1
|
Chen Y, Li HT, Luo X, Li G, Ide JS, Li CSR. The effects of alcohol use severity and polygenic risk on gray matter volumes in young adults. Front Psychiatry 2025; 16:1560053. [PMID: 40433172 PMCID: PMC12106418 DOI: 10.3389/fpsyt.2025.1560053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction Genetic factors contribute to alcohol misuse. Chronic alcohol consumption is associated with decreases in gray matter volumes (GMVs) of the brain. However, it remains unclear whether or how genetic risks may alter GMVs independent of the effects of alcohol exposure. Methods Here, we employed the Human Connectome Project data of neurotypical adults (n = 995; ages 22-35; 534 women) and, with voxel-based morphometry analysis, computed the GMVs of 166 regions in the automated anatomical atlas 3. Alcohol use behaviors were assessed with the Semi-Structured Assessment for the Genetics of Alcoholism. Alcohol use severity was quantified by the first principal component (PC1) identified of principal component analysis of 15 drinking measures. Polygenic risk scores (PRS) for alcohol dependence were computed for all subjects using the Psychiatric Genomics Consortium study of alcohol dependence as the base sample. With age, sex, race, and total intracranial volume as covariates, we evaluated the relationships of regional GMVs with PC1 and PRS together in a linear regression. Results PC1 was negatively correlated with GMVs of right insula and Heschl's gyrus, and PRS was positively correlated with GMVs of left posterior orbitofrontal cortex, bilateral intralaminar nuclei of the thalamus and lingual gyri. Discussion These findings suggest distinct volumetric neural markers of drinking severity and genetic risks of alcohol misuse. Notably, in contrast to volumetric reduction, the genetic risks of dependent drinking may involve larger regional volumes in the reward, emotion, and saliency circuits.
Collapse
Affiliation(s)
- Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | | | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Jaime S. Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
- Inter-Department Neuroscience Program, Yale University, New
Haven, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, United States
| |
Collapse
|
2
|
Wang J, Shen H, Xu Q, Zhang S, Li T, Zheng Y. Functional connectivity across multi-frequency bands in patients with tension-type headache: a resting-state fMRI retrospective study. BMC Med Imaging 2025; 25:145. [PMID: 40312692 PMCID: PMC12046950 DOI: 10.1186/s12880-025-01599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/14/2025] [Indexed: 05/03/2025] Open
Abstract
OBJECTIVES Tension-type headache (TTH) is the most common nervous system disorder worldwide. This study aimed to examine abnormal network-level brain functional connectivity (FC) alterations in patients with TTH across multi-frequency bands. METHODS The study enrolled 63 subjects, comprising 32 patients with TTH and 31 healthy controls (HC). According to our team's previous research, the brain regions with abnormal ReHo in the conventional frequency band (0.01-0.08 Hz) and the slow-5 band (0.01-0.027 Hz) were chosen as seed regions of interest (ROIs). Subsequently, the FC between ROIs and the entire brain analysis across various frequency bands was calculated to evaluate network-level alterations, and differences between the TTH and HC were analyzed. Pearson's correlation analysis was conducted to assess the relationship between significantly altered FC values in two frequency bands and visual analog score (VAS) in TTH patients. RESULTS In the slow-5 band (0.01-0.027 Hz), FC between right medial superior frontal gyrus and right medial temporal pole/right inferior temporal gyrus as well as right middle frontal gyrus and left supramarginal gyrus of TTH patients exhibited significantly higher, compared to the HC group, while FC between right middle frontal gyrus and right lateral occipital cortex reduced. For the correlation results, there was no correlation between abnormal brain regions of FC and VAS score. CONCLUSIONS Changes in FC within brain regions associated with TTH are linked to pain processing. And the altered FC in TTH patients were frequency dependent. These initial observations could enhance our understanding of TTH's pathophysiological mechanism and offer insights for its future diagnosis and treatment.
