstract
Background Non-invasive brain stimulation methods have been widely utilized in research settings to manipulate and understand the functioning of the human brain. In the last two decades, transcranial electrical stimulation (tES) has opened new doors for treating impairments caused by various neurological disorders. However, tES studies have shown inconsistent results in post-stroke cognitive rehabilitation, and there is no consensus on the effectiveness of tES devices in improving cognitive skills after the onset of stroke. Objectives We aim to systematically investigate the efficacy of tES in improving post-stroke global cognition, attention, working memory, executive functions, visual neglect, and verbal fluency. Furthermore, we aim to provide a pathway to an effective use of stimulation paradigms in future studies. Methods Preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines were followed. Randomized controlled trials (RCTs) were systematically searched in four different databases, including Medline, Embase, Pubmed, and PsychInfo. Studies utilizing any tES methods published in English were considered for inclusion. Standardized mean difference (SMD) for each cognitive domain was used as the primary outcome measure. Results The meta-analysis includes 19 studies assessing at least one of the six cognitive domains. Five RCTs studying global cognition, three assessing visual neglect, five evaluating working memory, three assessing attention, and nine studies focusing on aphasia were included for meta-analysis. As informed by the quantitative analysis of the included studies, the results favor the efficacy of tES in acute improvement in aphasic deficits (SMD = 0.34, CI = 0.02-0.67, p = 0.04) and attention deficits (SMD = 0.59, CI = -0.05-1.22, p = 0.07), however, no improvement was observed in any other cognitive domains. Conclusion The results favor the efficacy of tES in an improvement in aphasia and attentive deficits in stroke patients in acute, subacute, and chronic stages. However, the outcome of tES cannot be generalized across cognitive domains. The difference in the stimulation montages and parameters, diverse cognitive batteries, and variable number of training sessions may have contributed to the inconsistency in the outcome. We suggest that in future studies, experimental designs should be further refined, and standardized stimulation protocols should be utilized to better understand the therapeutic effect of stimulation.
Collapse
Affiliation(s)
- Ahsan Khan
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Kai Yuan
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Shi-Chun Bao
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Chun Hang Eden Ti
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Abdullah Tariq
- Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Nimra Anjum
- Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Raymond Kai-Yu Tong
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China,Hong Kong Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China,*Correspondence: Raymond Kai-Yu Tong
| |
Collapse
|
17
|
Xu J, Wu Z, Nürnberger A, Sabel BA. Reorganization of Brain Functional Connectivity Network and Vision Restoration Following Combined tACS-tDCS Treatment After Occipital Stroke. Front Neurol 2021; 12:729703. [PMID: 34777199 PMCID: PMC8580405 DOI: 10.3389/fneur.2021.729703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/17/2021] [Indexed: 01/01/2023] Open
Abstract
Objective: Non-invasive brain stimulation (NIBS) is already known to improve visual field functions in patients with optic nerve damage and partially restores the organization of brain functional connectivity networks (FCNs). However, because little is known if NIBS is effective also following brain damage, we now studied the correlation between visual field recovery and FCN reorganization in patients with stroke of the central visual pathway. Method: In a controlled, exploratory trial, 24 patients with hemianopia were randomly assigned to one of three brain stimulation groups: transcranial direct current stimulation (tDCS)/transcranial alternating current stimulation (tACS) (ACDC); sham tDCS/tACS (AC); sham tDCS/sham tACS (Sham), which were compared to age-matched controls (n = 24). Resting-state electroencephalogram (EEG) was collected at baseline, after 10 days stimulation and at 2 months follow-up. EEG recordings were analyzed for FCN measures using graph theory parameters, and FCN small worldness of the network and long pairwise coherence parameter alterations were then correlated with visual field performance. Result: ACDC enhanced alpha-band FCN strength in the superior occipital lobe of the lesioned hemisphere at follow-up. A negative correlation (r = −0.80) was found between the intact visual field size and characteristic path length (CPL) after ACDC with a trend of decreased alpha-band centrality of the intact middle occipital cortex. ACDC also significantly decreased delta band coherence between the lesion and the intact occipital lobe, and coherence was enhanced between occipital and temporal lobe of the intact hemisphere in the low beta band. Responders showed significantly higher strength in the low alpha band at follow-up in the intact lingual and calcarine cortex and in the superior occipital region of the lesioned hemisphere. Conclusion: While ACDC decreases delta band coherence between intact and damaged occipital brain areas indicating inhibition of low-frequency neural oscillations, ACDC increases FCN connectivity between the occipital and temporal lobe in the intact hemisphere. When taken together with the lower global clustering coefficient in responders, these findings suggest that FCN reorganization (here induced by NIBS) is adaptive in stroke. It leads to greater efficiency of neural processing, where the FCN requires fewer connections for visual processing.
Collapse
Affiliation(s)
- Jiahua Xu
- Institute of Medical Psychology, Medical Faculty, Otto-V.-Guericke University of Magdeburg, Magdeburg, Germany.,Faculty of Computer Science, Otto-V.-Guericke University of Magdeburg, Magdeburg, Germany
| | - Zheng Wu
- Institute of Medical Psychology, Medical Faculty, Otto-V.-Guericke University of Magdeburg, Magdeburg, Germany.,Faculty of Computer Science, Otto-V.-Guericke University of Magdeburg, Magdeburg, Germany
| | - Andreas Nürnberger
- Faculty of Computer Science, Otto-V.-Guericke University of Magdeburg, Magdeburg, Germany
| | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-V.-Guericke University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
18
|
Tavaszi I, Nagy AS, Szabo G, Fazekas G. Neglect syndrome in post-stroke conditions: assessment and treatment (scoping review). Int J Rehabil Res 2021; 44:3-14. [PMID: 32991354 DOI: 10.1097/mrr.0000000000000438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is no consensus about the definition or most effective treatment for neglect syndrome. The aim of this review was therefore to evaluate the results of trials that investigated different treatment methods for neglect syndrome. A systematic literature search in PubMed and Web of Science databases was performed to identify studies that investigated the effects of neglect therapies. Authors followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Studies were selected by two assayers, and disagreement was resolved by a third reviewer. The literature search identified 202 articles: 19 met the inclusion criteria and were included for data extraction. Thirty-five different kinds of assessments were used in these studies, and 17 treatment methods were applied. Successful treatments were reported at least in some parts of the assessments in 12 studies: mirror therapy (in two trials), transcranial magnetic stimulation, street crossing test in virtual reality, smooth pursuit eye movement training, saccadic eye movement therapy, direct current stimulation, eye patching therapy, prism adaptation treatment, socially assistive pet-type therapeutic robot (PARO), Kinesiological Instrument for Normal and Altered Reaching Movement robotic device therapy, transcutaneous electrical nerve stimulation, and optokinetic stimulation (the last two methods in the same trial). No success was shown in seven trials, which contained not only single treatments but combined ones also. Authors concluded that there are no convincing results for or against any of the different therapies used for neglect syndrome. The quality of the trials is questionable, and the numbers of included patients are small in the trials.
Collapse
Affiliation(s)
- Ibolya Tavaszi
- Department of Rehabilitation Post-Stroke, National Institute for Medical Rehabilitation, Budapest
| | - Alexandra Szilvia Nagy
- Department of Rehabilitation Post-Stroke, National Institute for Medical Rehabilitation, Budapest
| | - Gabor Szabo
- Department of Rehabilitation Post-Stroke, National Institute for Medical Rehabilitation, Budapest
| | - Gabor Fazekas
- Department of Rehabilitation Post-Stroke, National Institute for Medical Rehabilitation, Budapest
- Department of Rehabilitation Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
19
|
Wang T, Peeters R, Mantini D, Gillebert CR. Modulating the interhemispheric activity balance in the intraparietal sulcus using real-time fMRI neurofeedback: Development and proof-of-concept. NEUROIMAGE-CLINICAL 2021; 28:102513. [PMID: 33396000 PMCID: PMC7941162 DOI: 10.1016/j.nicl.2020.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/15/2020] [Accepted: 11/20/2020] [Indexed: 10/31/2022]
Abstract
The intraparietal sulcus (IPS) plays a key role in the distribution of attention across the visual field. In stroke patients, an imbalance between left and right IPS activity has been related to a spatial bias in visual attention characteristic of hemispatial neglect. In this study, we describe the development and implementation of a real-time functional magnetic resonance imaging neurofeedback protocol to noninvasively and volitionally control the interhemispheric IPS activity balance in neurologically healthy participants. Six participants performed three neurofeedback training sessions across three weeks. Half of them trained to voluntarily increase brain activity in left relative to right IPS, while the other half trained to regulate the IPS activity balance in the opposite direction. Before and after the training, we estimated the distribution of attention across the visual field using a whole and partial report task. Over the course of the training, two of the three participants in the left-IPS group increased the activity in the left relative to the right IPS, while the participants in the right-IPS group were not able to regulate the interhemispheric IPS activity balance. We found no evidence for a decrease in resting-state functional connectivity between left and right IPS, and the spatial distribution of attention did not change over the course of the experiment. This study indicates the possibility to voluntarily modulate the interhemispheric IPS activity balance. Further research is warranted to examine the effectiveness of this technique in the rehabilitation of post-stroke hemispatial neglect.
