1
|
Luo J, Feng Y, Hong Z, Yin M, Zheng H, Zhang L, Hu X. High-frequency repetitive transcranial magnetic stimulation promotes neural stem cell proliferation after ischemic stroke. Neural Regen Res 2024; 19:1772-1780. [PMID: 38103244 PMCID: PMC10960276 DOI: 10.4103/1673-5374.389303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00031/figure1/v/2023-12-16T180322Z/r/image-tiff Proliferation of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage. Transcranial magnetic stimulation (TMS) has recently emerged as a tool for inducing endogenous neural stem cell regeneration, but its underlying mechanisms remain unclear. In this study, we found that repetitive TMS effectively promotes the proliferation of oxygen-glucose deprived neural stem cells. Additionally, repetitive TMS reduced the volume of cerebral infarction in a rat model of ischemic stroke caused by middle cerebral artery occlusion, improved rat cognitive function, and promoted the proliferation of neural stem cells in the ischemic penumbra. RNA-sequencing found that repetitive TMS activated the Wnt signaling pathway in the ischemic penumbra of rats with cerebral ischemia. Furthermore, PCR analysis revealed that repetitive TMS promoted AKT phosphorylation, leading to an increase in mRNA levels of cell cycle-related proteins such as Cdk2 and Cdk4. This effect was also associated with activation of the glycogen synthase kinase 3β/β-catenin signaling pathway, which ultimately promotes the proliferation of neural stem cells. Subsequently, we validated the effect of repetitive TMS on AKT phosphorylation. We found that repetitive TMS promoted Ca2+ influx into neural stem cells by activating the P2 calcium channel/calmodulin pathway, thereby promoting AKT phosphorylation and activating the glycogen synthase kinase 3β/β-catenin pathway. These findings indicate that repetitive TMS can promote the proliferation of endogenous neural stem cells through a Ca2+ influx-dependent phosphorylated AKT/glycogen synthase kinase 3β/β-catenin signaling pathway. This study has produced pioneering results on the intrinsic mechanism of repetitive TMS to promote neural function recovery after ischemic stroke. These results provide a strong scientific foundation for the clinical application of repetitive TMS. Moreover, repetitive TMS treatment may not only be an efficient and potential approach to support neurogenesis for further therapeutic applications, but also provide an effective platform for the expansion of neural stem cells.
Collapse
Affiliation(s)
- Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhongqiu Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Mingyu Yin
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Tang H, Li Y, Tang W, Zhu J, Parker GC, Zhang JH. Endogenous Neural Stem Cell-induced Neurogenesis after Ischemic Stroke: Processes for Brain Repair and Perspectives. Transl Stroke Res 2023; 14:297-303. [PMID: 36057034 DOI: 10.1007/s12975-022-01078-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Ischemic stroke is a very common cerebrovascular accident that occurred in adults and causes higher risk of neural deficits. After ischemic stroke, patients are often left with severe neurological deficits. Therapeutic strategies for ischemic stroke might mitigate neuronal loss due to delayed neural cell death in the penumbra or seek to replace dead neural cells in the ischemic core. Currently, stem cell therapy is the most promising approach for inducing neurogenesis for neural repair after ischemic stroke. Stem cell treatments include transplantation of exogenous stem cells but also stimulating endogenous neural stem cells (NSCs) proliferation and differentiation into neural cells. In this review, we will discuss endogenous NSCs-induced neurogenesis after ischemic stroke and provide perspectives for the therapeutic effects of endogenous NSCs in ischemic stroke. Our review would inform future therapeutic development not only for patients with ischemic stroke but also with other neurological deficits.
Collapse
Affiliation(s)
- Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China.
| | - Graham C Parker
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92354, USA.
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA.
| |
Collapse
|
3
|
Berlet R, Galang Cabantan DA, Gonzales-Portillo D, Borlongan CV. Enriched Environment and Exercise Enhance Stem Cell Therapy for Stroke, Parkinson’s Disease, and Huntington’s Disease. Front Cell Dev Biol 2022; 10:798826. [PMID: 35309929 PMCID: PMC8927702 DOI: 10.3389/fcell.2022.798826] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cells, specifically embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), induced pluripotent stem cells (IPSCs), and neural progenitor stem cells (NSCs), are a possible treatment for stroke, Parkinson’s disease (PD), and Huntington’s disease (HD). Current preclinical data suggest stem cell transplantation is a potential treatment for these chronic conditions that lack effective long-term treatment options. Finding treatments with a wider therapeutic window and harnessing a disease-modifying approach will likely improve clinical outcomes. The overarching concept of stem cell therapy entails the use of immature cells, while key in recapitulating brain development and presents the challenge of young grafted cells forming neural circuitry with the mature host brain cells. To this end, exploring strategies designed to nurture graft-host integration will likely enhance the reconstruction of the elusive neural circuitry. Enriched environment (EE) and exercise facilitate stem cell graft-host reconstruction of neural circuitry. It may involve at least a two-pronged mechanism whereby EE and exercise create a conducive microenvironment in the host brain, allowing the newly transplanted cells to survive, proliferate, and differentiate into neural cells; vice versa, EE and exercise may also train the transplanted immature cells to learn the neurochemical, physiological, and anatomical signals in the brain towards better functional graft-host connectivity.
