1
|
Lu J, Guo X, Yan M, Yuan X, Chen S, Wang Y, Zhu J, Huang S, Shen H, Li H, Xue Q, Fang Q, Ni J, Gan L, Zhao H, Lu H, Chen G. P2X4R Contributes to Central Disinhibition Via TNF-α/TNFR1/GABAaR Pathway in Post-stroke Pain Rats. THE JOURNAL OF PAIN 2021; 22:968-980. [PMID: 33677111 DOI: 10.1016/j.jpain.2021.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 02/21/2021] [Indexed: 12/20/2022]
Abstract
Central post-stroke pain (CPSP) is a disabling condition in stroke patients. It is a type of neuropathic pain for which the mechanism and relevant drug pathways remain unknown. Inflammatory response and central disinhibition have been suggested recently. Our previous research has shown targeting P2X4 receptors (P2X4R) may be effective in the treatment of CPSP, but the downstream pathway of the P2X4R has not been studied. In this study, we found the increase in tumor necrosis factor alpha (TNF-α) level and endocytosis of surface gamma-aminobutyric acid a receptors (GABAaR) in CPSP, and these effects were inhibited by blocking P2X4R. Furthermore, antagonizing TNF-α can increase surface GABAaR expression and mechanical pain threshold. Meanwhile, knocking down TNFR1 but not TNFR2 reversed the endocytosis of surface GABAaR and alleviated mechanical allodynia. Thus, the neuropathic pain was mediated, in part, through P2X4R/TNF-α/TNFR1/GABAaR signaling, which was induced after stroke. PERSPECTIVE: P2X4R regulates the pathophysiological mechanism of CPSP through central disinhibition mediated by TNF-α/TNFR1. Our results suggest that modulation of P2X4R-TNF-α/TNFR1-GABAaR signaling could provide a new therapeutic strategy to treat CPSP.
Collapse
Affiliation(s)
- Jiajie Lu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoning Guo
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Manyun Yan
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaqing Yuan
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shujun Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yiqing Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Juehua Zhu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shicun Huang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianqiang Ni
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lei Gan
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Hongru Zhao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Haifeng Lu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Fischer R, Kontermann RE, Pfizenmaier K. Selective Targeting of TNF Receptors as a Novel Therapeutic Approach. Front Cell Dev Biol 2020; 8:401. [PMID: 32528961 PMCID: PMC7264106 DOI: 10.3389/fcell.2020.00401] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor (TNF) is a central regulator of immunity. Due to its dominant pro-inflammatory effects, drugs that neutralize TNF were developed and are clinically used to treat inflammatory and autoimmune diseases, such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. However, despite their clinical success the use of anti-TNF drugs is limited, in part due to unwanted, severe side effects and in some diseases its use even is contraindicative. With gaining knowledge about the signaling mechanisms of TNF and the differential role of the two TNF receptors (TNFR), alternative therapeutic concepts based on receptor selective intervention have led to the development of novel protein therapeutics targeting TNFR1 with antagonists and TNFR2 with agonists. These antibodies and bio-engineered ligands are currently in preclinical and early clinical stages of development. Preclinical data obtained in different disease models show that selective targeting of TNFRs has therapeutic potential and may be superior to global TNF blockade in several disease indications.
Collapse
Affiliation(s)
- Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
3
|
The kinin B 1 and B 2 receptors and TNFR1/p55 axis on neuropathic pain in the mouse brachial plexus. Inflammopharmacology 2019; 27:573-586. [PMID: 30820720 DOI: 10.1007/s10787-019-00578-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
Tumour necrosis factor (TNF) and kinins have been associated with neuropathic pain-like behaviour in numerous animal models. However, the way that they interact to cause neuron sensitisation remains unclear. This study assessed the interaction of kinin receptors and TNF receptor TNFR1/p55 in mechanical hypersensitivity induced by an intraneural (i.n.) injection of rm-TNF into the lower trunk of brachial plexus in mice. The i.n. injection of rm-TNF reduced the mechanical withdrawal threshold of the right forepaw from the 3rd to the 10th day after the injection, indicating that TNF1/p55 displays a critical role in the onset of TNF-elicited neuropathic pain. The connection between TNF1/p55 and kinin B1 and B2 receptors (B1R and B2R) was confirmed using both knockout mice and mRNAs quantification in the injected nerve, DRG and spinal cord. The treatment with the B2R antagonist HOE 140 or with B1R antagonist des-Arg9-Leu8-BK reduced both BK- and DABK-induced hypersensitivity. The experiments using kinin receptor antagonists and CPM inhibitor (thiorphan) suggest that BK does not only activate B2R as an orthosteric agonist, but also seems to be converted into DABK that consequently activates B1R. These results indicate a connection between TNF and the kinin system, suggesting a relevant role for B1R and B2R in the process of sensitisation of the central nervous systems by the cross talk between the receptor and CPM after i.n. injection of rm-TNF.