Collapse
Affiliation(s)
- Jili Wang
- Imaging Department, Shouguang People's Hospital, Shouguang, 262700, China
| | - Hongjie Shen
- Neurology Department, Shouguang People's Hospital, Shouguang, 262700, China
| | - Qinyan Xu
- Imaging Department, Affiliated Hospital of Shandong Second Medical University, Weifang, 261000, China
| | - Shuxian Zhang
- Imaging Department, Affiliated Hospital of Shandong Second Medical University, Weifang, 261000, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai HospitalTianjin Medical University, 8 Changjiang Avenue, Tianjin, 300100, China
| | - Yun Zheng
- Ultrasonic Department, Weifang People's Hospital, 151 Guangwen Avenue, Weifang, 261000, China.
| |
Collapse
|
3
|
Baumert PM, Faßbender K, Wintergerst MWM, Terheyden JH, Aslan B, Foulsham T, Harmening W, Ettinger U. Effects of lorazepam on saccadic eye movements - evidence from prosaccade and free viewing tasks. Psychopharmacology (Berl) 2025; 242:271-284. [PMID: 39225714 PMCID: PMC11775061 DOI: 10.1007/s00213-024-06672-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
RATIONALE Peak velocities of saccadic eye movements are reduced after benzodiazepine administration. Even though this is an established effect, past research has only examined it in horizontal prosaccade tasks. OBJECTIVES The spectrum of saccadic eye movements, however, is much larger. Therefore, we aimed to make a first attempt at filling this research gap by testing benzodiazepine effects on saccades under different experimental task conditions. METHODS 1 mg lorazepam or placebo was administered (within-subjects, double-blind, in randomised order) to n = 30 healthy adults. Participants performed an extended version of the prosaccade task, including vertical saccade directions and different stimulus eccentricities, as well as a free viewing task. RESULTS Results from the prosaccade task confirmed established effects of benzodiazepines as well as saccade direction on saccadic parameters but additionally showed that the drug effect on peak velocity was independent of saccade direction. Remarkably, in the free viewing task peak velocities as well as other saccade parameters were unaffected by lorazepam. Furthermore, exploration patterns during free viewing did not change under lorazepam. CONCLUSIONS Overall, our findings further consolidate the peak velocity of prosaccades as a biomarker of sedation. Additionally, we suggest that sedative effects of low doses of benzodiazepines may be compensated in tasks that more closely resemble natural eye movement behaviour, possibly due to the lack of time constraints or via neurophysiological processes related to volition.
Collapse
Affiliation(s)
- Philine M Baumert
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| | - Kaja Faßbender
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| | | | - Jan H Terheyden
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Behrem Aslan
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Tom Foulsham
- Department of Psychology, University of Essex, Colchester, UK
| | - Wolf Harmening
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany.
| |
Collapse
|
4
|
Chen Y, Li HT, Luo X, Li G, Ide JS, Li CSR. The effects of alcohol use severity and polygenic risk on gray matter volumes in young adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.20.25320842. [PMID: 39974144 PMCID: PMC11838964 DOI: 10.1101/2025.01.20.25320842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Genetic factors contribute to alcohol misuse. Chronic alcohol consumption is associated with decreases in gray matter volumes (GMVs) of the brain. However, it remains unclear whether or how genetic risks may alter GMVs independent of the effects of alcohol exposure. Here, we employed the Human Connectome Project data of neurotypical adults (n = 995; age 22-35; 618 women) and, with voxel-based morphometry analysis, computed the GMVs of 166 regions in the automated anatomical atlas 3. Alcohol use behaviors were assessed with the Semi-Structured Assessment for the Genetics of Alcoholism. Alcohol use severity was quantified by the first principal component (PC1) identified of principal component analysis of 15 drinking measures. Polygenic risk scores (PRS) for alcohol dependence were computed for all subjects using the Psychiatric Genomics Consortium study of alcohol dependence as the base sample. With age, sex, race, and total intracranial volume as covariates, we evaluated the relationships of regional GMVs with PC1 and PRS together in a linear regression. PC1 was negatively correlated with GMVs of right insula and Heschl's gyrus, and PRS was positively correlated with GMVs of left posterior orbitofrontal cortex, bilateral intralaminar nuclei of the thalamus and lingual gyri. These findings suggest distinct volumetric neural markers of drinking severity and genetic risks of alcohol misuse. Notably, in contrast to volumetric reduction, the genetic risks of dependent drinking may involve larger regional volumes in the reward, emotion, and saliency circuits.
