1
|
Plazas PV, Elgoyhen AB. The Cholinergic Lateral Line Efferent Synapse: Structural, Functional and Molecular Similarities With Those of the Cochlea. Front Cell Neurosci 2021; 15:765083. [PMID: 34712122 PMCID: PMC8545859 DOI: 10.3389/fncel.2021.765083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Vertebrate hair cell (HC) systems are innervated by efferent fibers that modulate their response to external stimuli. In mammals, the best studied efferent-HC synapse, the cholinergic medial olivocochlear (MOC) efferent system, makes direct synaptic contacts with HCs. The net effect of MOC activity is to hyperpolarize HCs through the activation of α9α10 nicotinic cholinergic receptors (nAChRs) and the subsequent activation of Ca2+-dependent SK2 potassium channels. A serious obstacle in research on many mammalian sensory systems in their native context is that their constituent neurons are difficult to access even in newborn animals, hampering circuit observation, mapping, or controlled manipulation. By contrast, fishes and amphibians have a superficial and accessible mechanosensory system, the lateral line (LL), which circumvents many of these problems. LL responsiveness is modulated by efferent neurons which aid to distinguish between external and self-generated stimuli. One component of the LL efferent system is cholinergic and its activation inhibits LL afferent activity, similar to what has been described for MOC efferents. The zebrafish (Danio rerio) has emerged as a powerful model system for studying human hearing and balance disorders, since LL HC are structurally and functionally analogous to cochlear HCs, but are optically and pharmacologically accessible within an intact specimen. Complementing mammalian studies, zebrafish have been used to gain significant insights into many facets of HC biology, including mechanotransduction and synaptic physiology as well as mechanisms of both hereditary and acquired HC dysfunction. With the rise of the zebrafish LL as a model in which to study auditory system function and disease, there has been an increased interest in studying its efferent system and evaluate the similarity between mammalian and piscine efferent synapses. Advances derived from studies in zebrafish include understanding the effect of the LL efferent system on HC and afferent activity, and revealing that an α9-containing nAChR, functionally coupled to SK channels, operates at the LL efferent synapse. In this review, we discuss the tools and findings of these recent investigations into zebrafish efferent-HC synapse, their commonalities with the mammalian counterpart and discuss several emerging areas for future studies.
Collapse
Affiliation(s)
- Paola V Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
2
|
Silic MR, Black MM, Zhang G. Phylogenetic and developmental analyses indicate complex functions of calcium-activated potassium channels in zebrafish embryonic development. Dev Dyn 2021; 250:1477-1493. [PMID: 33728688 PMCID: PMC8518378 DOI: 10.1002/dvdy.329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Calcium-activated potassium channels (KCa) are a specific type of potassium channel activated by intracellular calcium concentration changes. This group of potassium channels plays fundamental roles ranging from regulating neuronal excitability to immune cell activation. Many human diseases such as schizophrenia, hypertension, epilepsy, and cancers have been linked to mutations in this group of potassium channels. Although the KCa channels have been extensively studied electrophysiologically and pharmacologically, their spatiotemporal gene expression during embryogenesis remains mostly unknown. RESULTS Using zebrafish as a model, we identified and renamed 14 KCa genes. We further performed phylogenetic and syntenic analyses on vertebrate KCa genes. Our data revealed that the number of KCa genes in zebrafish was increased, most likely due to teleost-specific whole-genome duplication. Moreover, we examined zebrafish KCa gene expression during early embryogenesis. The duplicated ohnologous genes show distinct and overlapped gene expression. Furthermore, we found that zebrafish KCa genes are expressed in various tissues and organs (somites, fins, olfactory regions, eye, kidney, and so on) and neuronal tissues, suggesting that they may play important roles during zebrafish embryogenesis. CONCLUSIONS Our phylogenetic and developmental analyses shed light on the potential functions of the KCa genes during embryogenesis related to congenital diseases and human channelopathies.