Collapse
Affiliation(s)
- Tianlu Wang
- Brain and Cognition, KU Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Ronald Peeters
- Radiology Department, University Hospitals Leuven, Leuven, Belgium
| | - Dante Mantini
- Research Centre for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Céline R Gillebert
- Brain and Cognition, KU Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
20
|
Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev 2020; 11:CD009645. [PMID: 33175411 PMCID: PMC8095012 DOI: 10.1002/14651858.cd009645.pub4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Stroke is one of the leading causes of disability worldwide. Functional impairment, resulting in poor performance in activities of daily living (ADL) among stroke survivors is common. Current rehabilitation approaches have limited effectiveness in improving ADL performance, function, muscle strength, and cognitive abilities (including spatial neglect) after stroke, with improving cognition being the number one research priority in this field. A possible adjunct to stroke rehabilitation might be non-invasive brain stimulation by transcranial direct current stimulation (tDCS) to modulate cortical excitability, and hence to improve these outcomes in people after stroke. OBJECTIVES To assess the effects of tDCS on ADL, arm and leg function, muscle strength and cognitive abilities (including spatial neglect), dropouts and adverse events in people after stroke. SEARCH METHODS We searched the Cochrane Stroke Group Trials Register, CENTRAL, MEDLINE, Embase and seven other databases in January 2019. In an effort to identify further published, unpublished, and ongoing trials, we also searched trials registers and reference lists, handsearched conference proceedings, and contacted authors and equipment manufacturers. SELECTION CRITERIA This is the update of an existing review. In the previous version of this review, we focused on the effects of tDCS on ADL and function. In this update, we broadened our inclusion criteria to compare any kind of active tDCS for improving ADL, function, muscle strength and cognitive abilities (including spatial neglect) versus any kind of placebo or control intervention. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial quality and risk of bias, extracted data, and applied GRADE criteria. If necessary, we contacted study authors to ask for additional information. We collected information on dropouts and adverse events from the trial reports. MAIN RESULTS We included 67 studies involving a total of 1729 patients after stroke. We also identified 116 ongoing studies. The risk of bias did not differ substantially for different comparisons and outcomes. The majority of participants had ischaemic stroke, with mean age between 43 and 75 years, in the acute, postacute, and chronic phase after stroke, and level of impairment ranged from severe to less severe. Included studies differed in terms of type, location and duration of stimulation, amount of current delivered, electrode size and positioning, as well as type and location of stroke. We found 23 studies with 781 participants examining the effects of tDCS versus sham tDCS (or any other passive intervention) on our primary outcome measure, ADL after stroke. Nineteen studies with 686 participants reported absolute values and showed evidence of effect regarding ADL performance at the end of the intervention period (standardised mean difference (SMD) 0.28, 95% confidence interval (CI) 0.13 to 0.44; random-effects model; moderate-quality evidence). Four studies with 95 participants reported change scores, and showed an effect (SMD 0.48, 95% CI 0.02 to 0.95; moderate-quality evidence). Six studies with 269 participants assessed the effects of tDCS on ADL at the end of follow-up and provided absolute values, and found improved ADL (SMD 0.31, 95% CI 0.01 to 0.62; moderate-quality evidence). One study with 16 participants provided change scores and found no effect (SMD -0.64, 95% CI -1.66 to 0.37; low-quality evidence). However, the results did not persist in a sensitivity analysis that included only trials with proper allocation concealment. Thirty-four trials with a total of 985 participants measured upper extremity function at the end of the intervention period. Twenty-four studies with 792 participants that presented absolute values found no effect in favour of tDCS (SMD 0.17, 95% CI -0.05 to 0.38; moderate-quality evidence). Ten studies with 193 participants that presented change values also found no effect (SMD 0.33, 95% CI -0.12 to 0.79; low-quality evidence). Regarding the effects of tDCS on upper extremity function at the end of follow-up, we identified five studies with a total of 211 participants (absolute values) without an effect (SMD -0.00, 95% CI -0.39 to 0.39; moderate-quality evidence). Three studies with 72 participants presenting change scores found an effect (SMD 1.07; 95% CI 0.04 to 2.11; low-quality evidence). Twelve studies with 258 participants reported outcome data for lower extremity function and 18 studies with 553 participants reported outcome data on muscle strength at the end of the intervention period, but there was no effect (high-quality evidence). Three studies with 156 participants reported outcome data on muscle strength at follow-up, but there was no evidence of an effect (moderate-quality evidence). Two studies with 56 participants found no evidence of effect of tDCS on cognitive abilities (low-quality evidence), but one study with 30 participants found evidence of effect of tDCS for improving spatial neglect (very low-quality evidence). In 47 studies with 1330 participants, the proportions of dropouts and adverse events were comparable between groups (risk ratio (RR) 1.25, 95% CI 0.74 to 2.13; random-effects model; moderate-quality evidence). AUTHORS' CONCLUSIONS: There is evidence of very low to moderate quality on the effectiveness of tDCS versus control (sham intervention or any other intervention) for improving ADL outcomes after stroke. However, the results did not persist in a sensitivity analyses including only trials with proper allocation concealment. Evidence of low to high quality suggests that there is no effect of tDCS on arm function and leg function, muscle strength, and cognitive abilities in people after stroke. Evidence of very low quality suggests that there is an effect on hemispatial neglect. There was moderate-quality evidence that adverse events and numbers of people discontinuing the treatment are not increased. Future studies should particularly engage with patients who may benefit the most from tDCS after stroke, but also should investigate the effects in routine application. Therefore, further large-scale randomised controlled trials with a parallel-group design and sample size estimation for tDCS are needed.
Collapse
Affiliation(s)
- Bernhard Elsner
- Department of Public Health, Dresden Medical School, Technical University Dresden, Dresden, Germany
- Department of Physiotherapy, SRH Hochschule für Gesundheit Gera, 07548 Gera, Germany
| | - Joachim Kugler
- Department of Public Health, Dresden Medical School, Technical University Dresden, Dresden, Germany
| | - Marcus Pohl
- Neurological Rehabilitation, Helios Klinik Schloss Pulsnitz, Pulsnitz, Germany
| | - Jan Mehrholz
- Department of Public Health, Dresden Medical School, Technical University Dresden, Dresden, Germany
| |
Collapse
|
21
|
Breaking the ice to improve motor outcomes in patients with chronic stroke: a retrospective clinical study on neuromodulation plus robotics. Neurol Sci 2020; 42:2785-2793. [PMID: 33159273 DOI: 10.1007/s10072-020-04875-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/01/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Stroke is one of the main causes of impairment affecting daily activities and quality of life. There is a growing effort to potentiate the recovery of functional gait and to enable stroke patients to walk independently. AIM To estimate the effects of dual-site transcranial direct current stimulation (dstDCS) on gait recovery in chronic stroke patients provided with robot-aided gait training (RAGT). METHODS Thirty-seven patients were included in this retrospective clinical study. Nine patients were provided with dstDCS during the first 10 min of RAGT by using Lokomat®Pro (on-RAGT), 15 patients immediately after RAGT (post-RAGT), and 13 patients immediately before RAGT (pre-RAGT). RESULTS Each group improved over time concerning disability burden and lower limb strength. on-RAGT and post-RAGT experienced better improvement in balance (p < 0.001) and, moderately, gait endurance (p = 0.04) as compared to pre-RAGT. Furthermore, all treatments decreased the facilitation of the unaffected hemisphere (p < 0.001) and the inhibition of the affected hemisphere (p < 0.001). The duration of such aftereffects was found to be greater for post-RAGT. DISCUSSION AND CONCLUSION This is the first trial with dstDCS coupled with RAGT in chronic stroke patients with gait impairment. When timely coupled with RAGT, dstDCS may be considered an effective tool for the recovery of lower limb function in patients with first unilateral stroke in the chronic phase. Moreover, our data suggest the ductility of dstDCS concerning RAGT timing, thus making this intervention suitable in a neurorehabilitation setting and well adaptable to patients' needs.
Collapse
|
22
|
Tscherpel C, Grefkes C. Funktionserholung nach Schlaganfall und die therapeutische Rolle der nicht-invasiven Hirnstimulation. KLIN NEUROPHYSIOL 2020. [DOI: 10.1055/a-1272-9435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ZusammenfassungIm Bereich der non-invasiven Hirnstimulation stellen die transkranielle Magnetstimulation (engl. transcranial magnetic stimulation, TMS) sowie die transkranielle Gleichstromstimulation (engl. transcranial direct current stimulation, tDCS) bis heute die wichtigsten Techniken zur Modulation kortikaler Erregbarkeit dar. Beide Verfahren induzieren Nacheffekte, welche die Zeit der reinen Stimulation überdauern, und ebnen damit den Weg für ihren therapeutischen Einsatz beim Schlaganfall. In diesem Übersichtsartikel diskutieren wir die aktuelle Datenlage TMS- und tDCS-vermittelter Therapien für die häufigsten schlaganfallbedingten Defizite wie Hemiparese, Aphasie und Neglect. Darüber hinaus adressieren wir mögliche Einschränkungen der gegenwärtigen Ansätze und zeigen Ansatzpunkte auf, um Neuromodulation nach Schlaganfall effektiver zu gestalten und damit das Outcome der Patienten zu verbessern.