Collapse
Affiliation(s)
- Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, U.S.A
| | | | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, U.S.A
| | - Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Jaime S. Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, U.S.A
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, U.S.A
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, U.S.A
- Inter-department Neuroscience Program, Yale University, New Haven, CT 06520, U.S.A
- Wu Tsai Institute, Yale University, New Haven, CT 06520, U.S.A
| |
Collapse
|
5
|
Zhang Y, Yan H, Han Y, Shan X, Li H, Liu F, Li P, Zhao J, Guo W. Influence of panic disorder and paroxetine on brain functional hubs in drug-free patients. J Psychopharmacol 2024; 38:1083-1094. [PMID: 39310938 DOI: 10.1177/02698811241278780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
BACKGROUND The effects of panic disorder (PD) and pharmacotherapy on brain functional hubs in drug-free patients, and the utility of their degree centrality (DC) in diagnosing and predicting treatment response (TR) for PD, remained unclear. AIMS This study aimed to assess the effects of PD and paroxetine on brain functional hubs in drug-free patients and to identify neuroimaging biomarkers for diagnosing and predicting TR in patients with PD. METHODS Imaging data from 54 medication-free PD patients and 54 matched healthy controls (HCs) underwent DC and functional connectivity (FC) analyses before and after a 4-week paroxetine treatment. Diagnosis and prediction of TR models for PD were constructed using support vector machine (SVM) and support vector regression (SVR), with DC as features. RESULTS Patients with PD showed aberrant DC and FC in the anterior cingulum, temporal, and occipital areas compared with HCs at baseline. After treatment, DC of the patients increased in the calcarine cortex, lingual gyrus, and cerebellum IV/V, along with improved clinical symptoms. Utilizing voxel-wise DC values at baseline, the SVM effectively distinguished patients with PD from HCs with an accuracy of 83.33%. In SVR, the predicted TR significantly correlated with the observed TR (correlation coefficient (r) = 0.893, Mean Squared Error = 0.009). CONCLUSION Patients with PD exhibited abnormal DC and FC, notably in the limbic network, temporal, and occipital regions. Paroxetine ameliorated patients' symptoms while altering their brain FC. SVM and SVR models, utilizing baseline DC, effectively distinguished the patients from HCs and accurately predicted TR.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Buck Z, Michalchyshyn E, Nishat A, Lisi M, Huang Y, Liu H, Makarenka A, Plyngam CP, Windle A, Yang Z, Walther DB. Aesthetic processing in neurodiverse populations. Neurosci Biobehav Rev 2024; 166:105878. [PMID: 39260715 DOI: 10.1016/j.neubiorev.2024.105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Neurodiversity is a perspective on cognition which suggests a non-pathological view of individual cognitive differences. Aesthetics research on neurodivergent brains has generally been limited to neuropsychological cases. Although this research has been integral to establishing the neurological correlates of aesthetic experience, it is crucial to expand this paradigm to more psychologically complex disorders. We offer a review of research on aesthetic preference in neurodivergent brains beyond neuropsychological cases: across populations with psychotic disorder, anhedonia and depression, anxiety disorder, and autism. We identify stable patterns of aesthetic bias in these populations, relate these biases to symptoms at perceptual, emotional, and evaluative levels of cognition, review relevant neurological correlates, and connect this evidence to current neuroaesthetics theory. Critically, we synthesize the reviewed evidence and discuss its relevance for three brain networks regularly implicated in aesthetic processing: the mesocorticolimbic reward circuit, frontolimbic connections, and the default mode network. Finally, we propose that broadening the subject populations for neuroaesthetics research to include neurodiverse populations is instrumental for yielding new insights into aesthetic processing in the brain.