Collapse
Affiliation(s)
- Reed Berlet
- Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | | | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- *Correspondence: Cesar V. Borlongan,
| |
Collapse
|
4
|
Physical exercise promotes integration of grafted cells and functional recovery in an acute stroke rat model. Stem Cell Reports 2022; 17:276-288. [PMID: 35030322 PMCID: PMC8828662 DOI: 10.1016/j.stemcr.2021.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022] Open
Abstract
Human neural progenitor cell (hNPC) transplantation holds great potential to treat neurological diseases. However, hNPC grafts take a long time to differentiate into mature neurons due to their intrinsically prolonged developmental timetable. Here, we report that postoperative physical exercise (PE), a prevailing rehabilitation intervention, promotes the neuronal commitment, maturation, and integration of engrafted hNPCs, evidenced by forming more synapses, receiving more synaptic input from host neurons, and showing higher neuronal activity levels. More important, NPC transplantation, combined with PE, shows significant improvement in both structural and behavioral outcomes in stroke-damaged rats. PE enhances ingrowth of blood vessels around the infarction region and neural tract reorganization along the ischemic boundary. The combination of NPC transplantation and postoperative PE creates both a neurotrophic/growth factor-enriched proneuronal microenvironment and an ideal condition for activity-dependent plasticity to give full play to its effects. Our study provides a potential approach to treating patients with stroke injury. Physical exercise boosts the maturation and integration of engrafted human NPCs This strategy brings about both structural and behavioral improvements in stroke rats This strategy creates a neurotrophic factor-enriched microenvironment Activity-dependent plasticity is also involved in this process
Collapse
|
5
|
Stimulation of the Migration and Expansion of Adult Mouse Neural Stem Cells by the FPR2-Specific Peptide WKYMVm. Life (Basel) 2021; 11:life11111248. [PMID: 34833124 PMCID: PMC8622362 DOI: 10.3390/life11111248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Neural stem cells (NSCs) are multipotent cells capable of self-renewal and differentiation into different nervous system cells. Mouse NSCs (mNSCs) are useful tools for studying neurogenesis and the therapeutic applications of neurodegenerative diseases in mammals. Formyl peptide receptor 2 (FPR2), expressed in the central nervous system and brain, is involved in the migration and differentiation of murine embryonic-derived NSCs. In this study, we explored the effect of FPR2 activation in adult mNSCs using the synthetic peptide Trp-Lys-Tyr-Met-Val-D-Met-NH2 (WKYMVm), an agonist of FPR2. After isolation of NSCs from the subventricular zone of the adult mouse brain, they were cultured in two culture systems—neurospheres or adherent monolayers—to demonstrate the expression of NSC markers and phenotypes. Under different conditions, mNSCs differentiated into neurons and glial cells such as astrocytes, microglia, and oligodendrocytes. Treatment with WKYMVm stimulated the chemotactic migration of mNSCs. Moreover, WKYMVm-treated mNSCs were found to promote proliferation; this result was confirmed by the expansion of mNSCs in Matrigel and the increase in the number of Ki67-positive cells. Incubation of mNSCs with WKYMVm in a supplement-free medium enhanced the survival rate of the mNSCs. Together, these results suggest that WKYMVm-induced activation of FPR2 stimulates cellular responses in adult NSCs.
Collapse
|
6
|
Li F, Geng X, Yun HJ, Haddad Y, Chen Y, Ding Y. Neuroplastic Effect of Exercise Through Astrocytes Activation and Cellular Crosstalk. Aging Dis 2021; 12:1644-1657. [PMID: 34631212 PMCID: PMC8460294 DOI: 10.14336/ad.2021.0325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Physical exercise is an effective therapy for neurorehabilitation. Exercise has been shown to induce remodeling and proliferation of astrocyte. Astrocytes potentially affect the recruitment and function of neurons; they could intensify responses of neurons and bring more neurons for the process of neuroplasticity. Interactions between astrocytes, microglia and neurons modulate neuroplasticity and, subsequently, neural circuit function. These cellular interactions promote the number and function of synapses, neurogenesis, and cerebrovascular remodeling. However, the roles and crosstalk of astrocytes with neurons and microglia and any subsequent neuroplastic effects have not been studied extensively in exercise-induced settings. This article discusses the impact of physical exercise on astrocyte proliferation and highlights the interplay between astrocytes, microglia and neurons. The crosstalk between these cells may enhance neuroplasticity, leading to the neuroplastic effects of exercise.
Collapse
Affiliation(s)
- Fengwu Li
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China.
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Ho Jun Yun
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yazeed Haddad
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yuhua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
7
|
Berlet R, Anthony S, Brooks B, Wang ZJ, Sadanandan N, Shear A, Cozene B, Gonzales-Portillo B, Parsons B, Salazar FE, Lezama Toledo AR, Monroy GR, Gonzales-Portillo JV, Borlongan CV. Combination of Stem Cells and Rehabilitation Therapies for Ischemic Stroke. Biomolecules 2021; 11:1316. [PMID: 34572529 PMCID: PMC8468342 DOI: 10.3390/biom11091316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Stem cell transplantation with rehabilitation therapy presents an effective stroke treatment. Here, we discuss current breakthroughs in stem cell research along with rehabilitation strategies that may have a synergistic outcome when combined together after stroke. Indeed, stem cell transplantation offers a promising new approach and may add to current rehabilitation therapies. By reviewing the pathophysiology of stroke and the mechanisms by which stem cells and rehabilitation attenuate this inflammatory process, we hypothesize that a combined therapy will provide better functional outcomes for patients. Using current preclinical data, we explore the prominent types of stem cells, the existing theories for stem cell repair, rehabilitation treatments inside the brain, rehabilitation modalities outside the brain, and evidence pertaining to the benefits of combined therapy. In this review article, we assess the advantages and disadvantages of using stem cell transplantation with rehabilitation to mitigate the devastating effects of stroke.