Collapse
Affiliation(s)
- Caroline Tscherpel
- Klinik und Poliklinik für Neurologie, Universitätsklinik Köln
- Institut für Neurowissenschaften und Medizin (INM-3), Forschungszentrum Jülich
| | - Christian Grefkes
- Klinik und Poliklinik für Neurologie, Universitätsklinik Köln
- Institut für Neurowissenschaften und Medizin (INM-3), Forschungszentrum Jülich
| |
Collapse
|
23
|
Learmonth G, Benwell CSY, Märker G, Dascalu D, Checketts M, Santosh C, Barber M, Walters M, Muir KW, Harvey M. Non-invasive brain stimulation in Stroke patients (NIBS): A prospective randomized open blinded end-point (PROBE) feasibility trial using transcranial direct current stimulation (tDCS) in post-stroke hemispatial neglect. Neuropsychol Rehabil 2020; 31:1163-1189. [PMID: 32498606 PMCID: PMC8372288 DOI: 10.1080/09602011.2020.1767161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Up to 80% of people who experience a right-hemisphere stroke suffer from hemispatial neglect. This syndrome is debilitating and impedes rehabilitation. We carried out a clinical feasibility trial of transcranial direct current stimulation (tDCS) and a behavioural rehabilitation programme, alone or in combination, in patients with neglect. Patients >4 weeks post right hemisphere stroke were randomized to 10 sessions of tDCS, 10 sessions of a behavioural intervention, combined intervention, or a control task. Primary outcomes were recruitment and retention rates, with secondary outcomes effect sizes on measures of neglect and quality of life, assessed directly after the interventions, and at 6 months follow up. Of 288 confirmed stroke cases referred (representing 7% of confirmed strokes), we randomized 8% (0.6% of stroke cases overall). The largest number of exclusions (91/288 (34%)) were due to medical comorbidities that prevented patients from undergoing 10 intervention sessions. We recruited 24 patients over 29 months, with 87% completing immediate post-intervention and 67% 6 month evaluations. We established poor feasibility of a clinical trial requiring repeated hospital-based tDCS within a UK hospital healthcare setting, either with or without behavioural training, over a sustained time period. Future trials should consider intensity, duration and location of tDCS neglect interventions.Trial registration: ClinicalTrials.gov identifier: NCT02401724.
Collapse
Affiliation(s)
- Gemma Learmonth
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,School of Psychology, University of Glasgow, Glasgow, UK
| | - Christopher S Y Benwell
- School of Psychology, University of Glasgow, Glasgow, UK.,Division of Psychology, School of Social Sciences, University of Dundee, Dundee, UK
| | - Gesine Märker
- School of Psychology, University of Glasgow, Glasgow, UK
| | - Diana Dascalu
- School of Psychology, University of Glasgow, Glasgow, UK
| | - Matthew Checketts
- School of Psychology, University of Glasgow, Glasgow, UK.,Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | | | - Mark Barber
- University Hospital Monklands, Lanarkshire, UK
| | - Matthew Walters
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Keith W Muir
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Monika Harvey
- School of Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
24
|
Transcranial Direct Current Stimulation for Motor Recovery Following Brain Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020. [DOI: 10.1007/s40141-020-00262-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Transcranial electric stimulation optimizes the balance of visual attention across space. Clin Neurophysiol 2020; 131:912-920. [PMID: 32078920 DOI: 10.1016/j.clinph.2019.12.415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) provides a way to modulate spatial attention by enhancing the ratio of neural activity between the left and right hemispheres, with a potential benefit for the rehabilitation of visual neglect. METHODS We tested the effect of bilateral tDCS in healthy individuals performing a visual detection task. This protocol consists in the positioning of the anode and cathode on mirror positions over the left and right parietal areas. The stimulation was repeated over three days to maximize the chance to observe a bias to the hemispace controlateral to the anode. RESULTS Compared to a sham treatment, left anodal - right cathodal stimulation enhanced attention across the full range of space, since the first day with no build-up effect on the next days, and modified the balance of left-right omissions when stimuli appeared at the same time. CONCLUSION Bilateral tDCS improved detection in both visual fields, with no privileged processing of one side, except when concurrent stimuli were presented. The results provide partial support to the hemispheric rivalry hypothesis. SIGNIFICANCE The technique has the potential to boost attention in neglect patients but should be used as an adjuvant rather than as an alternative to functional rehabilitation.
Collapse
|
26
|
Abstract
BACKGROUND Noninvasive brain stimulation can modulate neural processing within the motor cortex and thereby might be beneficial in the rehabilitation of hemispatial neglect after stroke. METHODS We review the pertinent literature regarding the use of transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation in order to facilitate recovery of hemispatial neglect after stroke. RESULTS Twenty controlled trials (including 443 stroke patients) matched our inclusion criteria. Methodology and results of each study are presented in a comparative approach. Current data seem to indicate a better efficiency of repetitive transcranial magnetic stimulation, compared to tDCS to ameliorate hemispatial neglect after stroke. CONCLUSIONS Noninvasive brain stimulation has the potential to facilitate recovery of hemispatial neglect after stroke, but until today, there are not enough data to claim its routine use.
Collapse
|
27
|
Gammeri R, Iacono C, Ricci R, Salatino A. Unilateral Spatial Neglect After Stroke: Current Insights. Neuropsychiatr Dis Treat 2020; 16:131-152. [PMID: 32021206 PMCID: PMC6959493 DOI: 10.2147/ndt.s171461] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/24/2019] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Unilateral spatial neglect (USN) is a disorder of contralesional space awareness which often follows unilateral brain lesion. Since USN impairs awareness of contralesional space/body and often of concomitant motor disorders, its presence represents a negative prognostic factor of functional recovery. Thus, the disorder needs to be carefully diagnosed and treated. Here, we attempted to present a clear and concise picture of current insights in the comprehension and rehabilitation of USN. METHODS We first provided an updated overview of USN clinical and neuroanatomical features and then highlighted recent progresses in the diagnosis and rehabilitation of the disease. In relation to USN rehabilitation, we conducted a MEDLINE literature research on three of the most promising interventions for USN rehabilitation: prismatic adaptation (PA), non-invasive brain stimulation (NIBS), and virtual reality (VR). The identified studies were classified according to the strength of their methods. RESULTS The last years have witnessed a relative decrement of interest in the study of neuropsychological disorders of spatial awareness in USN, but a relative increase in the study of potential interventions for its rehabilitation. Although optimal protocols still need to be defined, high-quality studies have demonstrated the efficacy of PA, TMS and tDCS interventions for the treatment of USN. In addition, preliminary investigations are suggesting the potentials of GVS and VR approaches for USN rehabilitation. CONCLUSION Advancing neuropsychological and neuroscience tools to investigate USN pathophysiology is a necessary step to identify effective rehabilitation treatments and to foster our understanding of neurofunctional bases of spatial cognition in the healthy brain.
Collapse
Affiliation(s)
- Roberto Gammeri
- Department of Psychology, SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, University of Turin, Turin, Italy
| | - Claudio Iacono
- Department of Psychology, SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, University of Turin, Turin, Italy
| | - Raffaella Ricci
- Department of Psychology, SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | - Adriana Salatino
- Department of Psychology, SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, University of Turin, Turin, Italy
| |
Collapse
|
28
|
Zebhauser PT, Vernet M, Unterburger E, Brem AK. Visuospatial Neglect - a Theory-Informed Overview of Current and Emerging Strategies and a Systematic Review on the Therapeutic Use of Non-invasive Brain Stimulation. Neuropsychol Rev 2019; 29:397-420. [PMID: 31748841 PMCID: PMC6892765 DOI: 10.1007/s11065-019-09417-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 09/27/2019] [Indexed: 01/12/2023]
Abstract
Visuospatial neglect constitutes a supramodal cognitive deficit characterized by reduction or loss of spatial awareness for the contralesional space. It occurs in over 40% of right- and 20% of left-brain-lesioned stroke patients with lesions located mostly in parietal, frontal and subcortical brain areas. Visuospatial neglect is a multifaceted syndrome - symptoms can be divided into sensory, motor and representational neglect - and therefore requires an individually adapted diagnostic and therapeutic approach. Several models try to explain the origins of visuospatial neglect, of which the "interhemispheric rivalry model" is strongly supported by animal and human research. This model proposes that allocation of spatial attention is balanced by transcallosal inhibition and both hemispheres compete to direct attention to the contralateral hemi-space. Accordingly, a brain lesion causes an interhemispheric imbalance, which may be re-installed by activation of lesioned, or deactivation of unlesioned (over-activated) brain areas through noninvasive brain stimulation. Research in larger patient samples is needed to confirm whether noninvasive brain stimulation can improve long-term outcomes and whether these also affect activities of daily living and discharge destination.
Collapse
Affiliation(s)
- Paul Theo Zebhauser
- Department of Neuropsychology, Max-Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804, Munich, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar der Technischen Universität, Munich, Germany
| | - Marine Vernet
- Section on Neurocircuitry, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD, USA
| | - Evelyn Unterburger
- Division of Neuropsychology, Universitätsklinik Zürich USZ, Frauenklinikstrasse 26, Zurich, Switzerland
| | - Anna-Katharine Brem
- Department of Neuropsychology, Max-Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804, Munich, Germany.