Collapse
Affiliation(s)
- Zach Buck
- Department of Psychology, University of Toronto, Toronto, Canada
| | | | - Amna Nishat
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Mikayla Lisi
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Yichen Huang
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Hanyu Liu
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Arina Makarenka
- Department of Psychology, University of Toronto, Toronto, Canada
| | | | - Abigail Windle
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Zhen Yang
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Dirk B Walther
- Department of Psychology, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Saiz-Masvidal C, De la Peña-Arteaga V, Bertolín S, Martínez-Zalacaín I, Juaneda-Seguí A, Chavarría-Elizondo P, Subirà M, Menchón JM, Fullana MA, Soriano-Mas C. Uncovering the correlation between neurotransmitter-specific functional connectivity and multidimensional anxiety in a non-clinical cohort. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01879-9. [PMID: 39190041 DOI: 10.1007/s00406-024-01879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Research on anxiety faces challenges due to the wide range of symptoms, making it difficult to determine if different aspects of anxiety are linked to distinct neurobiological processes. Both alterations in functional brain connectivity (FC) and monoaminergic neurotransmitter systems are implicated as potential neural bases of anxiety. We aimed to investigate whole-brain FC involving monoaminergic nuclei and its association with anxiety dimensions in 178 non-clinical participants. Nine anxiety-related scales were used, encompassing trait and state anxiety scores, along with measures of cost-probability, hypervigilance, reward-punishment sensitivity, uncertainty, and trait worry. Resting-state functional magnetic resonance imaging data were acquired, focusing on seven brainstem regions representing serotonergic, dopaminergic, and noradrenergic nuclei, with their FC patterns voxel-wise correlated with the scales. All models underwent family-wise-error correction for multiple comparisons. We observed intriguing relationships: trait and state anxiety scores exhibited opposing correlations in FC between the dorsal raphe nucleus and the paracingulate gyrus. Additionally, we identified shared neural correlates, such as a negative correlation between the locus coeruleus and the frontal pole. This connection was significantly associated with scores on measures of probability, hypervigilance, reward sensitivity, and trait worry. These findings underscore the intricate interplay between anxiety dimensions and subcortico-cortical FC patterns, shedding light on the underlying neural mechanisms governing anxiety.
Collapse
Affiliation(s)
- C Saiz-Masvidal
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
| | - V De la Peña-Arteaga
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Sant Pau Mental Health Research Group, Institut de Recerca Sant Pau, Sant Pau - Campus Salut Barcelona, Barcelona, Spain
| | - S Bertolín
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - I Martínez-Zalacaín
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, Barcelona, 08907, Spain
| | - A Juaneda-Seguí
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
| | - P Chavarría-Elizondo
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - M Subirà
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
| | - J M Menchón
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - M A Fullana
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
- Hospital Clinic, Barcelona, Spain.
| | - C Soriano-Mas
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain.
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain.
- Department of Social Psychology and Quantitative Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Zhang Q, Zhang W, Zhang P, Zhao Z, Yang L, Zheng F, Zhang L, Huang G, Zhang J, Zheng W, Ma R, Yao Z, Hu B. Altered dynamic functional connectivity in rectal cancer patients with and without chemotherapy: a resting-state fMRI study. Int J Neurosci 2024; 134:584-594. [PMID: 36178032 DOI: 10.1080/00207454.2022.2130295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 10/17/2022]
Abstract
Purpose: Understanding the mechanism of brain functional alterations in rectal cancer (RC) patients is of great significance to improve the prognosis and quality of life of patients. Additionally, the influence of chemotherapy on brain function in RC patients is still unclear. In this study, we aimed to investigate the alterations of brain functional network dynamics in RC patients and explore the effects of chemotherapy on temporal dynamics of dynamic functional connectivity (DFC). Methods: The group independent component analysis (GICA) and sliding window method were applied to investigate abnormalities of DFC based on resting-state functional magnetic resonance imaging (rs-fMRI) of 18 RC patients without chemotherapy (RC_NC), 21 RC patients with chemotherapy (RC_C) and 33 healthy controls (HC). Then, the Spearman correlation between aberrant properties and clinical measures was calculated. Results: Two discrete states were identified. Compared to HC, RC_NC exhibited increased mean dwell time (MDT) and fractional windows (FW) in state 2 and decreased transition numbers between the two states. Notably, three temporal properties in RC_C showed an intermediate trend in comparison with RC_NC and HC. Furthermore, RC_C also demonstrated abnormal intra- and inter-network connections, involving the visual (VIS), default mode (DM), and cognitive control (CC) networks, and most connections related to VIS were correlated with the severity of anxiety and depression. Conclusions: Our study suggested that abnormal DFC patterns could be manifested in RC patients and chemotherapy would further correct abnormalities of network dynamics, which may provide new insights into the brain functional alterations in patients with RC from the time-varying connectivity perspective.