Collapse
|
4
|
Borghi SM, Fattori V, Ruiz-Miyazawa KW, Miranda-Sapla MM, Casagrande R, Pinge-Filho P, Pavanelli WR, Verri WA. Leishmania (L). amazonensis induces hyperalgesia in balb/c mice: Contribution of endogenous spinal cord TNFα and NFκB activation. Chem Biol Interact 2017; 268:1-12. [DOI: 10.1016/j.cbi.2017.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/27/2017] [Accepted: 02/14/2017] [Indexed: 02/07/2023]
|
5
|
Fiore NT, Austin PJ. Are the emergence of affective disturbances in neuropathic pain states contingent on supraspinal neuroinflammation? Brain Behav Immun 2016; 56:397-411. [PMID: 27118632 DOI: 10.1016/j.bbi.2016.04.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/11/2016] [Accepted: 04/22/2016] [Indexed: 12/28/2022] Open
Abstract
Neuro-immune interactions contribute to the pathogenesis of neuropathic pain due to peripheral nerve injury. A large body of preclinical evidence supports the idea that the immune system acts to modulate the sensory symptoms of neuropathy at both peripheral and central nervous system sites. The potential involvement of neuro-immune interactions in the highly debilitating affective disturbances of neuropathic pain, such as depression, anhedonia, impaired cognition and reduced motivation has received little attention. This is surprising given the widely accepted view that sickness behaviour, depression, cognitive impairment and other neuropsychiatric conditions can arise from inflammatory mechanisms. Moreover, there is a set of well-described immune-to-brain transmission mechanisms that explain how peripheral inflammation can lead to supraspinal neuroinflammation. In the last 5years increasing evidence has emerged that peripheral nerve injury induces supraspinal changes in cytokine or chemokine expression and alters glial cell activity. In this systematic review, based on strong preclinical evidence, we advance the argument that the emergence of affective disturbances in neuropathic pain states are contingent on pro-inflammatory mediators in the interconnected hippocampal-medial prefrontal circuitry that subserve affective behaviours. We explore how dysregulation of inflammatory mediators in these networks may result in affective disturbances through a wide variety of neuromodulatory mechanisms. There are also promising results from clinical trials showing that anti-inflammatory agents have efficacy in the treatment of a variety of neuropsychiatric conditions including depression and appear suited to sub-groups of patients with elevated pro-inflammatory profiles. Thus, although further research is required, aggressively targeting supraspinal pro-inflammatory mediators at critical time-points in appropriate clinical populations is likely to be a novel avenue to treat debilitating affective disturbances in neuropathic conditions.
Collapse
Affiliation(s)
- Nathan T Fiore
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paul J Austin
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
6
|
Wang J, Ding CP, Yu J, Zeng XY, Han SP, Wang JY. Dynamic distributions of tumor necrosis factor-alpha and its receptors in the red nucleus of rats with spared nerve injury. Neuropathology 2015; 36:346-53. [PMID: 26669937 DOI: 10.1111/neup.12282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 01/12/2023]
Abstract
Previous studies have demonstrated that tumor necrosis factor-alpha (TNF-α) in the red nucleus (RN) plays a facilitated role in the development of neuropathic pain, and its effect is transmitted through TNF-α receptor (TNFR) subtypes 1 and 2. Here, the dynamic distributions of TNF-α and TNFRs in the RN of rats with spared nerve injury (SNI) were investigated. Western blot analysis and immunofluorescence staining indicated that TNF-α was hardly expressed in the RN of normal rats but significantly increased at 1 week and peaked at 2 weeks after SNI. Neurons and oligodendrocytes showed TNF-α expression at both 1 week and 2 weeks after SNI, while astrocytes and microglia produced TNF-α later than neurons and oligodendrocytes starting at 2 weeks after SNI. TNFR1 was constitutively expressed in the RN of normal rats and significantly enhanced at 2 weeks but not 1 week after SNI; it was mainly localized in neurons, oligodendrocytes and microglia. Astrocytes were not immunopositive for TNFR1 under normal conditions and at 1 week after injury, but small amounts of astrocytes showed TNFR1 expression at 2 weeks after SNI. A low level of TNFR2 was expressed in the RN of normal rats, but it was significantly increased at 1 week and 2 weeks after SNI and localized in neurons and all three types of glia. These findings suggest that neurons and three types of glia in the RN all contribute to TNF-α production and participate in the initiation and/or maintenance of neuropathic pain induced by SNI. TNF-α exerts its effects in different types of cells maybe through different receptors, TNFR1 and/or TNFR2, in the different stages of neuropathic pain.
