1
|
Zuo C, Yan F, Wang J, Zhu Y, Luo W, Liu Y, Liang W, Yu W, Zhang J, Peng D, Ma X, Peng C. Design, synthesis, and evaluation of the novel ozagrel-paeonol codrug with antiplatelet aggregation activities as a potent anti-stroke therapeutic agent. Front Pharmacol 2024; 15:1362857. [PMID: 38567356 PMCID: PMC10985144 DOI: 10.3389/fphar.2024.1362857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: Ischemic stroke is the second most common chronic disease worldwide and is associated with high morbidity and mortality. Thromboembolism and platelet aggregation are the most characteristic features of stroke. Other than aspirin, no standard, accepted, or effective treatment for acute ischemic stroke has been established. Consequently, it is essential to identify novel therapeutic compounds for this condition. Methods: In this study, novel ozagrel/paeonol-containing codrugs were synthesized and characterized using 1H-NMR, 13C-NMR, and mass spectroscopy. Their antiplatelet aggregation activity was evaluated, with compound PNC3 found to exhibit the best effect. Subsequently, studies were conducted to assess its neuroprotective effect, pharmacokinetic properties and model its binding mode to P2Y12 and TXA2, two proteins critical for platelet aggregation. Results: The results indicated that PNC3 has good bioavailability and exerts protective effects against oxygen-glucose deprivation injury in PC12 cells. Molecular docking analysis further demonstrated that the compound interacts with residues located in the active binding sites of the target proteins. Conclusion: The codrugs synthesized in this study display promising pharmacological activities and have the potential for development as an oral formulation.
Collapse
Affiliation(s)
- Chijing Zuo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Fulong Yan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jie Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yulong Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wenhui Luo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yan Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wanhui Liang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Weidong Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jingwei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Xiaodong Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
- Generic Technology Research Center for Anhui TCM Industry, Anhui University of Chinese Medicine, Hefei, China
- Rural Revitalization Collaborative Technical Service Center of Anhui Province, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Reid MM, Kautzmann MAI, Andrew G, Obenaus A, Mukherjee PK, Khoutorova L, Ji JX, Roque CR, Oria RB, Habeb BF, Belayev L, Bazan NG. NPD1 Plus RvD1 Mediated Ischemic Stroke Penumbra Protection Increases Expression of Pro-homeostatic Microglial and Astrocyte Genes. Cell Mol Neurobiol 2023; 43:3555-3573. [PMID: 37270727 PMCID: PMC10477115 DOI: 10.1007/s10571-023-01363-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/13/2023] [Indexed: 06/05/2023]
Abstract
Neuroprotection to attenuate or block the ischemic cascade and salvage neuronal damage has been extensively explored for treating ischemic stroke. However, despite increasing knowledge of the physiologic, mechanistic, and imaging characterizations of the ischemic penumbra, no effective neuroprotective therapy has been found. This study focuses on the neuroprotective bioactivity of docosanoid mediators: Neuroprotectin D1 (NPD1), Resolvin D1 (RvD1), and their combination in experimental stroke. Molecular targets of NPD1 and RvD1 are defined by following dose-response and therapeutic window. We demonstrated that treatment with NPD1, RvD1, and combination therapy provides high-grade neurobehavioral recovery and decreases ischemic core and penumbra volumes even when administered up to 6 h after stroke. The expression of the following genes was salient: (a) Cd163, an anti-inflammatory stroke-associated gene, was the most differentially expressed gene by NPD1+RvD1, displaying more than a 123-fold upregulation in the ipsilesional penumbra (Lisi et al., Neurosci Lett 645:106-112, 2017); (b) 100-fold upregulation takes place in astrocyte gene PTX3, a key regulator of neurogenesis and angiogenesis after cerebral ischemia (. Rodriguez-Grande et al., J Neuroinflammation 12:15, 2015); and (c) Tmem119 and P2y12, two markers of homeostatic microglia, were found to be enhanced by ten- and fivefold, respectively (Walker et al. Int J Mol Sci 21:678, 2020). Overall, we uncovered that protection after middle cerebral artery occlusion (MCAo) by the lipid mediators elicits expression of microglia and astrocyte-specific genes (Tmem119, Fcrls, Osmr, Msr1, Cd68, Cd163, Amigo2, Thbs1, and Tm4sf1) likely participating in enhancing homeostatic microglia, modulating neuroinflammation, promoting DAMP clearance, activating NPC differentiation and maturation, synapse integrity and contributing to cell survival.
Collapse
Affiliation(s)
- Madigan M Reid
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Marie-Audrey I Kautzmann
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Gethein Andrew
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California, Irvine, CA, 92618, USA
| | - Pranab K Mukherjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Larissa Khoutorova
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Jeff X Ji
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Cassia R Roque
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Reinaldo B Oria
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Bola F Habeb
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Ludmila Belayev
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St, Suite 9B16, Room 935A, New Orleans, LA, 70112, USA.