Collapse
Affiliation(s)
- Reed Berlet
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA;
| | - Stefan Anthony
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA;
| | - Beverly Brooks
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
| | - Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
| | | | - Alex Shear
- University of Florida, 205 Fletcher Drive, Gainesville, FL 32611, USA;
| | - Blaise Cozene
- Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, USA;
| | | | - Blake Parsons
- Washington and Lee University, 204 W Washington St, Lexington, VA 24450, USA;
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | - Alma R. Lezama Toledo
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | | | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Xu H, Stamova B, Ander BP, Waldau B, Jickling GC, Sharp FR, Ko NU. mRNA Expression Profiles from Whole Blood Associated with Vasospasm in Patients with Subarachnoid Hemorrhage. Neurocrit Care 2021; 33:82-89. [PMID: 31595394 PMCID: PMC7392923 DOI: 10.1007/s12028-019-00861-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Though there are many biomarker studies of plasma and serum in patients with aneurysmal subarachnoid hemorrhage (SAH), few have examined blood cells that might contribute to vasospasm. In this study, we evaluated inflammatory and prothrombotic pathways by examining mRNA expression in whole blood of SAH patients with and without vasospasm. Methods Adult SAH patients with vasospasm (n = 29) and without vasospasm (n = 21) were matched for sex, race/ethnicity, and aneurysm treatment method. Diagnosis of vasospasm was made by angiography. mRNA expression was measured by Affymetrix Human Exon 1.0 ST Arrays. SAH patients with vasospasm were compared to those without vasospasm by ANCOVA to identify differential gene, exon, and alternatively spliced transcript expression. Analyses were adjusted for age, batch, and time of blood draw after SAH. Results At the gene level, there were 259 differentially expressed genes between SAH patients with vasospasm compared to patients without (false discovery rate < 0.05, |fold change| ≥ 1.2). At the exon level, 1210 exons representing 1093 genes were differentially regulated between the two groups (P < 0.005, ≥ 1.2 |fold change|). Principal components analysis segregated SAH patients with and without vasospasm. Signaling pathways for the 1093 vasospasm-related genes included adrenergic, P2Y, ET-1, NO, sildenafil, renin–angiotensin, thrombin, CCR3, CXCR4, MIF, fMLP, PKA, PKC, CRH, PPARα/RXRα, and calcium. Genes predicted to be alternatively spliced included IL23A, RSU1, PAQR6, and TRIP6. Conclusions This is the first study to demonstrate that mRNA expression in whole blood distinguishes SAH patients with vasospasm from those without vasospasm and supports a role of coagulation and immune systems in vasospasm. Electronic supplementary material The online version of this article (10.1007/s12028-019-00861-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huichun Xu
- Department of Medicine, University of Maryland, College Park, USA
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, 2805 50th St., Sacramento, CA, 95817, USA
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, 2805 50th St., Sacramento, CA, 95817, USA
| | - Ben Waldau
- Neurosurgery, University of California at Davis, Sacramento, USA
| | - Glen C Jickling
- Department of Neurology, University of California at Davis, 2805 50th St., Sacramento, CA, 95817, USA.,Department of Neurology, University of Alberta, Edmonton, Canada
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, 2805 50th St., Sacramento, CA, 95817, USA.
| | - Nerissa U Ko
- Department of Neurology, University of California at San Francisco, San Francisco, USA
| |
Collapse
|
9
|
Deng Y, Guo F, Han X, Huang X. Repetitive transcranial magnetic stimulation increases neurological function and endogenous neural stem cell migration via the SDF-1α/CXCR4 axis after cerebral infarction in rats. Exp Ther Med 2021; 22:1037. [PMID: 34373723 PMCID: PMC8343462 DOI: 10.3892/etm.2021.10469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/09/2021] [Indexed: 12/21/2022] Open
Abstract
Neural stem cell (NSC) migration is closely associated with brain development and is reportedly involved during recovery from ischaemic stroke. Chemokine signalling mediated by stromal cell-derived factor 1α (SDF-1α) and its receptor CXC chemokine receptor 4 (CXCR4) has been previously documented to guide the migration of NSCs. Although repetitive transcranial magnetic stimulation (rTMS) can increase neurological function in a rat stroke model, its effects on the migration of NSCs and associated underlying mechanism remain unclear. Therefore, the present study investigated the effects of rTMS on ischaemic stroke following middle cerebral artery occlusion (MCAO). All rats underwent rTMS treatment 24 h after MCAO. Neurological function, using modified Neurological Severity Scores and grip strength test and NSC migration, which were measured using immunofluorescence staining, were analysed at 7 and 14 days after MCAO, before the protein expression levels of the SDF-1α/CXCR4 axis was evaluated using western blot analysis. AMD3100, a CXCR4 inhibitor, was used to assess the effects of SDF-1α/CXCR4 signalling. In addition, neuronal survival was investigated using Nissl staining at 14 days after MCAO. It was revealed that rTMS increased the neurological recovery of rats with MCAO, facilitated the migration of NSC, augmented the expression levels of the SDF-1α/CXCR4 axis and decreased neuronal loss. Furthermore, the rTMS-induced positive responses were significantly abolished by AMD3100. Overall, these results indicated that rTMS conferred therapeutic neuroprotective properties, which can restore neurological function after ischaemic stroke, in a manner that may be associated with the activation of the SDF-1α/CXCR4 axis.