Collapse
Affiliation(s)
- Qin Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Wenwen Zhang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, PRChina
| | - Pengfei Zhang
- Second Clinical School, Lanzhou University, Lanzhou, PRChina
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, PRChina
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, PRChina
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Lin Yang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Fang Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Lingyu Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, PRChina
| | - Jing Zhang
- Second Clinical School, Lanzhou University, Lanzhou, PRChina
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, PRChina
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, PRChina
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Rong Ma
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, PR China
- Engineering Research Center of Open Source Software and Real-Time System (Lanzhou University), Ministry of Education, Lanzhou, PR China
| |
Collapse
|
9
|
Liu H, Hao Z, Qiu S, Wang Q, Zhan L, Huang L, Shao Y, Wang Q, Su C, Cao Y, Sun J, Wang C, Lv Y, Li M, Shen W, Li H, Jia X. Grey matter structural alterations in anxiety disorders: a voxel-based meta-analysis. Brain Imaging Behav 2024; 18:456-474. [PMID: 38150133 DOI: 10.1007/s11682-023-00842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Anxiety disorders (ADs) are a group of prevalent and destructive mental illnesses, but the current understanding of their underlying neuropathology is still unclear. Employing voxel-based morphometry (VBM), previous studies have demonstrated several common brain regions showing grey matter volume (GMV) abnormalities. However, contradictory results have been reported among these studies. Considering that different subtypes of ADs exhibit common core symptoms despite different diagnostic criteria, and previous meta-analyses have found common core GMV-altered brain regions in ADs, the present research aimed to combine the results of individual studies to identify common GMV abnormalities in ADs. Therefore, we first performed a systematic search in PubMed, Embase, and Web of Science on studies investigating GMV differences between patients with ADs and healthy controls (HCs). Then, the anisotropic effect-size signed differential mapping (AES-SDM) was applied in this meta-analysis. A total of 24 studies (including 25 data sets) were included in the current study, and 906 patients with ADs and 1003 HCs were included. Compared with the HCs, the patients with ADs showed increased GMV in the left superior parietal gyrus, right angular gyrus, left precentral gyrus, and right lingual gyrus, and decreased GMV in the bilateral insula, bilateral thalamus, left caudate, and right putamen. In conclusion, the current study has identified some abnormal GMV brain regions that are related to the pathological mechanisms of anxiety disorders. These findings could contribute to a better understanding of the underlying neuropathology of ADs.
Collapse
Affiliation(s)
- Han Liu
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Zeqi Hao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Shasha Qiu
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Qianqian Wang
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Linlin Zhan
- School of Western Languages, Heilongjiang University, Heilongjiang, China
| | - Lina Huang
- Department of Radiology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Youbin Shao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Qing Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Chang Su
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Yikang Cao
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Jiawei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Chunjie Wang
- Institute of Brain Science, Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, China
- Center for Cognition and Brain Disorders, the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Yating Lv
- Center for Cognition and Brain Disorders, the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Mengting Li
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China
| | - Wenbin Shen
- Department of Radiology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Huayun Li
- School of Psychology, Zhejiang Normal University, Jinhua, China.
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China.
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, Jinhua, China.
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Zhejiang Normal University, Jinhua, China.