Collapse
Affiliation(s)
- Jing Wang
- Departments of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Cui-Ping Ding
- Departments of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jing Yu
- Departments of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiao-Yan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Shui-Ping Han
- Department of Pathology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jun-Yang Wang
- Departments of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Yamacita-Borin FY, Zarpelon AC, Pinho-Ribeiro FA, Fattori V, Alves-Filho JC, Cunha FQ, Cunha TM, Casagrande R, Verri WA. Superoxide anion-induced pain and inflammation depends on TNFα/TNFR1 signaling in mice. Neurosci Lett 2015; 605:53-8. [PMID: 26291484 DOI: 10.1016/j.neulet.2015.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 11/27/2022]
Abstract
Inhibition of tumor necrosis factor-alpha (TNFα) and superoxide anion production reduces inflammation and pain. The present study investigated whether superoxide anion-induced pain depends on TNFα signaling and the role of superoxide anion in TNFα-induced hyperalgesia to clarify the interrelation between these two mediators in the context of pain. Intraplantar injection of a superoxide anion donor (potassium superoxide) induced mechanical hyperalgesia (0.5-5h after injection), neutrophil recruitment (myeloperoxidase activity), and overt pain-like behaviors (paw flinching, paw licking, and abdominal writhings) in wild-type mice. Tumor necrosis factor receptor 1 deficiency (TNFR1-/-) and treatment of wild-type mice with etanercept (a soluble TNFR2 receptor that inhibits TNFα actions) inhibited superoxide anion-induced pain-like behaviors. TNFR1(-/-) mice were also protected from superoxide anion donor-induced oxidative stress, suggesting the role of this pathway in the maintenance of oxidative stress. Finally, we demonstrated that Apocynin (an NADPH oxidase inhibitor) or Tempol (a superoxide dismutase mimetic) treatment inhibited TNFα-induced paw mechanical hyperalgesia and neutrophil recruitment (myeloperoxidase activity). These results demonstrate that TNFα/TNFR1 signaling is important in superoxide anion-triggered pain and that TNFα/TNFR1 signaling amplifies the oxidative stress triggered by superoxide anion, which contributes to sustaining pain and inflammation.
Collapse
Affiliation(s)
- Fabiane Y Yamacita-Borin
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM380 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil; Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Av. Robert Koch 60, Londrina, Paraná, CEP 86038-350, Brazil
| | - Ana C Zarpelon
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM380 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM380 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM380 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Jose C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, CEP 14049-900, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, CEP 14049-900, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, CEP 14049-900, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Av. Robert Koch 60, Londrina, Paraná, CEP 86038-350, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM380 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil.
| |
Collapse
|
8
|
Guedon JMG, Wu S, Zheng X, Churchill CC, Glorioso JC, Liu CH, Liu S, Vulchanova L, Bekker A, Tao YX, Kinchington PR, Goins WF, Fairbanks CA, Hao S. Current gene therapy using viral vectors for chronic pain. Mol Pain 2015; 11:27. [PMID: 25962909 PMCID: PMC4446851 DOI: 10.1186/s12990-015-0018-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/01/2015] [Indexed: 02/07/2023] Open
Abstract
The complexity of chronic pain and the challenges of pharmacotherapy highlight the importance of development of new approaches to pain management. Gene therapy approaches may be complementary to pharmacotherapy for several advantages. Gene therapy strategies may target specific chronic pain mechanisms in a tissue-specific manner. The present collection of articles features distinct gene therapy approaches targeting specific mechanisms identified as important in the specific pain conditions. Dr. Fairbanks group describes commonly used gene therapeutics (herpes simplex viral vector (HSV) and adeno-associated viral vector (AAV)), and addresses biodistribution and potential neurotoxicity in pre-clinical models of vector delivery. Dr. Tao group addresses that downregulation of a voltage-gated potassium channel (Kv1.2) contributes to the maintenance of neuropathic pain. Alleviation of chronic pain through restoring Kv1.2 expression in sensory neurons is presented in this review. Drs Goins and Kinchington group describes a strategy to use the replication defective HSV vector to deliver two different gene products (enkephalin and TNF soluble receptor) for the treatment of post-herpetic neuralgia. Dr. Hao group addresses the observation that the pro-inflammatory cytokines are an important shared mechanism underlying both neuropathic pain and the development of opioid analgesic tolerance and withdrawal. The use of gene therapy strategies to enhance expression of the anti-pro-inflammatory cytokines is summarized. Development of multiple gene therapy strategies may have the benefit of targeting specific pathologies associated with distinct chronic pain conditions (by Guest Editors, Drs. C. Fairbanks and S. Hao).