Collapse
Affiliation(s)
- Yuguo Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Feng Guo
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaohua Han
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaolin Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
10
|
Gabriel-Salazar M, Lei T, Grayston A, Costa C, Medina-Gutiérrez E, Comabella M, Montaner J, Rosell A. Angiogenin in the Neurogenic Subventricular Zone After Stroke. Front Neurol 2021; 12:662235. [PMID: 34234733 PMCID: PMC8256153 DOI: 10.3389/fneur.2021.662235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/17/2021] [Indexed: 11/27/2022] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide with effective acute thrombolytic treatments. However, brain repair mechanisms related to spontaneous or rehabilitation-induced recovery are still under investigation, and little is known about the molecules involved. The present study examines the potential role of angiogenin (ANG), a known regulator of cell function and metabolism linked to neurological disorders, focusing in the neurogenic subventricular zone (SVZ). Angiogenin expression was examined in the mouse SVZ and in SVZ-derived neural stem cells (NSCs), which were exposed to exogenous ANG treatment during neurosphere formation as well as in other neuron-like cells (SH-SY5Y). Additionally, male C57Bl/6 mice underwent a distal permanent occlusion of the middle cerebral artery to study endogenous and exercise-induced expression of SVZ-ANG and neuroblast migration. Our results show that SVZ areas are rich in ANG, primarily expressed in DCX+ neuroblasts but not in nestin+NSCs. In vitro, treatment with ANG increased the number of SVZ-derived NSCs forming neurospheres but could not modify SH-SY5Y neurite differentiation. Finally, physical exercise rapidly increased the amount of endogenous ANG in the ipsilateral SVZ niche after ischemia, where DCX-migrating cells increased as part of the post-stroke neurogenesis process. Our findings position for the first time ANG in the SVZ during post-stroke recovery, which could be linked to neurogenesis.
Collapse
Affiliation(s)
- Marina Gabriel-Salazar
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ting Lei
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba Grayston
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carme Costa
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat) and Vall d'Hebron Research Institute, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esperanza Medina-Gutiérrez
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat) and Vall d'Hebron Research Institute, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Huang M, Xiao C, Zhang L, Li L, Luo J, Chen L, Hu X, Zheng H. Bioinformatic Analysis of Exosomal MicroRNAs of Cerebrospinal Fluid in Ischemic Stroke Rats After Physical Exercise. Neurochem Res 2021; 46:1540-1553. [PMID: 33709257 DOI: 10.1007/s11064-021-03294-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 11/29/2022]
Abstract
Physical exercise is beneficial to the structural and functional recovery of post-ischemic stroke, but its molecular mechanism remains obscure. Herein, we aimed to explore the underlying mechanism of exercise-induced neuroprotection from the perspective of microRNAs (miRNAs). Adult male Sprague-Dawley (SD) rats were randomly distributed into 4 groups, i.e., the physical exercise group with the transient middle cerebral artery occlusion (tMCAO) surgery (PE-IS, n = 28); the physical exercise group without tMCAO surgery (PE, n = 6); the sedentary group with tMCAO surgery (Sed-IS, n = 28); and the sedentary group without tMCAO surgery (Sed, n = 6). Notably, rats in the PE-IS and PE groups were subjected to a running exercise for 28 days while rats in the Sed-IS and Sed groups received no exercise training. After long-term exercise, exosomal miRNAs of cerebrospinal fluid (CSF) were analyzed using high-throughput sequencing. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were employed for the differentially expressed miRNAs. Physical exercise improved the neurological function and attenuated the lesion expansion after stroke. In total, 41 differentially expressed miRNAs were screened for the GO and KEGG analysis. GO enriched terms were associated with the central nervous system, including cellular response to retinoic acid, vagus nerve morphogenesis, cellular response to hypoxia, dendritic cell chemotaxis, cell differentiation, and regulation of neuron death. Besides, these differentially expressed miRNAs were linked to the pathophysiological process of stroke, including axon guidance, NF-kappa B signaling pathway, thiamine metabolism, and MAPK signaling pathway according to KEGG analysis. In summary, exercise training significantly alleviated the neurological damage at both functional and structural levels. Moreover, the differentially expressed miRNAs regulating multiple signal pathways were potentially involved in the neuroprotective effects of physical exercise. Therefore, these miRNAs altered by physical exercise might represent the therapeutic strategy for cerebral ischemia.
Collapse
Affiliation(s)
- Mudan Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Chongjun Xiao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Lili Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Lilin Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
12
|
Neuromodulation-Based Stem Cell Therapy in Brain Repair: Recent Advances and Future Perspectives. Neurosci Bull 2021; 37:735-745. [PMID: 33871821 DOI: 10.1007/s12264-021-00667-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cell transplantation holds a promising future for central nervous system repair. Current challenges, however, include spatially and temporally defined cell differentiation and maturation, plus the integration of transplanted neural cells into host circuits. Here we discuss the potential advantages of neuromodulation-based stem cell therapy, which can improve the viability and proliferation of stem cells, guide migration to the repair site, orchestrate the differentiation process, and promote the integration of neural circuitry for functional rehabilitation. All these advantages of neuromodulation make it one potentially valuable tool for further improving the efficiency of stem cell transplantation.
Collapse
|
13
|
Friedman-Levi Y, Liraz-Zaltsman S, Shemesh C, Rosenblatt K, Kesner EL, Gincberg G, Carmichael ST, Silva AJ, Shohami E. Pharmacological blockers of CCR5 and CXCR4 improve recovery after traumatic brain injury. Exp Neurol 2021; 338:113604. [PMID: 33453212 DOI: 10.1016/j.expneurol.2021.113604] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/27/2020] [Accepted: 01/09/2021] [Indexed: 11/16/2022]
Abstract
CCR5 and CXCR4 are structurally related chemokine receptors that belong to the superfamily of G-protein coupled receptors through which the HIV virus enters and infects cells. Both receptors are also related to HIV-associated neurocognitive disorders that include difficulties in concentration and memory, impaired executive functions, psychomotor slowing, depression and irritability, which are also hallmarks of the long-term sequelae of TBI. Moreover, A growing body of evidence attributes negative influences to CCR5 activation on cognition, particularly after stroke and traumatic brain injury (TBI). Here we investigated the effect of their blockage on motor and cognitive functions, on brain tissue loss and preservation and on some of the biochemical pathways involved. We examined the effect of maraviroc, a CCR5 antagonist used in HIV patients as a viral entry inhibitor, and of plerixafor (AMD3100), a CXCR4 antagonist used in cancer patients as an immune-modulator, on mice subjected to closed head injury (CHI). Mice were treated with maraviroc or plerixafor after CHI for the following 4 or 5 days, respectively. Neurobehavior was assessed according to the Neurological Severity Score; cognitive tests were performed by using the Y-maze, Barnes maze and the novel object recognition test; anxiety was evaluated with the open field test. The mice were sacrificed and brain tissues were collected for Western blot, pathological and immunohistochemical analyses. Both drugs enhanced tissue preservation in the cortex, hippocampus, periventricular areas, corpus callosum and striatum, and reduced astrogliosis)GFAP expression). They also increased the levels of synaptic cognition-related signaling molecules such as phosphorylated NR1 and CREB, and the synaptic plasticity protein PSD95. Both treatments also enhanced the expression of CCR5 and CXCR4 on different brain cell types. In summary, the beneficial effects of blocking CCR5 and CXCR4 after CHI suggest that the drugs used in this study, both FDA approved and in clinical use, should be considered for translational research in TBI patients.