Collapse
Affiliation(s)
- Martin R Silic
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Maya M Black
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA.,Purdue University Center for Cancer Research, West Lafayette, Indiana, USA.,Purdue Institute for Inflammation, Immunology and Infectious Diseases (PI4D), West Lafayette, Indiana, USA.,Purdue Institute for Integrative Neuroscience; Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Ding X, Sun W, Dai L, Liu C, Sun Q, Wang J, Zhang P, Li K, Yu L. Parental exposure to environmental concentrations of tris(1,3-dichloro-2-propyl)phosphate induces abnormal DNA methylation and behavioral changes in F1 zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115305. [PMID: 32841905 DOI: 10.1016/j.envpol.2020.115305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/05/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been demonstrated to be transferred from parental animals to their offspring. However, whether parental exposure to environmental concentrations of TDCIPP show neurodevelopmental toxicity in the F1 generation and the possible underlying mechanism remain unclear. Therefore, in this study, zebrafish embryos were exposed to environmental concentrations of TDCIPP (3, 30 and 300 ng L-1) for 120 days. The effects of exposure on motor behaviors, neurotransmitter levels, DNA methylation, and gene expression of F1 larvae were investigated. Parental exposure left TDCIPP residues in F1 eggs as well as reduced body length of F1 larvae. Moreover, parental exposure significantly reduced swimming activity in F1 5 dpf larvae, although it did not significantly alter serotonin, dopamine, 3,4-dihydroxyphenylacetic acid, γ-aminobutyrate, and acetylcholine levels. Genes encoding DNA methylation transferases (dnmt3aa and dnmt1) were downregulated in F1 larvae. Reduced representation bisulfite sequencing analysis revealed 446 differentially methylated regions and enriched neuronal cell body Gene Ontology term in F1 generation. Correlation analysis between the expression of genes related to neural cell body and swimming speed indicated that solute carrier family 1 member 2b (slc1a2b) downregulation might be responsible for the inhibition of motor behaviors. Furthermore, bisulfite amplicon sequencing analysis confirmed hypermethylation of the promoter region of slc1a2b in F1 larvae following parental exposure to 300 ng L-1 TDCIPP, which might have led to significant downregulation of gene expression and, in turn, influenced the motor behaviors. These results indicate that parental exposure to environmental concentrations of TDCIPP alters DNA methylation, downregulates gene expressions and, thus inducing developmental neurotoxicity, in F1 larvae.
Collapse
Affiliation(s)
- Xisheng Ding
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lili Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, China
| | - Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, China
| | - Panwei Zhang
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Kun Li
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, China.
| |
Collapse
|
4
|
Unraveling the Molecular Players at the Cholinergic Efferent Synapse of the Zebrafish Lateral Line. J Neurosci 2020; 41:47-60. [PMID: 33203744 DOI: 10.1523/jneurosci.1772-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
The lateral line (LL) is a sensory system that allows fish and amphibians to detect water currents. LL responsiveness is modulated by efferent neurons that aid in distinguishing between external and self-generated stimuli, maintaining sensitivity to relevant cues. One component of the efferent system is cholinergic, the activation of which inhibits afferent activity. LL hair cells (HCs) share structural, functional, and molecular similarities with those of the cochlea, making them a popular model for studying human hearing and balance disorders. Because of these commonalities, one could propose that the receptor at the LL efferent synapse is a α9α10 nicotinic acetylcholine receptor (nAChR). However, the identities of the molecular players underlying ACh-mediated inhibition in the LL remain unknown. Surprisingly, through the analysis of single-cell expression studies and in situ hybridization, we describe that α9, but not the α10, subunits are enriched in zebrafish HCs. Moreover, the heterologous expression of zebrafish α9 subunits indicates that homomeric receptors are functional and exhibit robust ACh-gated currents blocked by α-bungarotoxin and strychnine. In addition, in vivo Ca2+ imaging on mechanically stimulated zebrafish LL HCs show that ACh elicits a decrease in evoked Ca2+ signals, regardless of HC polarity. This effect is blocked by both α-bungarotoxin and apamin, indicating coupling of ACh-mediated effects to small-conductance Ca2+-activated potassium (SKs) channels. Our results indicate that an α9-containing (α9*) nAChR operates at the zebrafish LL efferent synapse. Moreover, the activation of α9* nAChRs most likely leads to LL HC hyperpolarization served by SK channels.SIGNIFICANCE STATEMENT The fish lateral line (LL) mechanosensory system shares structural, functional, and molecular similarities with those of the mammalian cochlea. Thus, it has become an accessible model for studying human hearing and balance disorders. However, the molecular players serving efferent control of LL hair cell (HC) activity have not been identified. Here we demonstrate that, different from the hearing organ of vertebrate species, a nicotinic acetylcholine receptor composed only of α9 subunits operates at the LL efferent synapse. Activation of α9-containing receptors leads to LL HC hyperpolarization because of the opening of small-conductance Ca2+-activated potassium channels. These results will further aid in the interpretation of data obtained from LL HCs as a model for cochlear HCs.