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, Neuroscience Center of Excellence, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA.
| |
Collapse
|
3
|
Lv SY, He S, Ling XL, Wang YQ, Huang C, Long JR, Wang JQ, Qin Y, Wei H, Yu CY. Review of lipoic acid: From a clinical therapeutic agent to various emerging biomaterials. Int J Pharm 2022; 627:122201. [PMID: 36115465 DOI: 10.1016/j.ijpharm.2022.122201] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 01/25/2023]
Abstract
Lipoic acid (LA), an endogenous small molecule in organisms, has been extensively used for the highly efficient clinical treatment of malignant diseases, which include diabetes, Alzheimer's disease, and cancer over the past seven decades. Tremendous progresses have been made on the use of LA in nanomedicine for the development of various biomaterials because of its unique biological properties and highly adaptable structure since the first discovery. However, there are few reviews thus far, to our knowledge, summarizing this hot subject of research of LA and its derived biomaterials. For this purpose, we present herein the first comprehensive summary on the design and development of LA and its derived materials for biomedical applications. This review first discusses the therapeutic use of LA followed by the description of synthesis and preclinical study of LA-derived-small molecules. The applications of various LA and poly (lipoic acid) (PLA)-derived-biomaterials are next summarized in detail with an emphasis on the use of LA for the design of biomaterials and the diverse properties. This review describes the development of LA from a clinical therapeutic agent to a building unit of various biomaterials field, which will promote the further discovery of new therapeutic uses of LA as therapeutic agents and facile development of LA-based derivates with greater performance for biomedical applications.
Collapse
Affiliation(s)
- Shao-Yang Lv
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Suisui He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiao-Li Ling
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yue-Qin Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Cong Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jin-Rong Long
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jia-Qi Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yang Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
4
|
Bailly C, Hecquet PE, Kouach M, Thuru X, Goossens JF. Chemical reactivity and uses of 1-phenyl-3-methyl-5-pyrazolone (PMP), also known as edaravone. Bioorg Med Chem 2020; 28:115463. [DOI: 10.1016/j.bmc.2020.115463] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/16/2022]
|
5
|
Jayaraj P, Shavi GV, Srinivasan AK, Raghavendra R, Sivaramakrishna A, Desikan R. A pre-formulation strategy for the liposome encapsulation of new thioctic acid conjugates for enhanced chemical stability and use as an efficient drug carrier for MPO-mediated atherosclerotic CVD treatment. NEW J CHEM 2020. [DOI: 10.1039/c9nj05258e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipoyl-apocynin and lipoyl-sesamol are bio-active conjugates of thioctic acid, synthesized using a benign chemical approachviathe combination of thioctic acid and the powerful bio-phytonutrients, apocynin and sesamol, respectively.
Collapse
Affiliation(s)
- Premkumar Jayaraj
- Department of Chemistry
- School of Advanced Sciences
- Vellore Institute of Technology
- Vellore
- India
| | - Gopal Venkatesh Shavi
- South Easter Applied Material Research Centre
- Waterford Institute of Technology
- Ireland
| | | | - Ramesh Raghavendra
- South Easter Applied Material Research Centre
- Waterford Institute of Technology
- Ireland
| | - Akella Sivaramakrishna
- Department of Chemistry
- School of Advanced Sciences
- Vellore Institute of Technology
- Vellore
- India
| | - Rajagopal Desikan
- Department of Chemistry
- School of Advanced Sciences
- Vellore Institute of Technology
- Vellore
- India
| |
Collapse
|
6
|
Nanoparticles in Medicine: A Focus on Vascular Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6231482. [PMID: 30356429 PMCID: PMC6178176 DOI: 10.1155/2018/6231482] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/26/2018] [Accepted: 08/19/2018] [Indexed: 01/16/2023]
Abstract
Nanotechnology has had a significant impact on medicine in recent years, its application being referred to as nanomedicine. Nanoparticles have certain properties with biomedical applications; however, in some situations, they have demonstrated cell toxicity, which has caused concern surrounding their clinical use. In this review, we focus on two aspects: first, we summarize the types of nanoparticles according to their chemical composition and the general characteristics of their use in medicine, and second, we review the applications of nanoparticles in vascular alteration, especially in endothelial dysfunction related to oxidative stress. This condition can lead to a reduction in nitric oxide (NO) bioavailability, consequently affecting vascular tone regulation and endothelial dysfunction, which is the first phase in the development of cardiovascular diseases. Therefore, nanoparticles with antioxidant properties may improve vascular dysfunction associated with hypertension, diabetes mellitus, or atherosclerosis.