Collapse
Affiliation(s)
- Yael Friedman-Levi
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Sigal Liraz-Zaltsman
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel; Institute for Health and Medical Professions, Department of Sports Therapy, Ono Academic College, Kiryat Ono, Israel.
| | - Chen Shemesh
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel.
| | | | - Efrat L Kesner
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galit Gincberg
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, UCLA, LA, CA, USA.
| | - Alcino J Silva
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, Psychology, Integrative Center for Learning and Memory and Brain Research Institute, UCLA, LA, CA, USA.
| | - Esther Shohami
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
14
|
Chen C, Chu SF, Ai QD, Zhang Z, Chen NH. CKLF1/CCR5 axis is involved in neutrophils migration of rats with transient cerebral ischemia. Int Immunopharmacol 2020; 85:106577. [PMID: 32446198 DOI: 10.1016/j.intimp.2020.106577] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chemokine-like factor 1 (CKLF1) is a chemokine increased significantly in ischemic brain poststroke. It shows chemotaxis effects on various immune cells, but the mechanisms of CKLF1 migrating neutrophils are poorly understood. Recent studies have provided evidence that CC chemokine receptor 5 (CCR5), a receptor of CKLF1, is involved in ischemic stroke. PURPOSES To investigate the effects of HIF-1α guided AAV in ischemic brain, investigating the outcome of stroke, and examining the involvement of CKLF1/CCR5 axis in recruitment of neutrophils. RESULTS HIF-1α guided AAV knocked down CKLF1 in ischemic area and alleviated brain damage of rats. CKLF1 migrated neutrophils through CCR5, worsening inflammatory responses. Akt/GSK-3β pathway may involve in CKLF1/CCR5 axis guided neutrophils chemotaxis. CONCLUSIONS CKLF1/CCR5 axis is involved in neutrophils migration of rats with transient cerebral ischemia. CKLF1/CCR5 axis may be a useful target for stroke therapy.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Qi-di Ai
- Hunan University of Traditional Chinese Medicine, Changsha 410208, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Hunan University of Traditional Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
15
|
Xu JT, Qian Y, Wang W, Chen XX, Li Y, Li Y, Yang ZY, Song XB, Lu D, Deng XL. Effect of stromal cell-derived factor-1/CXCR4 axis in neural stem cell transplantation for Parkinson's disease. Neural Regen Res 2020; 15:112-119. [PMID: 31535659 PMCID: PMC6862426 DOI: 10.4103/1673-5374.264470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Previous studies have shown that neural stem cell transplantation has the potential to treat Parkinson's disease, but its specific mechanism of action is still unclear. Stromal cell-derived factor-1 and its receptor, chemokine receptor 4 (CXCR4), are important regulators of cell migration. We speculated that the CXCR4/stromal cell-derived factor 1 axis may be involved in the therapeutic effect of neural stem cell transplantation in the treatment of Parkinson's disease. A Parkinson's disease rat model was injected with 6-hydroxydopamine via the right ascending nigrostriatal dopaminergic pathway, and then treated with 5 μL of neural stem cell suspension (1.5 × 104/L) in the right substantia nigra. Rats were intraperitoneally injected once daily for 3 days with 1.25 mL/kg of the CXCR4 antagonist AMD3100 to observe changes after neural stem cell transplantation. Parkinson-like behavior in rats was detected using apomorphine-induced rotation. Immunofluorescence staining was used to determine the immunoreactivity of tyrosine hydroxylase, CXCR4, and stromal cell-derived factor-1 in the brain. Using quantitative real-time polymerase chain reaction, the mRNA expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra were measured. In addition, western blot assays were performed to analyze the protein expression of stromal cell-derived factor-1 and CXCR4. Our results demonstrated that neural stem cell transplantation noticeably reduced apomorphine-induced rotation, increased the mRNA and protein expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra, and enhanced the immunoreactivity of tyrosine hydroxylase, CXCR4, and stromal cell-derived factor-1 in the brain. Injection of AMD3100 inhibited the aforementioned effects. These findings suggest that the stromal cell-derived factor-1/CXCR4 axis may play a significant role in the therapeutic effect of neural stem cell transplantation in a rat model of Parkinson's disease. This study was approved by the Animal Care and Use Committee of Kunming Medical University, China (approval No. SYXKK2015-0002) on April 1, 2014.
