1
|
Kavanagh JJ, Smith KA, Minahan CL. Sex differences in muscle activity emerge during sustained low-intensity contractions but not during intermittent low-intensity contractions. Physiol Rep 2020; 8:e14398. [PMID: 32281749 PMCID: PMC7153036 DOI: 10.14814/phy2.14398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/10/2023] Open
Abstract
Sex differences in motor performance may arise depending on the mode of contraction being performed. In particular, contractions that are held for long durations, rather than contractions that are interspersed with rest periods, may induce greater levels of fatigue in men compared to women. The purpose of this study was to examine fatigue responses in a cohort of healthy men (n = 7, age [mean] = 21.6 ± [SD] 1.1 year) and women (n = 7, age: 22.0 ± 2.0 year) during sustained isometric and intermittent isometric contractions. Two contraction protocols were matched for intensity (20% MVC) and total contraction time (600-s). Biceps brachii EMG and elbow flexion torque steadiness were examined throughout each protocol, and motor nerve stimulation was used to quantify central and peripheral fatigue. Overall, there were few sex-related differences in the fatigue responses during intermittent contractions. However, men exhibited progressively lower maximal torque generation (39% versus 27% decrease), progressively greater muscle activity (220% versus 144% increase), progressively greater declines in elbow flexion steadiness (354% versus 285% decrease), and progressively greater self-perception of fatigue (Borg scale: 8.8 ± 1.2 versus 6.3 ± 1.1) throughout the sustained contractions. The mechanism underlying fatigue responses had a muscle component, as voluntary activation of the biceps brachii did not differ between sexes, but the amplitude of resting twitches decreased throughout the sustained contractions (m: 32%, w: 10% decrease). As generating large sustained forces causes a progressive increase in intramuscular pressure and mechanical occlusion-which has the effect of enhancing metabolite accumulation and peripheral fatigue-it is likely that the greater maximal strength of men contributed to their exacerbated levels of fatigue.
Collapse
Affiliation(s)
- Justin J. Kavanagh
- Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
| | - Kristen A. Smith
- Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
| | - Clare L. Minahan
- Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
- Griffith Sports Physiology and PerformanceSchool of Allied Health SciencesGriffith UniversityGold CoastAustralia
| |
Collapse
|
2
|
Cunningham DA, Roelle SM, Allexandre D, Potter-Baker KA, Sankarasubramanian V, Knutson JS, Yue GH, Machado AG, Plow EB. The effect of motor overflow on bimanual asymmetric force coordination. Exp Brain Res 2017; 235:1097-1105. [PMID: 28091708 DOI: 10.1007/s00221-016-4867-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/23/2016] [Indexed: 11/24/2022]
Abstract
Motor overflow, typically described in the context of unimanual movements, refers to the natural tendency for a 'resting' limb to move during movement of the opposite limb and is thought to be influenced by inter-hemispheric interactions and intra-cortical networks within the 'resting' hemisphere. It is currently unknown, however, how motor overflow contributes to asymmetric force coordination task accuracy, referred to as bimanual interference, as there is need to generate unequal forces and corticospinal output for each limb. Here, we assessed motor overflow via motor evoked potentials (MEPs) and the regulation of motor overflow via inter-hemispheric inhibition (IHI) and short-intra-cortical inhibition (SICI) using transcranial magnetic stimulation in the presence of unimanual and bimanual isometric force production. All outcomes were measured in the left first dorsal interosseous (test hand) muscle, which maintained 30% maximal voluntary contraction (MVC), while the right hand (conditioning hand) was maintained at rest, 10, 30, or 70% of its MVC. We have found that as higher forces are generated with the conditioning hand, MEP amplitudes at the active test hand decreased and inter-hemispheric inhibition increased, suggesting reduced motor overflow in the presence of bimanual asymmetric forces. Furthermore, we found that subjects with less motor overflow (i.e., reduced MEP amplitudes in the test hemisphere) demonstrated poorer accuracy in maintaining 30% MVC across all conditions. These findings suggest that motor overflow may serve as an adaptive substrate to support bimanual asymmetric force coordination.
Collapse
Affiliation(s)
- David A Cunningham
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, USA.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, ND20, Cleveland, OH, 44195, USA
| | - Sarah M Roelle
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, ND20, Cleveland, OH, 44195, USA
| | - Didier Allexandre
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, USA
| | - Kelsey A Potter-Baker
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, ND20, Cleveland, OH, 44195, USA
| | - Vishwanath Sankarasubramanian
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, ND20, Cleveland, OH, 44195, USA
| | - Jayme S Knutson
- Physical Medicine and Rehabilitation, MetroHealth Rehabilitation Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Guang H Yue
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, USA
| | - Andre G Machado
- Center for Neurological Restoration, Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, ND20, Cleveland, OH, 44195, USA. .,Center for Neurological Restoration, Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
3
|
Kavanagh JJ, Feldman MR, Simmonds MJ. Maximal intermittent contractions of the first dorsal interosseous inhibits voluntary activation of the contralateral homologous muscle. J Neurophysiol 2016; 116:2272-2280. [PMID: 27605530 DOI: 10.1152/jn.00367.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/28/2016] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to investigate how maximal intermittent contractions for a hand muscle influence cortical and reflex activity, as well as the ability to voluntarily activate, the homologous muscle in the opposite limb. Twelve healthy subjects (age: 24 ± 3 years, all right hand dominant) performed maximal contractions of the dominant limb first dorsal interosseous (FDI), and activity of the contralateral FDI was examined in a series of experiments. Index finger abduction force, FDI EMG, motor evoked potentials and heteronomous reflexes were obtained from the contralateral limb during brief non-fatiguing contractions. The same measures, as well as the ability to voluntarily activate the contralateral FDI, were then assessed in an extended intermittent contraction protocol that elicited fatigue. Brief contractions under non-fatigued conditions increased index finger abduction force, FDI EMG, and motor evoked potential amplitude of the contralateral limb. However, when intermittent maximal contractions were continued until fatigue, there was an inability to produce maximal force with the contralateral limb (~30%) which was coupled to a decrease in the level of voluntary activation (~20%). These declines were present without changes in reflex activity, and regardless of whether cortical or motor point stimulation was used to assess voluntary activation. It is concluded that performing maximal intermittent contractions with a single limb causes an inability of the CNS to maximally drive the homologous muscle of the contralateral limb. This was, in part, mediated by mechanisms that involve the motor cortex ipsilateral to the contracting limb.