| |
Collapse
|
10
|
Chang B, Mei J, Ni C, Chen P, Jiang Y, Niu C. Oscillation-Specific Nodal Differences in Parkinson's Disease Patients with Anxiety. JOURNAL OF PARKINSON'S DISEASE 2024; 14:855-864. [PMID: 38701162 PMCID: PMC11191439 DOI: 10.3233/jpd-240055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Background Parkinson's disease (PD) is a common neurodegenerative disorder that is predominantly known for its motor symptoms but is also accompanied by non-motor symptoms, including anxiety. Objective The underlying neurobiological substrates and brain network changes associated with comorbid anxiety in PD require further exploration. Methods An analysis of oscillation-specific nodal properties in patients with and without anxiety was conducted using resting-state functional magnetic resonance imaging (rs-fMRI) and graph theory. We used a band-pass filtering approach to differentiate oscillatory frequency bands for subsequent functional connectivity (FC) and graph analyses. Results The study included 68 non-anxiety PD (naPD) patients, 62 anxiety PD (aPD) patients, and 64 healthy controls (NC). Analyses of nodal betweenness centrality (BC), degree centrality (DC), and efficiency were conducted across multiple frequency bands. The findings indicated no significant differences in BC among naPD, aPD, and NC within the 0.01-0.08 Hz frequency range. However, we observed a specific reduction in BC at narrower frequency ranges in aPD patients, as well as differing patterns of change in DC and efficiency, which are believed to reflect the neurophysiological bases of anxiety symptoms in PD. Conclusions Differential oscillation-specific nodal characteristics have been identified in PD patients with anxiety, suggesting potential dysregulations in brain network dynamics. These findings emphasize the complexity of brain network alterations in anxiety-associated PD and identify oscillatory frequencies as potential biomarkers. The study highlights the importance of considering oscillatory frequency bands in the analysis of brain network changes.
Collapse
Affiliation(s)
- Bowen Chang
- Division of Life Sciences and Medicine, Department of Neurosurgery, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, China
| | - Jiaming Mei
- Division of Life Sciences and Medicine, Department of Neurosurgery, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, China
| | - Chen Ni
- Division of Life Sciences and Medicine, Department of Neurosurgery, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, China
| | - Peng Chen
- Division of Life Sciences and Medicine, Department of Neurosurgery, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, China
| | - Yuge Jiang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chaoshi Niu
- Division of Life Sciences and Medicine, Department of Neurosurgery, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, China
| |
Collapse
|
11
|
Zhu W, Chen X, Wu J, Li Z, Im H, Chen S, Deng K, Zhang B, Wei C, Feng J, Zhang M, Yang S, Wang H, Wang Q. Neuroanatomical and functional substrates of the hypomanic personality trait and its prediction on aggression. Int J Clin Health Psychol 2023; 23:100397. [PMID: 37560478 PMCID: PMC10407439 DOI: 10.1016/j.ijchp.2023.100397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Hypomanic personality manifests a close link with several psychiatric disorders and its abnormality is a risk indicator for developing bipolar disorders. We systematically investigated the potential neuroanatomical and functional substrates underlying hypomanic personality trait (HPT) and its sub-dimensions (i.e., Social Vitality, Mood Volatility, and Excitement) combined with structural and functional imaging data as well as their corresponding brain networks in a large non-clinical sample across two studies (n = 464). Behaviorally, HPT, specifically Mood Volatility and Excitement, was positively associated with aggressive behaviors in both studies. Structurally, sex-specific morphological characteristics were further observed in the motor and top-down control networks especially for Mood Volatility, although HPT was generally positively associated with grey matter volumes (GMVs) in the prefrontal, temporal, visual, and limbic systems. Functionally, brain activations related to immediate or delayed losses were found to predict individual variability in HPT, specifically Social Vitality and Excitement, on the motor and prefrontal-parietal cortices. Topologically, connectome-based prediction model analysis further revealed the predictive role of individual-level morphological and resting-state functional connectivity on HPT and its sub-dimensions, although it did not reveal any links with general brain topological properties. GMVs in the temporal, limbic (e.g., amygdala), and visual cortices mediated the effects of HPT on behavioral aggression. These findings suggest that the imbalance between motor and control circuits may be critical for HPT and provide novel insights into the neuroanatomical, functional, and topological mechanisms underlying the specific temperament and its impacts on aggression.