Collapse
|
5
|
Meng L, Zhao Y, Qu D, Xie Z, Guo X, Zhu Z, Chen Z, Zhang L, Li W, Cao Z, Tian C, Wu Y. Ion channel modulation by scorpion hemolymph and its defensin ingredients highlights origin of neurotoxins in telson formed in Paleozoic scorpions. Int J Biol Macromol 2020; 148:351-363. [PMID: 31954123 DOI: 10.1016/j.ijbiomac.2020.01.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/27/2022]
Abstract
An increasing number of scorpion fossils indicate that the venomous telson developed from the sharp telson in sea scorpions into the extant scorpion-like telson in aquatic scorpions in the Paleozoic Era and then further evolved into the fetal venom system. This hypothesis led us to evaluate the inhibition of scorpion venom-sensitive potassium channels by hemolymph from the scorpion Mesobuthus martensii. Scorpion hemolymph diluted 1:10 inhibited Kv1.1, Kv1.2, Kv1.3 and SK3 potassium channel currents by 76.4%, 90.2%, 85.8%, and 52.8%, respectively. These discoveries encouraged us to investigate the functional similarity between the more ancient defensin ingredients in hemolymph and the evolved neurotoxins in the venom. In addition to the expression of the representative defensin BmKDfsin3 and BmKDfsin5 in both venomous and non-venomous tissues, NMR analysis revealed structural similarities between scorpion defensin and neurotoxin. Functional experiments further indicated that scorpion defensin used the same mechanism as classical neurotoxin to block the neurotoxin-sensitive Kv1.1, Kv1.2, Kv1.3 and SK3 channels. These findings emphasize the likelihood that scorpion defensins evolved into neurotoxins that were adapted to the emergence of the scorpion telson from the sharp telson of sea scorpions into the extant scorpion-like telson in aquatic scorpions in the Paleozoic Era.
Collapse
Affiliation(s)
- Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yonghui Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Daliang Qu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Zili Xie
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xingchen Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430072, China
| | - Zongyun Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Longhua Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| | - Changlin Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Center for BioDrug Research, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
6
|
Park C, Clements KN, Issa FA, Ahn S. Effects of Social Experience on the Habituation Rate of Zebrafish Startle Escape Response: Empirical and Computational Analyses. Front Neural Circuits 2018; 12:7. [PMID: 29459823 PMCID: PMC5807392 DOI: 10.3389/fncir.2018.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
While the effects of social experience on nervous system function have been extensively investigated in both vertebrate and invertebrate systems, our understanding of how social status differentially affects learning remains limited. In the context of habituation, a well-characterized form of non-associative learning, we investigated how the learning processes differ between socially dominant and subordinate in zebrafish (Danio rerio). We found that social status and frequency of stimulus inputs influence the habituation rate of short latency C-start escape response that is initiated by the Mauthner neuron (M-cell). Socially dominant animals exhibited higher habituation rates compared to socially subordinate animals at a moderate stimulus frequency, but low stimulus frequency eliminated this difference of habituation rates between the two social phenotypes. Moreover, habituation rates of both dominants and subordinates were higher at a moderate stimulus frequency compared to those at a low stimulus frequency. We investigated a potential mechanism underlying these status-dependent differences by constructing a simplified neurocomputational model of the M-cell escape circuit. The computational study showed that the change in total net excitability of the model M-cell was able to replicate the experimental results. At moderate stimulus frequency, the model M-cell with lower total net excitability, that mimicked a dominant-like phenotype, exhibited higher habituation rates. On the other hand, the model with higher total net excitability, that mimicked the subordinate-like phenotype, exhibited lower habituation rates. The relationship between habituation rates and characteristics (frequency and amplitude) of the repeated stimulus were also investigated. We found that habituation rates are decreasing functions of amplitude and increasing functions of frequency while these rates depend on social status (higher for dominants and lower for subordinates). Our results show that social status affects habituative learning in zebrafish, which could be mediated by a summative neuromodulatory input to the M-cell escape circuit, which enables animals to readily learn to adapt to changes in their social environment.
Collapse
Affiliation(s)
- Choongseok Park
- Department of Mathematics, North Carolina A&T State University, Greensboro, NC, United States
| | - Katie N Clements
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Fadi A Issa
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Sungwoo Ahn
- Department of Mathematics, East Carolina University, Greenville, NC, United States
| |
Collapse
|
7
|
Khan ZN, Leite ADL, Charone S, Sabino IT, Martini T, Pereira HABDS, Oliveira RC, Buzalaf MAR. Liver proteome of mice with different genetic susceptibilities to the effects of fluoride. J Appl Oral Sci 2016; 24:250-7. [PMID: 27383706 PMCID: PMC5022220 DOI: 10.1590/1678-775720150364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/17/2016] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE In this study, we investigated the differential pattern of protein expression in the liver of these mice to provide insights on why they have different responses to F. MATERIAL AND METHODS Weanling male A/J and 129P3/J mice (n=10 from each strain) were pared and housed in metabolic cages with ad libitum access to low-F food and deionized water for 42 days. Liver proteome profiles were examined using nLC-MS/MS. Protein function was classified by GO biological process (Cluego v2.0.7 + Clupedia v1.0.8) and protein-protein interaction network was constructed (PSICQUIC, Cytoscape). RESULTS Most proteins with fold change were increased in A/J mice. The functional category with the highest percentage of altered genes was oxidation-reduction process (20%). Subnetwork analysis revealed that proteins with fold change interacted with Disks large homolog 4 and Calcium-activated potassium channel subunit alpha-1. A/J mice had an increase in proteins related to energy flux and oxidative stress. CONCLUSION This could be a possible explanation for the high susceptibility of these mice to the effects of F, since the exposure also induces oxidative stress.