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Lucente G, Valls-Sole J, Murillo N, Rothwell J, Coll J, Davalos A, Kumru H. Noninvasive Brain Stimulation and Noninvasive Peripheral Stimulation for Neglect Syndrome Following Acquired Brain Injury. Neuromodulation 2019; 23:312-323. [PMID: 31725939 DOI: 10.1111/ner.13062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/10/2019] [Accepted: 09/10/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Hemispatial neglect is a frequent condition usually following nondominant hemispheric brain injury. It strongly affects rehabilitation strategies and everyday life activities. It is associated with behavioral and cognitive disability with a strong impact on patient's life. METHODS We reviewed the published literature on the use of noninvasive brain stimulation, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), and of noninvasive peripheral muscle stimulation, as therapeutic strategies for rehabilitation of neglect after acquired brain injury, such as in stroke or in traumatic injuries. The studies were grouped as controlled or uncontrolled studies in each stimulation techniques. RESULTS Thirty-four studies were identified and 16 on rTMS, 10 on tDCS, and 8 on vibration. All studies were conducted in adult patients who suffered a stroke, except for one that was conducted in a patient suffering traumatic acquired brain injury and another that was conducted in a patient with brain tumor. In spite of significant variability in treatment protocols, patients' features and assessment of neglect, improvement was reported in almost all studies with no side-effects. CONCLUSIONS Noninvasive brain stimulation and neuromuscular vibration are promising therapeutic neuromodulatory approaches for neglect. Further randomized-controlled studies are needed to corroborate their effectiveness as separate and combined techniques.
Collapse
Affiliation(s)
- Giuseppe Lucente
- Department of Neuroscience, Hospital Germans Trias i Pujol, Badalona, Spain.,Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Medicine Department, Universitat Autonoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Josep Valls-Sole
- EMG Department, Hospital Clinic, Carrer de Villarroel, 170, 08036 Barcelona, Spain
| | - Narda Murillo
- Medicine Department, Universitat Autonoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain.,Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, 08916, Badalona, Spain
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, Queen Square, University College London, London, UK
| | - Jaume Coll
- Department of Neuroscience, Hospital Germans Trias i Pujol, Badalona, Spain.,Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Medicine Department, Universitat Autonoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Antoni Davalos
- Department of Neuroscience, Hospital Germans Trias i Pujol, Badalona, Spain.,Medicine Department, Universitat Autonoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Hatice Kumru
- Medicine Department, Universitat Autonoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, 08916, Badalona, Spain
| |
Collapse
|
30
|
[Top-down and bottom-up approaches for the treatment of unilateral spatial neglect in stroke patients: A systematic review]. Rehabilitacion (Madr) 2019; 53:93-103. [PMID: 31186102 DOI: 10.1016/j.rh.2018.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate the effectiveness of top-down and bottom-up approaches in the rehabilitation of unilateral spatial neglect in stroke patients. METHODOLOGY We carried out a systematic review of randomized controlled trials from January of 2013 to March of 2017. The following databases were searched: Scopus, Science Direct, Web of Science, Pubmed and CINHAL. The methodological quality, level of scientific evidence and the strength of recommendation were evaluated. RESULTS We included 13 studies (294 subjects): nine studies (188 patients) carried out therapies with a bottom-up approach such us eye patching, virtual reality, optokinetic stimulation, transcranial magnetic stimulation and prism adaption; three studies (94 patients) evaluated therapies with a top-down approach such us visual scanning, sensory feedback and mental practice; one study incorporated both approaches. Nine of these studies showed improvements in spatial neglect scales; five of these used bottom-up approaches, another three used top-down approaches and the remaining study combined both approaches. Disability was evaluated by nine studies, and only three reported improvements. Three studies reported significant improvements in motor function in the intervention groups. CONCLUSIONS Top-down and bottom-up approaches could improve unilateral spatial neglect, disability and motor function in patients with stroke.
Collapse
|
31
|
van Lieshout ECC, van Hooijdonk RF, Dijkhuizen RM, Visser-Meily JMA, Nijboer TCW. The Effect of Noninvasive Brain Stimulation on Poststroke Cognitive Function: A Systematic Review. Neurorehabil Neural Repair 2019; 33:355-374. [DOI: 10.1177/1545968319834900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction. Cognitive impairment after stroke has been associated with lower quality of life and independence in the long run, stressing the need for methods that target impairment for cognitive rehabilitation. The use of noninvasive brain stimulation (NIBS) on recovery of language functions is well documented, yet the effects of NIBS on other cognitive domains remain largely unknown. Therefore, we conducted a systematic review that evaluates the effects of different stimulation techniques on domain-specific (long-term) cognitive recovery after stroke. Methods. Three databases (PubMed, EMBASE, and PsycINFO) were searched for articles (in English) on the effects of NIBS on cognitive domains, published up to January 2018. Results. A total of 40 articles were included: randomized controlled trials (n = 21), studies with a crossover design (n = 9), case studies (n = 6), and studies with a mixed design (n = 4). Most studies tested effects on neglect (n = 25). The majority of the studies revealed treatment effects on at least 1 time point poststroke, in at least 1 cognitive domain. Studies varied highly on the factors time poststroke, number of treatment sessions, and stimulation protocols. Outcome measures were generally limited to a few cognitive tests. Conclusion. Our review suggests that NIBS is able to alleviate neglect after stroke. However, the results are still inconclusive and preliminary for the effect of NIBS on other cognitive domains. A standardized core set of outcome measures of cognition, also at the level of daily life activities and participation, and international agreement on treatment protocols, could lead to better evaluation of the efficacy of NIBS and comparisons between studies.
Collapse
Affiliation(s)
- Eline C. C. van Lieshout
- Utrecht University, Utrecht, The Netherlands
- University Medical Center Utrecht
- De Hoogstraat Rehabilitation Utrecht, The Netherlands
| | - Roel F. van Hooijdonk
- University Medical Center Utrecht
- De Hoogstraat Rehabilitation Utrecht, The Netherlands
| | | | | | - Tanja C. W. Nijboer
- Utrecht University, Utrecht, The Netherlands
- University Medical Center Utrecht
- De Hoogstraat Rehabilitation Utrecht, The Netherlands
| |
Collapse
|
32
|
Yamaguchi T, Satow T, Komuro T, Mima T. Transcranial Direct Current Stimulation Improves Pusher Phenomenon. Case Rep Neurol 2019; 11:61-65. [PMID: 31543787 PMCID: PMC6739711 DOI: 10.1159/000497284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 11/19/2022] Open
Abstract
An 83-year-old man suffered from cerebral infarction of the right middle cerebral artery territory. In association with severe left hemiparesis and hemispatial neglect on the left side, he showed severe pusher phenomenon (PP), which made rehabilitation difficult. Transcranial direct current stimulation (tDCS) was applied to the parietal area (2 mA × 20 min/day; anode on the right and cathode on the left) for 8 days, which resulted in remarkable improvement of PP and caused prolongation of static sitting time. tDCS of the parietal area could be a novel treatment option of PP following stroke.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Department of Rehabilitation Medicine, Nagahama City Hospital, Nagahama, Japan
| | - Takeshi Satow
- Department of Neurosurgery, Nagahama City Hospital, Nagahama, Japan
| | - Taro Komuro
- Department of Neurosurgery, Nagahama City Hospital, Nagahama, Japan
| | - Tatsuya Mima
- The Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, Japan
| |
Collapse
|
33
|
Valero-Cabré A, Toba MN, Hilgetag CC, Rushmore RJ. Perturbation-driven paradoxical facilitation of visuo-spatial function: Revisiting the 'Sprague effect'. Cortex 2019; 122:10-39. [PMID: 30905382 DOI: 10.1016/j.cortex.2019.01.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/17/2018] [Accepted: 01/30/2019] [Indexed: 01/29/2023]
Abstract
The 'Sprague Effect' described in the seminal paper of James Sprague (Science 153:1544-1547, 1966a) is an unexpected paradoxical effect in which a second brain lesion reversed functional deficits induced by an earlier lesion. It was observed initially in the cat where severe and permanent contralateral visually guided attentional deficits generated by the ablation of large areas of the visual cortex were reversed by the subsequent removal of the superior colliculus (SC) opposite to the cortical lesion or by the splitting of the collicular commissure. Physiologically, this effect has been explained in several ways-most notably by the reduction of the functional inhibition of the ipsilateral SC by the contralateral SC, and the restoration of normal interactions between cortical and midbrain structures after ablation. In the present review, we aim at reappraising the 'Sprague Effect' by critically analyzing studies that have been conducted in the feline and human brain. Moreover, we assess applications of the 'Sprague Effect' in the rehabilitation of visually guided attentional impairments by using non-invasive therapeutic approaches such as transcranial magnetic stimulation (TMS) and transcranial direct-current stimulation (tDCS). We also review theoretical models of the effect that emphasize the inhibition and balancing between the two hemispheres and show implications for lesion inference approaches. Last, we critically review whether the resulting inter-hemispheric rivalry theories lead toward an efficient rehabilitation of stroke in humans. We conclude by emphasizing key challenges in the field of 'Sprague Effect' applications in order to design better therapies for brain-damaged patients.
