1
|
Steiner AR, Rousseau-Blass F, Schroeter A, Hartnack S, Bettschart-Wolfensberger R. Systematic Review: Anesthetic Protocols and Management as Confounders in Rodent Blood Oxygen Level Dependent Functional Magnetic Resonance Imaging (BOLD fMRI)-Part B: Effects of Anesthetic Agents, Doses and Timing. Animals (Basel) 2021; 11:ani11010199. [PMID: 33467584 PMCID: PMC7830239 DOI: 10.3390/ani11010199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary To understand brain function in rats and mice functional magnetic resonance imaging of the brain is used. With this type of “brain scan” regional changes in blood flow and oxygen consumption are measured as an indirect surrogate for activity of brain regions. Animals are often anesthetized for the experiments to prevent stress and blurred images due to movement. However, anesthesia may alter the measurements, as blood flow within the brain is differently affected by different anesthetics, and anesthetics also directly affect brain function. Consequently, results obtained under one anesthetic protocol may not be comparable with those obtained under another, and/or not representative for awake animals and humans. We have systematically searched the existing literature for studies analyzing the effects of different anesthesia methods or studies that compared anesthetized and awake animals. Most studies reported that anesthetic agents, doses and timing had an effect on functional magnetic resonance imaging results. To obtain results which promote our understanding of brain function, it is therefore essential that a standard for anesthetic protocols for functional magnetic resonance is defined and their impact is well characterized. Abstract In rodent models the use of functional magnetic resonance imaging (fMRI) under anesthesia is common. The anesthetic protocol might influence fMRI readouts either directly or via changes in physiological parameters. As long as those factors cannot be objectively quantified, the scientific validity of fMRI in rodents is impaired. In the present systematic review, literature analyzing in rats and mice the influence of anesthesia regimes and concurrent physiological functions on blood oxygen level dependent (BOLD) fMRI results was investigated. Studies from four databases that were searched were selected following pre-defined criteria. Two separate articles publish the results; the herewith presented article includes the analyses of 83 studies. Most studies found differences in BOLD fMRI readouts with different anesthesia drugs and dose rates, time points of imaging or when awake status was compared to anesthetized animals. To obtain scientifically valid, reproducible results from rodent fMRI studies, stable levels of anesthesia with agents suitable for the model under investigation as well as known and objectively quantifiable effects on readouts are, thus, mandatory. Further studies should establish dose ranges for standardized anesthetic protocols and determine time windows for imaging during which influence of anesthesia on readout is objectively quantifiable.
Collapse
Affiliation(s)
- Aline R. Steiner
- Section of Anaesthesiology, Department of Clinical and Diagnostic Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Correspondence:
| | - Frédérik Rousseau-Blass
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Aileen Schroeter
- Institute for Biomedical Engineering, University and ETH Zurich, 8093 Zurich, Switzerland;
| | - Sonja Hartnack
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Regula Bettschart-Wolfensberger
- Section of Anaesthesiology, Department of Clinical and Diagnostic Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
2
|
Leal SL, Yassa MA. Integrating new findings and examining clinical applications of pattern separation. Nat Neurosci 2018; 21:163-173. [PMID: 29371654 PMCID: PMC5898810 DOI: 10.1038/s41593-017-0065-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 10/28/2017] [Indexed: 11/09/2022]
Abstract
Pattern separation, the ability to independently represent and store similar experiences, is a crucial facet of episodic memory. Growing evidence suggests that the hippocampus possesses unique circuitry that is computationally capable of resolving mnemonic interference by using pattern separation. In this Review, we discuss recent advances in the understanding of this process and evaluate the caveats and limitations of linking across animal and human studies. We summarize clinical and translational studies using methods that are sensitive to pattern separation impairments, an approach that stems from the fact that the hippocampus is a major site of disruption in many brain disorders. We critically evaluate the assumptions that guide fundamental and translational studies in this area. Finally, we suggest guidelines for future research and offer ways to overcome potential interpretational challenges to increase the utility of pattern separation as a construct that can further understanding of both memory processes and brain disease.
Collapse
Affiliation(s)
- Stephanie L Leal
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Michael A Yassa
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Lowen SB, Rohan ML, Gillis TE, Thompson BS, Wellons CBW, Andersen SL. Cocaine-conditioned odor cues without chronic exposure: Implications for the development of addiction vulnerability. NEUROIMAGE-CLINICAL 2015; 8:652-9. [PMID: 27006904 PMCID: PMC4788503 DOI: 10.1016/j.nicl.2015.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/28/2015] [Accepted: 06/19/2015] [Indexed: 11/22/2022]
Abstract
Adolescents are highly vulnerable to addiction and are four times more likely to become addicted at first exposure than at any other age. The dopamine D1 receptor, which is typically overexpressed in the normal adolescent prefrontal cortex, is involved in drug cue responses and is associated with relapse in animal models. In human drug addicts, imaging methods have detected increased activation in response to drug cues in reward- and habit-associated brain regions. These same methods can be applied more quantitatively to rodent models. Here, changes in neuronal activation in response to cocaine-conditioned cues were observed using functional magnetic resonance imaging in juvenile rats that were made to over-express either D1 receptors or green fluorescent protein by viral-mediated transduction. Reduced activation was observed in the amygdala and dopamine cell body regions in the low cue-preferring/control juvenile rats in response to cocaine cues. In contrast, increased activation was observed in the dorsal striatum, nucleus accumbens, prefrontal cortex, and dopamine cell bodies in high cue-preferring/D1 juveniles. The increase in cue salience that is mediated by increased D1 receptor density, rather than excessive cocaine experience, appears to underlie the transition from aversion to reward in cue-induced neural response and may form the basis for habit-forming vulnerability. Increased D1 receptors in prefrontal cortex increase BOLD in addiction regions. Cocaine-associated cues activated the amygdala when cocaine was preferred. Cocaine cues deactivated the amygdala in the absence of cocaine preference. Genetic engineering can be used to isolate functional responses in neural circuitry.
Collapse
Key Words
- BLA, basolateral amygdala
- BOLD, blood oxygenation level determination
- Cocaine
- Cue
- D1
- DSTR, dorsal striatum
- Development
- NAc, nucleus accumbens
- Odor
- PFC, prefrontal cortex
- ROI, region of interest
- SNc/r, substantia nigra pars compacta/reticulata
- Striatum
- VTA, ventral tegmental area
- fMRI, functional magnetic resonance imaging
- pharmacoMRI, pharmacological magnetic resonance imaging
Collapse
Affiliation(s)
- Steven B Lowen
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Michael L Rohan
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Timothy E Gillis
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Britta S Thompson
- Laboratory for Developmental Neuropharmacology, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Clara B W Wellons
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Susan L Andersen
- Laboratory for Developmental Neuropharmacology, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| |
Collapse
|