Collapse
Affiliation(s)
- Jiao-Tian Xu
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yuan Qian
- Diagnosis Prenatal Unit, Department of Obstetrics, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Wei Wang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming; The People's Hospital of Chuxiong Yi Autonomous Prefecture, Chuxiong, Yunnan Province, China
| | - Xiao-Xiang Chen
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yang Li
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yu Li
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhi-Yong Yang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Xiao-Bin Song
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Di Lu
- Rehabilitation Engineering Research Laboratory, Biomedicine Engineering Research Center, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xing-Li Deng
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
16
|
Cichoń N, Bijak M, Czarny P, Miller E, Synowiec E, Sliwinski T, Saluk-Bijak J. Increase in Blood Levels of Growth Factors Involved in the Neuroplasticity Process by Using an Extremely Low Frequency Electromagnetic Field in Post-stroke Patients. Front Aging Neurosci 2018; 10:294. [PMID: 30319398 PMCID: PMC6168626 DOI: 10.3389/fnagi.2018.00294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Neuroplasticity ensures the improvement of functional status in patients after stroke. The aim of this study was to evaluate the effect of extremely low-frequency electromagnetic field therapy (ELF-EMF) on brain plasticity in the rehabilitation of patients after stroke. Methods: Forty-eight patients were divided into two groups underwent the same rehabilitation program, but in the study group, the patients additionally were exposed to a standard series of 10 ELF-EMF treatments. To determine the level of neuroplasticity, we measured the plasma level of the brain-derived neurotrophic factor (BDNF), the vascular-endothelial growth factor, as well as BDNF mRNA expression. Additionally, we determined the molecule levels for hepatocyte growth factor, stem cell factor, stromal cell-derived factor 1α, nerve growth factor β, and leukemia inhibitory factor, using 5plex cytokine panel in plasma. After 4 weeks, during which patients had undergone neurorehabilitation and neurological examinations, we assessed functional recovery using the Barthel Index, Mini-Mental State Examination (MMSE), Geriatric Depression Scale, National Institutes of Health Stroke Scale (NIHSS), and the modified Rankin Scale (mRS). Results: We observed that ELF-EMF significantly increased growth factors and cytokine levels involved in neuroplasticity, as well as promoted an enhancement of functional recovery in post-stroke patients. Additionally, we presented evidence that these effects could be related to the increase of gene expression on the mRNA level. Moreover, a change of BDNF plasma level was positively correlated with the Barthel Index, MMSE, and negatively correlated with GDS. Conclusion: Extremely low-frequency electromagnetic field therapy improves the effectiveness of rehabilitation of post-stroke patients by improving neuroplasticity processes.
Collapse
Affiliation(s)
- Natalia Cichoń
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Michał Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Łódź, Poland
| | - Elżbieta Miller
- Department of Physical Medicine, Medical University of Lodz, Łódź, Poland.,Neurorehabilitation Ward, III General Hospital in Lodz, Łódź, Poland
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| |
Collapse
|
17
|
Liu W, Wu W, Lin G, Cheng J, Zeng Y, Shi Y. Physical exercise promotes proliferation and differentiation of endogenous neural stem cells via ERK in rats with cerebral infarction. Mol Med Rep 2018; 18:1455-1464. [PMID: 29901080 PMCID: PMC6072171 DOI: 10.3892/mmr.2018.9147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/14/2018] [Indexed: 01/25/2023] Open
Abstract
Physical exercise is beneficial for the functional recovery of neurons after stroke. It has been suggested that exercise regulates proliferation and differentiation of endogenous neural stem cells (NSCs); however, the underlying molecular mechanisms are still largely unknown. In the present study, the aim was to investigate whether physical exercise activates the extracellular signal-regulated kinase (ERK) signaling pathway to promote proliferation and differentiation of NSCs in rats with cerebral infarction, thereby improving neurological function. Following middle cerebral artery occlusion, rats underwent physical exercise and neurological behavior was analyzed at various time points. Immunofluorescence staining was performed to detect proliferation and differentiation of NSCs, and western blotting was used to analyze cyclin-dependent kinase 4 (CDK4), Cyclin D1, retinoblastoma protein (p-Rb), P-16, phosphorylated (p)-ERK1/2 and c-Fos expression. The results indicated that physical exercise promoted proliferation and differentiation of NSCs, and led to improved neural function. In addition, the expression levels of CDK4, Cyclin D1, p-Rb, p-ERK1/2 and c-Fos were upregulated, whereas the expression of P-16 was downregulated following exercise. U0126, an inhibitor of ERK signaling, reversed the beneficial effects of exercise. Therefore, it may be hypothesized that physical exercise enhances proliferation and differentiation of endogenous NSCs in the hippocampus of rats with cerebral infarction via the ERK signaling pathway.
Collapse
Affiliation(s)
- Wei Liu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Wen Wu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Guangyong Lin
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jian Cheng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yanyan Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yu Shi
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
18
|
The beneficial role of early exercise training following stroke and possible mechanisms. Life Sci 2018; 198:32-37. [DOI: 10.1016/j.lfs.2018.02.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/04/2018] [Accepted: 02/12/2018] [Indexed: 12/21/2022]
|
19
|
Pozhilenkova EA, Lopatina OL, Komleva YK, Salmin VV, Salmina AB. Blood-brain barrier-supported neurogenesis in healthy and diseased brain. Rev Neurosci 2018; 28:397-415. [PMID: 28195555 DOI: 10.1515/revneuro-2016-0071] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/23/2016] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis is one of the most important mechanisms contributing to brain development, learning, and memory. Alterations in neurogenesis underlie a wide spectrum of brain diseases. Neurogenesis takes place in highly specialized neurogenic niches. The concept of neurogenic niches is becoming widely accepted due to growing evidence of the important role of the microenvironment established in the close vicinity to stem cells in order to provide adequate control of cell proliferation, differentiation, and apoptosis. Neurogenic niches represent the platform for tight integration of neurogenesis and angiogenesis supported by specific properties of cerebral microvessel endothelial cells contributing to establishment of partially compromised blood-brain barrier (BBB) for the adjustment of local conditions to the current metabolic needs of stem and progenitor cells. Here, we review up-to-date data on microvascular dynamics in activity-dependent neurogenesis, specific properties of BBB in neurogenic niches, endothelial-driven mechanisms of clonogenic activity, and future perspectives for reconstructing the neurogenic niches in vitro.