Collapse
Affiliation(s)
- Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab Team, Brain and Spine Institute, ICM, Paris, France; CNRS UMR 7225, Inserm UMR S 1127, Sorbonne Universités, UPMC Paris 06, F-75013, IHU-A-ICM, Paris, France; Laboratory for Cerebral Dynamics, Plasticity & Rehabilitation, Boston University School of Medicine, Boston, MA, USA.
| | - Monica N Toba
- Laboratory of Functional Neurosciences (EA 4559), University Hospital of Amiens and University of Picardy Jules Verne, Amiens, France
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Germany; Department of Health Sciences, Boston University, Boston, MA, USA
| | - R Jarrett Rushmore
- Laboratory for Cerebral Dynamics, Plasticity & Rehabilitation, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
34
|
Effects of Transcranial Direct Current Stimulation of the Posterior Parietal Cortex on the Control of Visual Attention. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Kashiwagi FT, El Dib R, Gomaa H, Gawish N, Suzumura EA, da Silva TR, Winckler FC, de Souza JT, Conforto AB, Luvizutto GJ, Bazan R. Noninvasive Brain Stimulations for Unilateral Spatial Neglect after Stroke: A Systematic Review and Meta-Analysis of Randomized and Nonrandomized Controlled Trials. Neural Plast 2018; 2018:1638763. [PMID: 30050569 PMCID: PMC6046134 DOI: 10.1155/2018/1638763] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/15/2018] [Indexed: 12/11/2022] Open
Abstract
Background Unilateral spatial neglect (USN) is the most frequent perceptual disorder after stroke. Noninvasive brain stimulation (NIBS) is a tool that has been used in the rehabilitation process to modify cortical excitability and improve perception and functional capacity. Objective To assess the impact of NIBS on USN after stroke. Methods An extensive search was conducted up to July 2016. Studies were selected if they were controlled and noncontrolled trials examining transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), and theta burst stimulation (TBS) in USN after stroke, with outcomes measured by standardized USN and functional tests. Results Twelve RCTs (273 participants) and 4 non-RCTs (94 participants) proved eligible. We observed a benefit in overall USN measured by the line bisection test with NIBS in comparison to sham (SMD -2.35, 95% CI -3.72, -0.98; p = 0.0001); the rTMS yielded results that were consistent with the overall meta-analysis (SMD -2.82, 95% CI -3.66, -1.98; p = 0.09). The rTMS compared with sham also suggested a benefit in overall USN measured by Motor-Free Visual Perception Test at both 1 Hz (SMD 1.46, 95% CI 0.73, 2.20; p < 0.0001) and 10 Hz (SMD 1.19, 95% CI 0.48, 1.89; p = 0.54). There was also a benefit in overall USN measured by Albert's test and the line crossing test with 1 Hz rTMS compared to sham (SMD 2.04, 95% CI 1.14, 2.95; p < 0.0001). Conclusions The results suggest a benefit of NIBS on overall USN, and we conclude that rTMS is more efficacious compared to sham for USN after stroke.
Collapse
Affiliation(s)
- Flávio Taira Kashiwagi
- Neurology Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Regina El Dib
- Science and Technology Institute, Universidade Estadual Paulista (UNESP), São José dos Campos, SP, Brazil
| | - Huda Gomaa
- Department of Pharmacy, Tanta Chest Hospital, Tanta, Egypt
| | - Nermeen Gawish
- Department of Pharmacy, Tanta Chest Hospital, Tanta, Egypt
| | | | - Taís Regina da Silva
- Neurology Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Fernanda Cristina Winckler
- Neurology Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Juli Thomaz de Souza
- Science and Technology Institute, Universidade Estadual Paulista (UNESP), São José dos Campos, SP, Brazil
| | | | - Gustavo José Luvizutto
- Department of Applied Physical Therapy, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Rodrigo Bazan
- Neurology Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
36
|
Salazar APS, Vaz PG, Marchese RR, Stein C, Pinto C, Pagnussat AS. Noninvasive Brain Stimulation Improves Hemispatial Neglect After Stroke: A Systematic Review and Meta-Analysis. Arch Phys Med Rehabil 2018; 99:355-366.e1. [DOI: 10.1016/j.apmr.2017.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/13/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
|
37
|
Demuth HU, Dijkhuizen RM, Farr TD, Gelderblom M, Horsburgh K, Iadecola C, Mcleod DD, Michalski D, Murphy TH, Orbe J, Otte WM, Petzold GC, Plesnila N, Reiser G, Reymann KG, Rueger MA, Saur D, Savitz SI, Schilling S, Spratt NJ, Turner RJ, Vemuganti R, Vivien D, Yepes M, Zille M, Boltze J. Recent progress in translational research on neurovascular and neurodegenerative disorders. Restor Neurol Neurosci 2018; 35:87-103. [PMID: 28059802 PMCID: PMC5302043 DOI: 10.3233/rnn-160690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The already established and widely used intravenous application of recombinant tissue plasminogen activator as a re-opening strategy for acute vessel occlusion in ischemic stroke was recently added by mechanical thrombectomy, representing a fundamental progress in evidence-based medicine to improve the patient’s outcome. This has been paralleled by a swift increase in our understanding of pathomechanisms underlying many neurovascular diseases and most prevalent forms of dementia. Taken together, these current advances offer the potential to overcome almost two decades of marginally successful translational research on stroke and dementia, thereby spurring the entire field of translational neuroscience. Moreover, they may also pave the way for the renaissance of classical neuroprotective paradigms. This review reports and summarizes some of the most interesting and promising recent achievements in neurovascular and dementia research. It highlights sessions from the 9th International Symposium on Neuroprotection and Neurorepair that have been discussed from April 19th to 22nd in Leipzig, Germany. To acknowledge the emerging culture of interdisciplinary collaboration and research, special emphasis is given on translational stories ranging from fundamental research on neurode- and -regeneration to late stage translational or early stage clinical investigations.
Collapse
Affiliation(s)
- Hans-Ulrich Demuth
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology (IZI-MWT), Halle/Saale, Germany
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, The Netherlands
| | - Tracy D Farr
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karen Horsburgh
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Costantino Iadecola
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Damian D Mcleod
- University of Newcastle, Hunter Medical Research Institute and Hunter New England Local Health District, Newcastle, Australia
| | | | - Tim H Murphy
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Josune Orbe
- Atherothrombosis Laboratory, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Willem M Otte
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, The Netherlands.,Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center; Munich Cluster of Systems Neurology (Synergy), LMU Munich, Germany
| | - Georg Reiser
- Institute for Neurobiochemistry, University of Magdeburg, Magdeburg, Germany
| | - Klaus G Reymann
- Neuropharmacology Lab, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Maria A Rueger
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Dorothee Saur
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Sean I Savitz
- Department of Neurology, UTHealth Medical School, Houston, TX, USA
| | - Stephan Schilling
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology (IZI-MWT), Halle/Saale, Germany
| | - Neil J Spratt
- University of Newcastle, Hunter Medical Research Institute and Hunter New England Local Health District, Newcastle, Australia
| | - Renée J Turner
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, The University of Adelaide, Adelaide, Australia
| | - Raghu Vemuganti
- Deptartment of Neurological Surgery, University of Wisconsin and William S. Middleton VA Hospital, Madison, WI, USA
| | - Denis Vivien
- Cell Biology and Clinical Research Department, Medical Center, Université Caen-Normandie, GIP Cyceron; Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the neurovascular Unit, Caen, France
| | - Manuel Yepes
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Marietta Zille
- Department of Neurology and Neuroscience, The Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, NY, USA
| | - Johannes Boltze
- Department of Medical Cell Technology, Fraunhofer Research Institution for Marine Biotechnology; Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| | | |
Collapse
|
38
|
Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Flöel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, McCaig CD, Miniussi C, Miranda PC, Moliadze V, Nitsche MA, Nowak R, Padberg F, Pascual-Leone A, Poppendieck W, Priori A, Rossi S, Rossini PM, Rothwell J, Rueger MA, Ruffini G, Schellhorn K, Siebner HR, Ugawa Y, Wexler A, Ziemann U, Hallett M, Paulus W. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol 2017; 128:1774-1809. [PMID: 28709880 PMCID: PMC5985830 DOI: 10.1016/j.clinph.2017.06.001] [Citation(s) in RCA: 753] [Impact Index Per Article: 94.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/29/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022]
Abstract
Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1-2mA and during tACS at higher peak-to-peak intensities above 2mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues. Safety is established for low-intensity 'conventional' TES defined as <4mA, up to 60min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3-13A/m2 that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10mA, frequencies in the kHz range appear to be safe. In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6-7, 2016 and were refined thereafter by email correspondence.