Collapse
|
4
|
Visually guided targeting enhances bilateral force variability in healthy older adults. Neurobiol Aging 2015; 37:127-137. [PMID: 26521134 DOI: 10.1016/j.neurobiolaging.2015.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/19/2015] [Accepted: 10/04/2015] [Indexed: 11/23/2022]
Abstract
This study observed the effect of visual feedback on between-limb force variability relationships in young and older adults. Abduction force was examined in healthy young (n = 15, 25 ± 4 years) and older adults (n = 18, 71 ± 6 years) during simultaneous isometric contractions of both index fingers. Target forces ranged from 5% to 30% maximum voluntary contraction (MVC), where force variability and first dorsal interosseus activity were measured while (1) subjects viewed visual targets for both index fingers, (2) a visual target was provided for the dominant index finger only, and (3) visual targets were removed for both index fingers during bilateral isometric contractions. When subjects were provided with bilateral visual feedback during simultaneous contractions at low forces (5% and 10% MVC), older adults produced greater force variability than younger subjects (p = 0.002). However, when bilateral visual feedback was removed, age-related differences in variability were no longer present. Between-limb force variability differences existed at higher force outputs (20% and 30% MVC) when visual feedback was removed for the nondominant limb during bilateral isometric index finger abduction (p = 0.002). The control of bilateral force variability is compromised in older adults when visuomotor processes are engaged. However, age-related differences in force variability are abolished when no task-related visual feedback is available, and isometric contractions are based on internally guided feedback.
Collapse
|
6
|
Kavanagh JJ, Wedderburn-Bisshop J, Keogh JWL. Resistance Training Reduces Force Tremor and Improves Manual Dexterity in Older Individuals With Essential Tremor. J Mot Behav 2015; 48:20-30. [PMID: 25923582 DOI: 10.1080/00222895.2015.1028583] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although symptoms of Essential Tremor (ET) are typically controlled with medication, it is of interest to explore additional therapies to assist with functionality. The purpose of this study was to determine if a generalized upper limb resistance training (RT) program improves manual dexterity and reduces force tremor in older individuals with ET. Ten Essential Tremor and 9 controls were recruited into a dual group, pretest-posttest intervention study. Participants performed 6 weeks of upper-limb RT, and battery of manual dexterity and isometric force tremor assessments were performed before and after the RT to determine the benefits of the program. The six-week, high-load, RT program produced strength increases in each limb for the ET and healthy older group. These changes in strength aligned with improvements in manual dexterity and tremor-most notably for the ET group. The least affected limb and the most affected limb exhibited similar improvements in functional assessments of manual dexterity, whereas reductions in force tremor amplitude following the RT program were restricted to the most affected limb of the ET group. These findings suggest that generalized upper limb RT program has the potential to improve aspects of manual dexterity and reduce force tremor in older ET patients.
Collapse
Affiliation(s)
- Justin J Kavanagh
- a Centre for Musculoskeletal Research , Griffith University , Gold Coast , Australia
| | | | - Justin W L Keogh
- b Faculty of Health Sciences and Medicine , Bond University , Gold Coast , Australia
| |
Collapse
|
7
|
Martin D, Cooper S, Sale C, Compton G, Elliott-Sale K. Reliability of force per unit cross-sectional area measurements of the first dorsal interosseus muscle. J Sports Sci 2014; 33:1159-65. [PMID: 25514211 DOI: 10.1080/02640414.2014.986504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to determine the reliability of maximum voluntary isometric force (MVIF), cross-sectional area (CSA) and force per unit CSA measures, of the first dorsal interosseus (FDI) muscle, using a custom-built dynamometer and ultrasonography. Twenty-seven participants completed MVIF and CSA measurements on two separate occasions under the same conditions. Reliability was determined using paired samples t-tests, systematic bias ratio and ratio limits of agreement (RLoA), intra-class correlation (ICC) and coefficient of variation (CV). MVIF of the FDI muscle (mean ± s; 31.8 ± 7.6 N and 31.6 ± 7.3 N) was not different between trials (P = 0.63); RLoA between trials were 1.00 ×/÷ 1.09, ICC = 0.990 and CV = 3.22%. CSA of the FDI muscle (22.6 ± 6.9 and 22.9 ± 6.9 mm²) was also not different between trials (P = 0.31); RLoA between trials were 0.98 ×/÷ 1.19, ICC = 0.979 and CV = 6.61%. Force per unit CSA was not different between trials (1.49 ± 0.43 and 1.46 ± 0.44 N·mm²; P = 0.18), RLoA were 1.02 ×/÷ 1.17, ICC = 0.985 and CV = 5.76%. The techniques used to determine MVIF and CSA of the FDI muscle were reliable and can be combined to calculate force per unit CSA.
Collapse
Affiliation(s)
- Daniel Martin
- a Department of Sport Science , Nottingham Trent University , Clifton , UK
| | | | | | | | | |
Collapse
|