Collapse
|
7
|
Saleh TM, Saleh MC, Connell BJ, Song YH. A co-drug conjugate of naringenin and lipoic acid mediates neuroprotection in a rat model of oxidative stress. Clin Exp Pharmacol Physiol 2017. [DOI: 10.1111/1440-1681.12799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tarek M Saleh
- Department of Biomedical Science; Ontario Veterinary College; University of Guelph; Guelph Ontario Canada
- Department of Biomedical Science; Atlantic Veterinary College; University of Prince Edward Island; Charlottetown Prince Edward Island Canada
| | - Monique C Saleh
- Department of Biomedical Science; Ontario Veterinary College; University of Guelph; Guelph Ontario Canada
| | - Barry J Connell
- Department of Biomedical Science; Atlantic Veterinary College; University of Prince Edward Island; Charlottetown Prince Edward Island Canada
| | - Yang-Heon Song
- Department of Biomedicinal Chemistry; Mokwon University; Daejeon Korea
| |
Collapse
|
8
|
Saleh TM, Saleh MC, Connell BJ, Kucukkaya I, Abd-El-Aziz AS. A novel synthetic chemical entity (UPEI-800) is neuroprotective in vitro and in an in vivo rat model of oxidative stress. Clin Exp Pharmacol Physiol 2017; 44:993-1000. [PMID: 28504843 DOI: 10.1111/1440-1681.12785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/12/2017] [Accepted: 05/09/2017] [Indexed: 01/05/2023]
Abstract
In this study, we tested a novel synthetic pyrazole-containing compound, 5-amino-1-phenyl-1H-pyrazole-4-carbonitrile (APPC), as an antioxidant in both in vitro and in vivo models of oxidative stress. In addition, the utility of covalently combining APPC with another well-established antioxidant, lipoic acid (LA), was also tested in both models. The in vitro results demonstrated that pretreatment with APPC in a mixed neuronal-glial culture exposed to oxygen-glucose deprivation (OGD) followed by reoxygenation-refeeding, resulted in significant neuroprotection at concentrations between 2.5 to 25 μmol/L. In contrast, LA was not neuroprotective following OGD alone or following reoxygenation-refeeding. However, the synthetic covalent combination of APPC with LA, named "UPEI-800", resulted in significant neuroprotection at concentrations between 0.027 and 2.7 μmol/L (100-fold more potent than APPC alone), an effect shown to be correlated with increased cellular antioxidant capacity. Further, in an in vivo model of ischaemia-reperfusion injury following transient occlusion of the middle cerebral artery (tMCAO), both APPC (0.1 and 1.0 mg/kg) and UPEI-800 (1×10-3 mg/kg) provided significant neuroprotection. Consistent with the in vitro findings, the in vivo results following tMCAO also demonstrated a 100-fold increase in the potency of the covalently linked compound UPEI-800 compared to APPC alone.
Collapse
Affiliation(s)
- Tarek M Saleh
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada.,Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Monique C Saleh
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Barry J Connell
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Inan Kucukkaya
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Alaa S Abd-El-Aziz
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
9
|
Connell BJ, Saleh MC, Rajagopal D, Saleh TM. UPEI-400, a conjugate of lipoic acid and scopoletin, mediates neuroprotection in a rat model of ischemia/reperfusion. Food Chem Toxicol 2017; 100:175-182. [DOI: 10.1016/j.fct.2016.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/29/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
|
10
|
Aljuffali IA, Lin CF, Chen CH, Fang JY. The codrug approach for facilitating drug delivery and bioactivity. Expert Opin Drug Deliv 2016; 13:1311-25. [DOI: 10.1080/17425247.2016.1187598] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ibrahim A. Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chun-Han Chen
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
11
|
Nash KM, Ahmed S. Nanomedicine in the ROS-mediated pathophysiology: Applications and clinical advances. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:2033-40. [PMID: 26255114 DOI: 10.1016/j.nano.2015.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/23/2015] [Accepted: 07/02/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Reactive oxygen species (ROS) are important in regulating normal cell physiological functions, but when produced in excess lead to the augmented pathogenesis of various diseases. Among these, ischemia reperfusion injury, Alzheimer's disease and rheumatoid arthritis are particularly important. Since ROS can be counteracted by a variety of antioxidants, natural and synthetic antioxidants have been developed. However, due to the ubiquitous production of ROS in living systems, poor in vivo efficiency of these agents and lack of target specificity, the current clinical modalities to treat oxidative stress damage are limited. Advances in the developing field of nanomedicine have yielded nanoparticles that can prolong antioxidant activity, and target specificity of these agents. This article reviews recent advances in antioxidant nanoparticles and their applications to manage oxidative stress-mediated diseases. FROM THE CLINICAL EDITOR Production of reactive oxygen species (ROS) is a purely physiological process in many disease conditions. However, excessive and uncontrolled production will lead to oxidative stress and further tissue damage. Advances in nanomedicine have provided many novel strategies to try to combat and counteract ROS. In this review article, the authors comprehensively highlighted the current status and future developments in using nanotechnology for providing novel therapeutic options in this field.
Collapse
Affiliation(s)
- Kevin M Nash
- Department of Pharmacology, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA.
| |
Collapse
|
12
|
Wang W, Wu XM, Jiang B, Wang CY, Zhang HN, Shen XM. Influence of edaravone on growth arrest and DNA damage-inducible protein 34 expression following focal cerebral ischemia-reperfusion in rats. Asian Pac J Trop Biomed 2014. [DOI: 10.12980/apjtb.4.201414b291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|