Collapse
Affiliation(s)
- A Antal
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany.
| | - I Alekseichuk
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - M Bikson
- Department of Biomedical Engineering, The City College of New York, New York, USA
| | - J Brockmöller
- Department of Clinical Pharmacology, University Medical Center Goettingen, Germany
| | - A R Brunoni
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, Laboratory of Neurosciences (LIM-27) and Interdisciplinary Center for Applied Neuromodulation University Hospital, University of São Paulo, São Paulo, Brazil
| | - R Chen
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute, Toronto, Ontario, Canada
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke NIH, Bethesda, USA
| | | | - J Ellrich
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany; EBS Technologies GmbH, Europarc Dreilinden, Germany
| | - A Flöel
- Universitätsmedizin Greifswald, Klinik und Poliklinik für Neurologie, Greifswald, Germany
| | - F Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - M S George
- Brain Stimulation Division, Medical University of South Carolina, and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - R Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - J Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Germany
| | - C S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Carl von Ossietzky Universität, Oldenburg, Germany
| | - F C Hummel
- Defitech Chair of Clinical Neuroengineering, Centre of Neuroprosthetics (CNP) and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
| | - J P Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, and EA 4391, Nerve Excitability and Therapeutic Team (ENT), Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - D Liebetanz
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - C K Loo
- School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
| | - C D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - C Miniussi
- Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - P C Miranda
- Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - V Moliadze
- Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University, Kiel, Germany
| | - M A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
| | - R Nowak
- Neuroelectrics, Barcelona, Spain
| | - F Padberg
- Department of Psychiatry and Psychotherapy, Munich Center for Brain Stimulation, Ludwig-Maximilian University Munich, Germany
| | - A Pascual-Leone
- Division of Cognitive Neurology, Harvard Medical Center and Berenson-Allen Center for Noninvasive Brain Stimulation at Beth Israel Deaconess Medical Center, Boston, USA
| | - W Poppendieck
- Department of Information Technology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - A Priori
- Center for Neurotechnology and Experimental Brain Therapeutich, Department of Health Sciences, University of Milan Italy; Deparment of Clinical Neurology, University Hospital Asst Santi Paolo E Carlo, Milan, Italy
| | - S Rossi
- Department of Medicine, Surgery and Neuroscience, Human Physiology Section and Neurology and Clinical Neurophysiology Section, Brain Investigation & Neuromodulation Lab, University of Siena, Italy
| | - P M Rossini
- Area of Neuroscience, Institute of Neurology, University Clinic A. Gemelli, Catholic University, Rome, Italy
| | | | - M A Rueger
- Department of Neurology, University Hospital of Cologne, Germany
| | | | | | - H R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Y Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Japan
| | - A Wexler
- Department of Science, Technology & Society, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - U Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - M Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - W Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| |
Collapse
|
39
|
Increased Alpha-Rhythm Dynamic Range Promotes Recovery from Visuospatial Neglect: A Neurofeedback Study. Neural Plast 2017; 2017:7407241. [PMID: 28529806 PMCID: PMC5424484 DOI: 10.1155/2017/7407241] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/08/2017] [Indexed: 11/22/2022] Open
Abstract
Despite recent attempts to use electroencephalogram (EEG) neurofeedback (NFB) as a tool for rehabilitation of motor stroke, its potential for improving neurological impairments of attention—such as visuospatial neglect—remains underexplored. It is also unclear to what extent changes in cortical oscillations contribute to the pathophysiology of neglect, or its recovery. Utilizing EEG-NFB, we sought to causally manipulate alpha oscillations in 5 right-hemisphere stroke patients in order to explore their role in visuospatial neglect. Patients trained to reduce alpha oscillations from their right posterior parietal cortex (rPPC) for 20 minutes daily, over 6 days. Patients demonstrated successful NFB learning between training sessions, denoted by improved regulation of alpha oscillations from rPPC. We observed a significant negative correlation between visuospatial search deficits (i.e., cancellation test) and reestablishment of spontaneous alpha-rhythm dynamic range (i.e., its amplitude variability). Our findings support the use of NFB as a tool for investigating neuroplastic recovery after stroke and suggest reinstatement of intact parietal alpha oscillations as a promising target for reversing attentional deficits. Specifically, we demonstrate for the first time the feasibility of EEG-NFB in neglect patients and provide evidence that targeting alpha amplitude variability might constitute a valuable marker for clinical symptoms and self-regulation.
Collapse
|
40
|
Reteig LC, Talsma LJ, van Schouwenburg MR, Slagter HA. Transcranial Electrical Stimulation as a Tool to Enhance Attention. JOURNAL OF COGNITIVE ENHANCEMENT 2017. [DOI: 10.1007/s41465-017-0010-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Kim DY, Kim YH, Lee J, Chang WH, Kim MW, Pyun SB, Yoo WK, Ohn SH, Park KD, Oh BM, Lim SH, Jung KJ, Ryu BJ, Im S, Jee SJ, Seo HG, Rah UW, Park JH, Sohn MK, Chun MH, Shin HS, Lee SJ, Lee YS, Park SW, Park YG, Paik NJ, Lee SG, Lee JK, Koh SE, Kim DK, Park GY, Shin YI, Ko MH, Kim YW, Yoo SD, Kim EJ, Oh MK, Chang JH, Jung SH, Kim TW, Kim WS, Kim DH, Park TH, Lee KS, Hwang BY, Song YJ. Clinical Practice Guideline for Stroke Rehabilitation in Korea 2016. BRAIN & NEUROREHABILITATION 2017. [DOI: 10.12786/bn.2017.10.e11] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Deog Young Kim
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Korea
| | - Jongmin Lee
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Korea
| | - Min-Wook Kim
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Korea
| | - Sung-Bom Pyun
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, Korea
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Korea
| | - Suk Hoon Ohn
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Korea
| | - Ki Deok Park
- Department of Rehabilitation Medicine, Gachon University College of Medicine, Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Korea
| | - Seong Hoon Lim
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Korea
| | - Kang Jae Jung
- Department of Physical Medicine and Rehabilitation, Eulji University Hospital & Eulji University School of Medicine, Korea
| | - Byung-Ju Ryu
- Department of Physical Medicine and Rehabilitation, Sahmyook Medical Center, Korea
| | - Sun Im
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Korea
| | - Sung Ju Jee
- Department of Rehabilitation Medicine, Chungnam National University College of Medicine, Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Korea
| | - Ueon Woo Rah
- Department of Physical Medicine and Rehabilitation, Ajou University School of Medicine, Korea
| | - Joo Hyun Park
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Korea
| | - Min Kyun Sohn
- Department of Rehabilitation Medicine, Chungnam National University College of Medicine, Korea
| | - Min Ho Chun
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Korea
| | - Hee Suk Shin
- Department of Rehabilitation Medicine and Institute of Health Sciences, Gyeongsang National University College of Medicine, Korea
| | - Seong Jae Lee
- Department of Rehabilitation Medicine, College of Medicine Dankook University, Korea
| | - Yang-Soo Lee
- Department of Rehabilitation Medicine, Kyungpook National University School of Medicine, Korea
| | - Si-Woon Park
- Department of Rehabilitation Medicine, Catholic Kwandong University International St Mary's Hospital, Korea
| | - Yoon Ghil Park
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Korea
| | - Nam Jong Paik
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Korea
| | - Sam-Gyu Lee
- Department of Physical and Rehabilitation Medicine, Chonnam National University Medical School, Korea
| | - Ju Kang Lee
- Department of Rehabilitation Medicine, Gachon University College of Medicine, Korea
| | - Seong-Eun Koh
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, Korea
| | - Don-Kyu Kim
- Department of Physical Medicine and Rehabilitation, College of Medicine, Chung-Ang University, Korea
| | - Geun-Young Park
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Korea
| | - Yong Il Shin
- Department of Rehabilitation Medicine, Pusan National University Hospital, Korea
| | - Myoung-Hwan Ko
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Medical School, Korea
| | - Yong Wook Kim
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Korea
| | - Seung Don Yoo
- Department of Physical Medicine and Rehabilitation, Kyung Hee University College of Medicine, Korea
| | - Eun Joo Kim
- Department of Physical Medicine and Rehabilitation, National Rehabilitation Hospital, Korea
| | - Min-Kyun Oh
- Department of Rehabilitation Medicine and Institute of Health Sciences, Gyeongsang National University College of Medicine, Korea
| | - Jae Hyeok Chang
- Department of Rehabilitation Medicine, Pusan National University Hospital, Korea
| | - Se Hee Jung
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Korea
| | - Tae-Woo Kim
- TBI rehabilitation center, National Traffic Injury Rehabilitation Hospital, College of Medicine, The Catholic University of Korea, Korea
| | - Won-Seok Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Korea
| | - Dae Hyun Kim
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Korea
| | - Tai Hwan Park
- Department of Neurology, Seoul Medical Center, Korea
| | - Kwan-Sung Lee
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Korea
| | - Byong-Yong Hwang
- Department of Physical Therapy, Yong-In University College of Health & Welfare, Korea
| | - Young Jin Song
- Department of Rehabilitation Medicine, Asan Medical Center, Korea
| |
Collapse
|
42
|
Maniglia M, Cottereau BR, Soler V, Trotter Y. Rehabilitation Approaches in Macular Degeneration Patients. Front Syst Neurosci 2016; 10:107. [PMID: 28082876 PMCID: PMC5187382 DOI: 10.3389/fnsys.2016.00107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/12/2016] [Indexed: 11/13/2022] Open
Abstract
Age related macular degeneration (AMD) is a visual disease that affects elderly population. It entails a progressive loss of central vision whose consequences are dramatic for the patient's quality of life. Current rehabilitation programs are restricted to technical aids based on visual devices. They only temporarily improve specific visual functions such as reading skills. Considering the rapid increase of the aging population worldwide, it is crucial to intensify clinical research on AMD in order to develop simple and efficient methods that improve the patient's visual performances in many different contexts. One very promising approach to face this challenge is based on perceptual learning (PL). Through intensive practice, PL can induce neural plasticity in sensory cortices and result in long-lasting enhancements for various perceptual tasks in both normal and visually impaired populations. A growing number of studies showed how appropriate PL protocols improve visual functions in visual disorders, namely amblyopia, presbyopia or myopia. In order to successfully apply these approaches to more severe conditions such as AMD, numerous challenges have to be overcome. Indeed, the overall elderly age of patients and the reduced cortical surface that is devoted to peripheral vision potentially limit neural plasticity in this population. In addition, ocular fixation becomes much less stable because patients have to rely on peripheral fixation spots outside the scotoma whose size keeps on evolving. The aim of this review article is to discuss the recent literature on this topic and to offer a unified approach for developing new rehabilitation programs of AMD using PL. We argue that with an appropriate experimental and training protocol that is adapted to each patient needs, PL can offer fascinating opportunities for the development of simple, non-expensive rehabilitation approaches a large spectrum of visual functions in AMD patients.