Collapse
Affiliation(s)
- Zohaib Nisar Khan
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Aline de Lima Leite
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil.,- Universidade Federal de São Carlos, Centro de Ciências Biológicas e da Saúde, Departamento de Genética e Evolução, São Carlos, SP, Brasil
| | - Senda Charone
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Isabela Tomazini Sabino
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Tatiana Martini
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | | | - Rodrigo Cardoso Oliveira
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Marília Afonso Rabelo Buzalaf
- - Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| |
Collapse
|
8
|
Levanti M, Randazzo B, Viña E, Montalbano G, Garcia-Suarez O, Germanà A, Vega JA, Abbate F. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds. Ann Anat 2016; 207:32-7. [PMID: 27513962 DOI: 10.1016/j.aanat.2016.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/17/2022]
Abstract
Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds.
Collapse
Affiliation(s)
- M Levanti
- Department of Veterinary Sciences, University of Messina, Italy
| | - B Randazzo
- Department of Veterinary Sciences, University of Messina, Italy
| | - E Viña
- Department of Morphology and Cellular Biology, University of Oviedo, Spain
| | - G Montalbano
- Department of Veterinary Sciences, University of Messina, Italy.
| | - O Garcia-Suarez
- Department of Morphology and Cellular Biology, University of Oviedo, Spain
| | - A Germanà
- Department of Veterinary Sciences, University of Messina, Italy
| | - J A Vega
- Department of Morphology and Cellular Biology, University of Oviedo, Spain; Faculty of Health Sciences, University of Chile, Chile
| | - F Abbate
- Department of Veterinary Sciences, University of Messina, Italy
| |
Collapse
|
9
|
Shenton F, Bewick GS, Banks RW. A study of the expression of small conductance calcium-activated potassium channels (SK1-3) in sensory endings of muscle spindles and lanceolate endings of hair follicles in the rat. PLoS One 2014; 9:e107073. [PMID: 25191752 PMCID: PMC4156425 DOI: 10.1371/journal.pone.0107073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/08/2014] [Indexed: 11/21/2022] Open
Abstract
Processes underlying mechanotransduction and its regulation are poorly understood. Inhibitors of Ca2+-activated K+ channels cause a dramatic increase in afferent output from stretched muscle spindles. We used immunocytochemistry to test for the presence and location of small conductance Ca2+-activated K+ channels (SK1-3) in primary endings of muscle spindles and lanceolate endings of hair follicles in the rat. Tissue sections were double immunolabelled with antibodies to one of the SK channel isoforms and to either synaptophysin (SYN, as a marker of synaptic like vesicles (SLV), present in many mechanosensitive endings) or S100 (a Ca2+-binding protein present in glial cells). SK channel immunoreactivity was also compared to immunolabelling for the Na+ ion channel ASIC2, previously reported in both spindle primary and lanceolate endings. SK1 was not detected in sensory terminals of either muscle spindles or lanceolate endings. SK2 was found in the terminals of both muscle spindles and lanceolate endings, where it colocalised with the SLV marker SYN (spindles and lanceolates) and the satellite glial cell (SGC) marker S100 (lanceolates). SK3 was not detected in muscle spindles; by contrast it was present in hair follicle endings, expressed predominantly in SGCs but perhaps also in the SGC: terminal interface, as judged by colocalisation statistical analysis of SYN and S100 immunoreactivity. The possibility that all three isoforms might be expressed in pre-terminal axons, especially at heminodes, cannot be ruled out. Differential distribution of SK channels is likely to be important in their function of responding to changes in intracellular [Ca2+] thereby modulating mechanosensory transduction by regulating the excitability of the sensory terminals. In particular, the presence of SK2 throughout the sensory terminals of both kinds of mechanoreceptor indicates an important role for an outward Ca2+-activated K+ current in the formation of the receptor potential in both types of ending.
Collapse
Affiliation(s)
- Fiona Shenton
- School of Biological & Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Guy S. Bewick
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Robert W. Banks
- School of Biological & Biomedical Sciences, Durham University, Durham, United Kingdom
| |
Collapse
|