Collapse
|
20
|
Chen C, Chu SF, Liu DD, Zhang Z, Kong LL, Zhou X, Chen NH. Chemokines play complex roles in cerebral ischemia. Neurochem Int 2018. [DOI: 10.1016/j.neuint.2017.06.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Electromagnetic Fields for the Regulation of Neural Stem Cells. Stem Cells Int 2017; 2017:9898439. [PMID: 28932245 PMCID: PMC5592400 DOI: 10.1155/2017/9898439] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/02/2017] [Indexed: 01/25/2023] Open
Abstract
Localized magnetic fields (MFs) could easily penetrate the scalp, skull, and meninges, thus inducing an electrical current in both the central and peripheral nervous systems, which is primarily used in transcranial magnetic stimulation (TMS) for inducing specific effects on different regions or cells that play roles in various brain activities. Studies of repetitive transcranial magnetic stimulation (rTMS) have led to novel attractive therapeutic approaches. Neural stem cells (NSCs) in adult human brain are able to self-renew and possess multidifferential ability to maintain homeostasis and repair damage after acute central nervous system. In the present review, we summarized the electrical activity of NSCs and the fundamental mechanism of electromagnetic fields and their effects on regulating NSC proliferation, differentiation, migration, and maturation. Although it was authorized for the rTMS use in resistant depression patients by US FDA, there are still unveiling mechanism and limitations for rTMS in clinical applications of acute central nervous system injury, especially on NSC regulation as a rehabilitation strategy. More in-depth studies should be performed to provide detailed parameters and mechanisms of rTMS in further studies, making it a powerful tool to treat people who are surviving with acute central nervous system injuries.
Collapse
|
22
|
Portis SM, Sanberg PR. Regenerative Rehabilitation: An Innovative and Multifactorial Approach to Recovery From Stroke and Brain Injury. CELL MEDICINE 2017; 9:67-71. [PMID: 28713637 DOI: 10.3727/215517917x693393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is currently a dearth of treatment options for stroke or traumatic brain injury that can restore cognitive and motor function. Regenerative and translational medicine have ushered forth promising new methods for mediating recovery in the central nervous system, the most salient of which are rehabilitation and stem cell therapies that, when combined, result in more pronounced recovery than one approach alone.
Collapse
Affiliation(s)
- Samantha M Portis
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Paul R Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
23
|
Luo Z, Wang Z, He X, Liu N, Liu B, Sun L, Wang J, Ma F, Duncan H, He W, Cooper P. Effects of histone deacetylase inhibitors on regenerative cell responses in human dental pulp cells. Int Endod J 2017; 51:767-778. [DOI: 10.1111/iej.12779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 03/30/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Z. Luo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology; Department of Operative Dentistry and Endodontics; School of Stomatology; The Fourth Military Medical University; Xi'an China
- Department of Operative Dentistry and Endodontics; School of Stomatology; The Guizhou Medical University; Guiyang China
| | - Z. Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology; Department of Operative Dentistry and Endodontics; School of Stomatology; The Fourth Military Medical University; Xi'an China
| | - X. He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology; Department of Operative Dentistry and Endodontics; School of Stomatology; The Fourth Military Medical University; Xi'an China
| | - N. Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology; Department of Operative Dentistry and Endodontics; School of Stomatology; The Fourth Military Medical University; Xi'an China
| | - B. Liu
- Department of Stomatology; the Lishilu out-patient Department of the Chinese PLA Second Artillery Corps; Beijing China
| | - L. Sun
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology; Department of Operative Dentistry and Endodontics; School of Stomatology; The Fourth Military Medical University; Xi'an China
| | - J. Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology; Department of Operative Dentistry and Endodontics; School of Stomatology; The Fourth Military Medical University; Xi'an China
| | - F. Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology; Department of Operative Dentistry and Endodontics; School of Stomatology; The Fourth Military Medical University; Xi'an China
| | - H. Duncan
- Division of Restorative Dentistry and Periodontology; Dublin Dental University Hospital; Dublin Ireland
| | - W. He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology; Department of Operative Dentistry and Endodontics; School of Stomatology; The Fourth Military Medical University; Xi'an China
| | - P. Cooper
- Oral Biology; School of Dentistry; University of Birmingham; Birmingham UK
| |
Collapse
|
24
|
Luo J, Zheng H, Zhang L, Zhang Q, Li L, Pei Z, Hu X. High-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) Improves Functional Recovery by Enhancing Neurogenesis and Activating BDNF/TrkB Signaling in Ischemic Rats. Int J Mol Sci 2017; 18:ijms18020455. [PMID: 28230741 PMCID: PMC5343989 DOI: 10.3390/ijms18020455] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/05/2017] [Accepted: 02/10/2017] [Indexed: 01/05/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has rapidly become an attractive therapeutic approach for stroke. However, the mechanisms underlying this remain elusive. This study aimed to investigate whether high-frequency rTMS improves functional recovery mediated by enhanced neurogenesis and activation of brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) pathway and to compare the effect of conventional 20 Hz rTMS and intermittent theta burst stimulation (iTBS) on ischemic rats. Rats after rTMS were sacrificed seven and 14 days after middle cerebral artery occlusion (MCAO), following evaluation of neurological function. Neurogenesis was measured using specific markers: Ki67, Nestin, doublecortin (DCX), NeuN and glial fibrillary acidic protein (GFAP), and the expression levels of BDNF were visualized by Western blotting and RT-PCR analysis. Both high-frequency rTMS methods significantly improved neurological function and reduced infarct volume. Moreover, 20 Hz rTMS and iTBS significantly promoted neurogenesis, shown by an increase of Ki67/DCX, Ki67/Nestin, and Ki67/NeuN-positive cells in the peri-infarct striatum. These beneficial effects were accompanied by elevated protein levels of BDNF and phosphorylated-TrkB. In conclusion, high-frequency rTMS improves functional recovery possibly by enhancing neurogenesis and activating BDNF/TrkB signaling pathway and conventional 20 Hz rTMS is better than iTBS at enhancing neurogenesis in ischemic rats.