Collapse
Affiliation(s)
- Marcello Maniglia
- Centre de Recherche Cerveau et Cognition, Université de Toulouse-UPSToulouse, France; Centre National de la Recherche ScientifiqueToulouse, France; Department of Psychology, University of CaliforniaRiverside, CA, USA
| | - Benoit R Cottereau
- Centre de Recherche Cerveau et Cognition, Université de Toulouse-UPSToulouse, France; Centre National de la Recherche ScientifiqueToulouse, France
| | - Vincent Soler
- Department of Ophthalmology, Hopital CHU Purpan Toulouse, France
| | - Yves Trotter
- Centre de Recherche Cerveau et Cognition, Université de Toulouse-UPSToulouse, France; Centre National de la Recherche ScientifiqueToulouse, France
| |
Collapse
|
43
|
Azouvi P, Jacquin-Courtois S, Luauté J. Rehabilitation of unilateral neglect: Evidence-based medicine. Ann Phys Rehabil Med 2016; 60:191-197. [PMID: 27986428 DOI: 10.1016/j.rehab.2016.10.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 10/28/2016] [Accepted: 10/29/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND In the last decades, several rehabilitation methods have been developed to improve spatial neglect. These can be classified according to their theoretical basis: (i) enhance awareness of neglect behaviour through a top-down mechanism; (ii) low-level bottom-up sensory stimulation; (iii) modulation of inhibitory processes; (iv) increase arousal. OBJECTIVE The purpose of this study was to provide an overview of the evidence on the effectiveness of rehabilitation procedures for unilateral neglect. METHOD A systematic search was performed to look for all randomised controlled trials aimed at reducing left spatial neglect that included a functional assessment. In addition, recent review papers and meta-analyses were analysed. RESULTS Thirty-seven randomized controlled trials were found (12 bottom-up; 12 top-down; 1 interhemispheric competition; 12 combination of approaches) that included 1027 patients with neglect. Although there are some encouraging results, overall, the level of evidence remains low. Poor methodological quality and small sample sizes are major limitations in many published trials. CONCLUSION There is a need for well-conducted, large-scale randomised controlled trials that incorporate blinded assessments, evaluation of the generalization to activities of daily living and long-term follow-up.
Collapse
Affiliation(s)
- Philippe Azouvi
- AP-HP, hôpital Raymond-Poincaré, service de médecine physique et de réadaptation, 92380 Garches, France; EA 4047 HANDIReSP, université de Versailles-Saint-Quentin, 78180 Montigny-Le-Bretonneux, France.
| | - Sophie Jacquin-Courtois
- Service de médecine physique et de réadaptation, rééducation neurologique, hôpital Henry-Gabrielle, CHU de Lyon, 69230 Saint-Genis-Laval, France; Université de Lyon, université Lyon 1, 69100 Villeurbanne, France; Centre de recherche en neuroscience de Lyon (CRNL), équipe IMPACT, Inserm, U1028, CNRS, UMR5292, 69675 Bron, France
| | - Jacques Luauté
- Service de médecine physique et de réadaptation, rééducation neurologique, hôpital Henry-Gabrielle, CHU de Lyon, 69230 Saint-Genis-Laval, France; Université de Lyon, université Lyon 1, 69100 Villeurbanne, France; Centre de recherche en neuroscience de Lyon (CRNL), équipe IMPACT, Inserm, U1028, CNRS, UMR5292, 69675 Bron, France
| |
Collapse
|
44
|
|
45
|
Luvizutto GJ, Rizzati GRS, Fogaroli MO, Rodrigues RT, Ribeiro PW, de Carvalho Nunes HR, Braga GP, da Costa RDM, Bazan SGZ, de Lima Resende LA, Conforto AB, Bazan R. Treatment of unilateral spatial neglect after stroke using transcranial direct current stimulation (ELETRON trial): study protocol for a randomized controlled trial. Trials 2016; 17:479. [PMID: 27716442 PMCID: PMC5048673 DOI: 10.1186/s13063-016-1598-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/14/2016] [Indexed: 11/10/2022] Open
Abstract
Background Unilateral spatial neglect (USN) is characterized by the inability to report or respond to people or objects that are presented in the spatial hemisphere that is contralateral to the lesioned hemisphere of the brain. USN has been associated with poor functional outcomes and long stays in hospitals and rehabilitation centers. Noninvasive brain stimulation, such as transcranial direct current stimulation (tDCS), has been used in people who have been affected by USN after stroke. The effects of such treatment could provide new insights for health professionals and policy-makers. The aim of this study will be to evaluate the effectiveness and safety of tDCS for USN after stroke. Methods A prospective randomized controlled trial with two parallel groups will be conducted, which will aim to recruit 60 patients with USN after ischemic or hemorrhagic stroke. Participants will be randomly placed into the following four treatment groups: (1) anodal tDCS over the right parietal lobe (n = 15), (2) cathodal tDCS over the left parietal lobe (n = 15), (3) a sham group of anodal tDCS over the right parietal lobe (n = 15), and (4) a sham group of cathodal tDCS over the left parietal lobe (n = 15). Blinded assessors will conduct two baseline assessments and one post-intervention assessment. The primary outcome measure will be the level of USN as assessed by the conventional Behavioral Inattention Tasks and the Catherine Bergego Scale. Secondary measures will include neurological capacity (based on the Scandinavian Stroke Scale), functional capacity (based on the Functional Independence Measure and Modified Rankin Scale), autonomy (based on the Barthel Index), and quality of life (based on the EuroQol-5D). Group allocation will be concealed, and all analyses will be based on an intention-to-treat principle. Discussion This study will explore the effects of more than 15 sessions of tDCS on the level of USN, functional capacity, autonomy, and quality of life in patients with USN after stroke. This proposed study has the potential to identify a new, evidence-based intervention that can enhance perception and independent living in patients with USN after stroke. Trial registration REBEC - RBR-78jvzx, registered on 13 March 2016.
Collapse
Affiliation(s)
- Gustavo José Luvizutto
- Rehabilitation Department, Botucatu Medical School, Professor Montenegro Ave., Botucatu, Brazil. .,Botucatu School of Medicine, University Estadual Paulista Júlio de Mesquita Filho, District of Rubião Junior, Botucatu, SP, 18618-970, Brazil.
| | | | | | | | - Priscila Watson Ribeiro
- Rehabilitation Department, Botucatu Medical School, Professor Montenegro Ave., Botucatu, Brazil
| | | | - Gabriel Pereira Braga
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, Professor Montenegro Ave., Botucatu, Brazil
| | | | | | - Luiz Antônio de Lima Resende
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, Professor Montenegro Ave., Botucatu, Brazil
| | | | - Rodrigo Bazan
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, Professor Montenegro Ave., Botucatu, Brazil
| |
Collapse
|
46
|
Làdavas E, Giulietti S, Avenanti A, Bertini C, Lorenzini E, Quinquinio C, Serino A. a-tDCS on the ipsilesional parietal cortex boosts the effects of prism adaptation treatment in neglect. Restor Neurol Neurosci 2016; 33:647-62. [PMID: 25855132 DOI: 10.3233/rnn-140464] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE The aim of the study is to compare the effects of multiple sessions of cathodal (c-tDCS) or anodal tDCS (a-tDCS) in modulating the beneficial effects of prism adaptation (PA) treatment in neglect patients. METHODS 30 neglect patients were submitted to 10 daily sessions of PA treatment. Patients were pseudo-randomly divided into 3 groups. In the c-tDCS-group, each PA session was coupled with 20 minutes of cathodal stimulation of the left, intact PPC; in the a-tDCS-group, anodal stimulation was applied to PPC of the damaged hemisphere; in the Sham group, sham stimulation was applied. Neglect was evaluated before and after treatment with the Behavioral Inattention Test. RESULTS Combined tDCS-PA treatment induced stronger neglect improvement in the a-tDCSgroup as compared to the Sham group. No improvement was found in the c-tDCS group, with respect to that normally induced by PA and found in the Sham group. CONCLUSIONS c-tDCS abolished neglect amelioration after PA, possibly because stimulation affected the sensorimotor network controlling prism adaptation. Instead, a-tDCS PPC boosted neglect amelioration after PA probably thanks to increased excitability of residual tissue in the lesioned hemisphere, which in turn might reduce dysfunctional over-excitability of the intact hemisphere.