Collapse
Affiliation(s)
- Jean-Marc G Guedon
- Graduate Program in Molecular Virology and Microbiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA. .,Department of Ophthalmology, University of Pittsburgh School of Medicine, Room 1020 EEI, 203 Lothrop Street, Pittsburgh, PA, 15213, USA.
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, State University of New Jersey, 185 S. Orange Ave., MSB, F-548, Newark, NJ, 07103, USA.
| | - Xuexing Zheng
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | | | - Joseph C Glorioso
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Ching-Hang Liu
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Shue Liu
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, State University of New Jersey, 185 S. Orange Ave., MSB, F-548, Newark, NJ, 07103, USA.
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, State University of New Jersey, 185 S. Orange Ave., MSB, F-548, Newark, NJ, 07103, USA. .,Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, NJ, 07103, USA. .,Department of Neurology & Neuroscience, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, NJ, 07103, USA. .,Department of Physiology & Pharmacology, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, NJ, 07103, USA.
| | - Paul R Kinchington
- Graduate Program in Molecular Virology and Microbiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA. .,Department of Ophthalmology, University of Pittsburgh School of Medicine, Room 1020 EEI, 203 Lothrop Street, Pittsburgh, PA, 15213, USA.
| | - William F Goins
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Carolyn A Fairbanks
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA. .,Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA. .,Department of Pharmacology, University of Minnesota, 9-177 Weaver Densford Hall, 308 Harvard Street, Minneapolis, MN, 55455, USA.
| | - Shuanglin Hao
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
9
|
Zhang Q, Yu J, Wang J, Ding CP, Han SP, Zeng XY, Wang JY. The Red Nucleus TNF-α Participates in the Initiation and Maintenance of Neuropathic Pain Through Different Signaling Pathways. Neurochem Res 2015; 40:1360-71. [DOI: 10.1007/s11064-015-1599-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/11/2015] [Accepted: 05/02/2015] [Indexed: 11/30/2022]
|
10
|
Kallenborn-Gerhardt W, Hohmann SW, Syhr KMJ, Schröder K, Sisignano M, Weigert A, Lorenz JE, Lu R, Brüne B, Brandes RP, Geisslinger G, Schmidtko A. Nox2-dependent signaling between macrophages and sensory neurons contributes to neuropathic pain hypersensitivity. Pain 2014; 155:2161-70. [PMID: 25139590 DOI: 10.1016/j.pain.2014.08.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/18/2014] [Accepted: 08/12/2014] [Indexed: 12/22/2022]
Abstract
Emerging lines of evidence indicate that production of reactive oxygen species (ROS) at distinct sites of the nociceptive system contributes to the processing of neuropathic pain. However, the mechanisms underlying ROS production during neuropathic pain processing are not fully understood. We here detected the ROS-generating nicotinamide adenine dinucleotide phosphate oxidase isoform Nox2 in macrophages of dorsal root ganglia (DRG) in mice. In response to peripheral nerve injury, Nox2-positive macrophages were recruited to DRG, and ROS production was increased in a Nox2-dependent manner. Nox2-deficient mice displayed reduced neuropathic pain behavior after peripheral nerve injury, whereas their immediate responses to noxious stimuli were normal. Moreover, injury-induced upregulation of tumor necrosis factor α was absent, and activating transcription factor 3 induction was reduced in DRG of Nox2-deficient mice, suggesting an attenuated macrophage-neuron signaling. These data suggest that Nox2-dependent ROS production in macrophages recruited to DRG contributes to neuropathic pain hypersensitivity, underlining the observation that Nox-derived ROS exert specific functions during the processing of pain.
Collapse
Affiliation(s)
- Wiebke Kallenborn-Gerhardt
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Stephan W Hohmann
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Katharina M J Syhr
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Katrin Schröder
- Institute of Cardiovascular Physiology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Marco Sisignano
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I/ZAFES, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jana E Lorenz
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Ruirui Lu
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Medical School, Frankfurt am Main, Germany; Institute of Pharmacology and Toxicology, ZBAF, Witten/Herdecke University, Witten, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I/ZAFES, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute of Cardiovascular Physiology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Medical School, Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Achim Schmidtko
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Medical School, Frankfurt am Main, Germany; Institute of Pharmacology and Toxicology, ZBAF, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|