Collapse
Affiliation(s)
- Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| | - Qingjie Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| | - Lili Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| |
Collapse
|
25
|
Treadmill Exercise Promotes Neurogenesis in Ischemic Rat Brains via Caveolin-1/VEGF Signaling Pathways. Neurochem Res 2016; 42:389-397. [DOI: 10.1007/s11064-016-2081-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 07/07/2016] [Accepted: 10/06/2016] [Indexed: 11/25/2022]
|
26
|
Zhao S, Qu H, Zhao Y, Xiao T, Zhao M, Li Y, Jolkkonen J, Cao Y, Zhao C. CXCR4 antagonist AMD3100 reverses the neurogenesis and behavioral recovery promoted by forced limb-use in stroke rats. Restor Neurol Neurosci 2016; 33:809-21. [PMID: 26444377 DOI: 10.3233/rnn-150515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Forced limb-use can enhance neurogenesis and behavioral recovery as well as increasing the level of stromal cell-derived factor-1 (SDF-1) in stroke rats. We examined whether the SDF-1/CXCR4 pathway is involved in the enhanced neurogenesis and promoted behavioral recovery induced by forced limb-use in the chronic phase of stroke. METHODS The CXCR4 antagonist, AMD3100, was used to block the SDF-1/CXCR4 pathway in the ischemic rats. Brain ischemia was induced by endothelin-1. One week after ischemia, the unimpaired forelimb of rats was immobilized for 3 weeks. The proliferation, migration, and survival of DCX-positive cells in the subventricular zone (SVZ), and the dendritic complexity of DCX-positive cells in the dentate gyrus (DG), as well as the inflammatory response in the infarcted striatum were analyzed by immunohistochemistry. Functional recovery was assessed in beam-walking and water maze tests. RESULTS Forced limb-use enhanced the proliferation, migration, dendritic complexity and the survival of newborn neurons. Furthermore, forced limb-use suppressed the inflammatory response and improved both motor and cognitive functions after stroke. AMD3100 significantly abrogated the enhanced neurogenesis and behavioral recovery induced by forced limb-use without influencing the inflammatory response. CONCLUSIONS SDF-1/CXCR4 pathway seems to be involved in the enhancement of neurogenesis and behavioral recovery induced by post-stroke forced limb-use.
Collapse
Affiliation(s)
- Shanshan Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Huiling Qu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Yi Zhao
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China
| | - Ting Xiao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, China
| | - Mei Zhao
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jukka Jolkkonen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Yunpeng Cao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Chuansheng Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Formylpeptide Receptors Promote the Migration and Differentiation of Rat Neural Stem Cells. Sci Rep 2016; 6:25946. [PMID: 27173446 PMCID: PMC4865803 DOI: 10.1038/srep25946] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/20/2016] [Indexed: 01/01/2023] Open
Abstract
Neural stem cells (NSCs) bear characteristics for proliferation, migration and differentiation into three main neural cell type(s): neurons, astrocytes and/or oligodendrocytes. Formylpeptide receptors (Fprs), belonging to the family of G protein-coupled chemoattractant receptors, have been detected on neurons in the central nervous system (CNS). Here, we report that Fpr1 and Fpr2 are expressed on NSCs as detected with immunohistochemistry, RT-PCR and WB assays. In addition, Fpr1 and Fpr2 promoted NSC migration through F-actin polymerization and skewed NSC differentiation to neurons. Our study demonstrates a unique role of Fpr1 and Fpr2 in NSCs and opens a novel window for cell replacement therapies for brain and spinal cord injury.
Collapse
|
28
|
Luan S, Wan Q, Luo H, Li X, Ke S, Lin C, Wu Y, Wu S, Ma C. Running exercise alleviates pain and promotes cell proliferation in a rat model of intervertebral disc degeneration. Int J Mol Sci 2015; 16:2130-44. [PMID: 25607736 PMCID: PMC4307353 DOI: 10.3390/ijms16012130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/12/2015] [Indexed: 12/19/2022] Open
Abstract
Chronic low back pain accompanied by intervertebral disk degeneration is a common musculoskeletal disorder. Physical exercise, which is clinically recommended by international guidelines, has proven to be effective for degenerative disc disease (DDD) patients. However, the mechanism underlying the analgesic effects of physical exercise on DDD remains largely unclear. The results of the present study showed that mechanical withdrawal thresholds of bilateral hindpaw were significantly decreased beginning on day three after intradiscal complete Freund's adjuvant (CFA) injection and daily running exercise remarkably reduced allodynia in the CFA exercise group beginning at day 28 compared to the spontaneous recovery group (controls). The hindpaw withdrawal thresholds of the exercise group returned nearly to baseline at the end of experiment, but severe pain persisted in the control group. Histological examinations performed on day 70 revealed that running exercise restored the degenerative discs and increased the cell densities of the annulus fibrosus (AF) and nucleus pulposus (NP). Furthermore, immunofluorescence labeling revealed significantly higher numbers of 5-bromo-2-deoxyuridine (BrdU)-positive cells in the exercise group on days 28, 42, 56 and 70, which indicated more rapid proliferation compared to the control at the corresponding time points. Taken together, these results suggest that running exercise might alleviate the mechanical allodynia induced by intradiscal CFA injection via disc repair and cell proliferation, which provides new evidence for future clinical use.
Collapse
Affiliation(s)
- Shuo Luan
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Qing Wan
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Haijie Luo
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Xiao Li
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Songjian Ke
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Caina Lin
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Yuanyuan Wu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Shaoling Wu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chao Ma
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|