Collapse
Affiliation(s)
- Elisabetta Làdavas
- Dipartimento di Psicologia, Università degli Studi di Bologna, Italy.,Centro studi e ricerche in Neuroscienze Cognitive, Campus di Cesena, Cesena, Italy
| | | | - Alessio Avenanti
- Dipartimento di Psicologia, Università degli Studi di Bologna, Italy.,Centro studi e ricerche in Neuroscienze Cognitive, Campus di Cesena, Cesena, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Caterina Bertini
- Dipartimento di Psicologia, Università degli Studi di Bologna, Italy.,Centro studi e ricerche in Neuroscienze Cognitive, Campus di Cesena, Cesena, Italy
| | | | - Cristina Quinquinio
- Istituto di Riabilitazione Santo Stefano, Porto Potenza Picena, Macerata, Italy
| | - Andrea Serino
- Dipartimento di Psicologia, Università degli Studi di Bologna, Italy.,Centro studi e ricerche in Neuroscienze Cognitive, Campus di Cesena, Cesena, Italy
| |
Collapse
|
47
|
Perceval G, Flöel A, Meinzer M. Can transcranial direct current stimulation counteract age-associated functional impairment? Neurosci Biobehav Rev 2016; 65:157-72. [DOI: 10.1016/j.neubiorev.2016.03.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/05/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
|
48
|
Yi YG, Chun MH, Do KH, Sung EJ, Kwon YG, Kim DY. The Effect of Transcranial Direct Current Stimulation on Neglect Syndrome in Stroke Patients. Ann Rehabil Med 2016; 40:223-9. [PMID: 27152271 PMCID: PMC4855115 DOI: 10.5535/arm.2016.40.2.223] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/20/2015] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To examine whether transcranial direct current stimulation (tDCS) applied over the posterior parietal cortex (PPC) improves visuospatial attention in stroke patients with left visuospatial neglect. METHODS Patients were randomly assigned to 1 of 3 treatment groups: anodal tDCS over the right PPC, cathodal tDCS over the left PPC, or sham tDCS. Each patient underwent 15 sessions of tDCS (5 sessions per week for 3 weeks; 2 mA for 30 minutes in each session). Outcome measures were assessed before treatment and 1 week after completing the treatment. RESULTS From pre- to post-treatment, there was an improvement in the motor-free visual perception test (MVPT), line bisection test (LBT), star cancellation test (SCT), Catherine Bergego Scale (CBS), Korean version of Modified Barthel Index (K-MBI), and Functional Ambulation Classification in all 3 groups. Improvements in the MVPT, SCT, and LBT were greater in the anodal and cathodal groups than in the sham group. However, improvements in other outcomes were not significantly different between the 3 groups, although there was a tendency for improved CBS or K-MBI scores in the anodal and cathodal groups, as compared with the sham group. CONCLUSION The study results indicated that the facilitatory effect of anodal tDCS applied over the right PPC, and the inhibitory effect of cathodal tDCS applied over the left PPC, improved symptoms of visuospatial neglect. Thus, tDCS could be a successful adjuvant therapeutic modality to recover neglect symptom, but this recovery might not lead to improvements in activities of daily living function and gait function.
Collapse
Affiliation(s)
- You Gyoung Yi
- Department of Physical Medicine and Rehabilitation, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Ho Chun
- Department of Physical Medicine and Rehabilitation, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Hee Do
- Department of Physical Medicine and Rehabilitation, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Jung Sung
- Department of Physical Medicine and Rehabilitation, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Gyu Kwon
- Department of Physical Medicine and Rehabilitation, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae Yul Kim
- Department of Physical Medicine and Rehabilitation, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
49
|
Cappon D, Jahanshahi M, Bisiacchi P. Value and Efficacy of Transcranial Direct Current Stimulation in the Cognitive Rehabilitation: A Critical Review Since 2000. Front Neurosci 2016; 10:157. [PMID: 27147949 PMCID: PMC4834357 DOI: 10.3389/fnins.2016.00157] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/27/2016] [Indexed: 12/02/2022] Open
Abstract
Non-invasive brain stimulation techniques, including transcranial direct current stimulation (t-DCS) have been used in the rehabilitation of cognitive function in a spectrum of neurological disorders. The present review outlines methodological communalities and differences of t-DCS procedures in neurocognitive rehabilitation. We consider the efficacy of tDCS for the management of specific cognitive deficits in four main neurological disorders by providing a critical analysis of recent studies that have used t-DCS to improve cognition in patients with Parkinson's Disease, Alzheimer's Disease, Hemi-spatial Neglect, and Aphasia. The evidence from this innovative approach to cognitive rehabilitation suggests that tDCS can influence cognition. However, the results show a high variability between studies both in terms of the methodological approach adopted and the cognitive functions targeted. The review also focuses both on methodological issues such as technical aspects of the stimulation (electrode position and dimension; current intensity; duration of protocol) and on the inclusion of appropriate assessment tools for cognition. A further aspect considered is the optimal timing for administration of tDCS: before, during or after cognitive rehabilitation. We conclude that more studies using common methodology are needed to gain a better understanding of the efficacy of tDCS as a new tool for rehabilitation of cognitive disorders in a range of neurological disorders.
Collapse
Affiliation(s)
- Davide Cappon
- Department of General Psychology, Center for Cognitive Neuroscience, University of Padova Padua, Italy
| | - Marjan Jahanshahi
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London London, UK
| | - Patrizia Bisiacchi
- Department of General Psychology, Center for Cognitive Neuroscience, University of Padova Padua, Italy
| |
Collapse
|
50
|
Santos-Pontelli TEG, Rimoli BP, Favoretto DB, Mazin SC, Truong DQ, Leite JP, Pontes-Neto OM, Babyar SR, Reding M, Bikson M, Edwards DJ. Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct Current Stimulation (tDCS). PLoS One 2016; 11:e0152331. [PMID: 27031726 PMCID: PMC4816520 DOI: 10.1371/journal.pone.0152331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 03/11/2016] [Indexed: 11/21/2022] Open
Abstract
Pathologic tilt of subjective visual vertical (SVV) frequently has adverse functional consequences for patients with stroke and vestibular disorders. Repetitive transcranial magnetic stimulation (rTMS) of the supramarginal gyrus can produce a transitory tilt on SVV in healthy subjects. However, the effect of transcranial direct current stimulation (tDCS) on SVV has never been systematically studied. We investigated whether bilateral tDCS over the temporal-parietal region could result in both online and offline SVV misperception in healthy subjects. In a randomized, sham-controlled, single-blind crossover pilot study, thirteen healthy subjects performed tests of SVV before, during and after the tDCS applied over the temporal-parietal region in three conditions used on different days: right anode/left cathode; right cathode/left anode; and sham. Subjects were blind to the tDCS conditions. Montage-specific current flow patterns were investigated using computational models. SVV was significantly displaced towards the anode during both active stimulation conditions when compared to sham condition. Immediately after both active conditions, there were rebound effects. Longer lasting after-effects towards the anode occurred only in the right cathode/left anode condition. Current flow models predicted the stimulation of temporal-parietal regions under the electrodes and deep clusters in the posterior limb of the internal capsule. The present findings indicate that tDCS over the temporal-parietal region can significantly alter human SVV perception. This tDCS approach may be a potential clinical tool for the treatment of SVV misperception in neurological patients.
Collapse
Affiliation(s)
- Taiza E G Santos-Pontelli
- Department of Neuroscience and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Brunna P Rimoli
- Department of Neuroscience and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Diandra B Favoretto
- Department of Neuroscience and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Suleimy C Mazin
- Department of Neuroscience and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Dennis Q Truong
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of New York of the City University of New York, New York, New York, United States of America
| | - Joao P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Octavio M Pontes-Neto
- Department of Neuroscience and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Suzanne R Babyar
- Non-invasive Brain Stimulation and Human Motor Control Laboratory, Burke Medical Research Institute, White Plains, New York, United States of America; Neurology Department, Weill Medical College, Cornell University, New York, New York, United States of America
| | - Michael Reding
- Non-invasive Brain Stimulation and Human Motor Control Laboratory, Burke Medical Research Institute, White Plains, New York, United States of America; Neurology Department, Weill Medical College, Cornell University, New York, New York, United States of America
| | - Marom Bikson
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of New York of the City University of New York, New York, New York, United States of America
| | - Dylan J Edwards
- Non-invasive Brain Stimulation and Human Motor Control Laboratory, Burke Medical Research Institute, White Plains, New York, United States of America; Neurology Department, Weill Medical College, Cornell University, New York, New York, United States of America
| |
Collapse
|