Collapse
Affiliation(s)
- Wenwei Zhu
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Jie Wu
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
- Tianjin Social Science Laboratory of Students’ Mental Development and Learning, Tianjin 300387, China
| | - Zixi Li
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Hohjin Im
- Department of Psychological Science, University of California, Irvine, CA 92697-7085, USA
| | - Shuning Chen
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Kun Deng
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Bin Zhang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Chuqiao Wei
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Junjiao Feng
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
- Tianjin Social Science Laboratory of Students’ Mental Development and Learning, Tianjin 300387, China
| | - Manman Zhang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
- Tianjin Social Science Laboratory of Students’ Mental Development and Learning, Tianjin 300387, China
| | - Shaofeng Yang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
- Tianjin Social Science Laboratory of Students’ Mental Development and Learning, Tianjin 300387, China
| | - He Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Qiang Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
- Tianjin Social Science Laboratory of Students’ Mental Development and Learning, Tianjin 300387, China
| |
Collapse
|
12
|
Jin S, Liu W, Hu Y, Liu Z, Xia Y, Zhang X, Ding Y, Zhang L, Xie S, Ma C, Kang Y, Hu Z, Cheng W, Yang Z. Aberrant functional connectivity of the bed nucleus of the stria terminalis and its age dependence in children and adolescents with social anxiety disorder. Asian J Psychiatr 2023; 82:103498. [PMID: 36758449 DOI: 10.1016/j.ajp.2023.103498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Social anxiety disorder (SAD) is a prevalent and impairing mental disorder among children and adolescents. The bed nucleus of the stria terminalis (BNST) plays a critical role in anxiety disorders, including valence surveillance and hypervigilance for potential threats. However, the role of BNST and its related functional network in children and adolescents with SAD has not been fully investigated. This study examined the aberration of BNST's functional connectivity and its age dependence in adolescents with SAD. METHODS Using a sample of 75 SAD patients and 75 healthy controls (HCs) children aged 9-18 years old, we delineated the group-by-age interaction of BNST-seeded functional connectivity (FC) during resting state and movie-watching. The relationships between BNST-seeded FC and clinical scores were also examined. RESULTS During movie viewing, the FC between the right BNST and the left amygdala, bilateral posterior cingulate cortex (PCC), bilateral superior temporal cortex, and right pericalcarine cortex showed a diagnostic group-by-age interaction. Compared to HCs, SAD patients showed a significant enhancement of the above FC at younger ages. Meanwhile, they showed an age-dependent decrease in FC between the right BNST and left amygdala. Furthermore, for SAD patients, FC between the right BNST and left amygdala during movie viewing was positively correlated with separation anxiety scores. CONCLUSIONS The right BNST plays an essential role in the aberrant brain functioning in children and adolescents with SAD. The atypicality of BNST's FC has remarkable age dependence in SAD, suggesting an association of SAD with neurodevelopmental traits.
Collapse
Affiliation(s)
- Shuyu Jin
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenjing Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yang Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhen Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yufeng Xia
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaochen Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yue Ding
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lei Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shuqi Xie
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Changminghao Ma
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yinzhi Kang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhishan Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenhong Cheng
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhi Yang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Psychological and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
Zhang L, Deng Y, Hui R, Tang Y, Yu S, Li Y, Hu Y, Li N. The effects of acupuncture on clinical efficacy and steady-state visual evoked potentials in insomnia patients with emotional disorders: A randomized single-blind sham-controlled trial. Front Neurol 2023; 13:1053642. [PMID: 36742043 PMCID: PMC9889562 DOI: 10.3389/fneur.2022.1053642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/13/2022] [Indexed: 01/20/2023] Open
Abstract
The aim of this study was to observe the clinical effects and brain electrical potential changes following acupuncture in the treatment of insomnia patients with mood disorders. Ninety patients with insomnia who met the inclusion criteria were randomly divided into the active acupuncture group (AA group, n = 44) and sham acupuncture group (SA group, n = 46) at a ratio of 1:1. The primary outcome was the total score of the Pittsburgh Sleep Quality Index (PSQI), and the secondary outcomes were the total effective rate, Self-Rating Anxiety Scale (SAS), Self-Rating Depression Scale (SDS) scores, and values of steady-state visual evoked potentials (SSVEP). The two groups received acupuncture or sham acupuncture 10 times (2 weeks). Finally, the total PSQI scores of the AA group and SA group were significantly different (p < 0.05) at 2 weeks (6.11 ± 2.33 vs. 10.37 ± 4.73), 6 weeks (6.27 ± 1.39 vs. 11.93 ± 3.07), 18 weeks (6.32 ± 2.84 vs. 11.78 ± 2.95) and 42 weeks (8.05 ± 3.14 vs. 12.54 ± 2.81). Further analysis found that AA group patients received acupuncture treatment at any age after the same effect (p > 0.05). The SAS and SDS scores of the AA group were also significantly different from those of the SA group at each assessment time point (p < 0.05). The total effective rate of the AA group was 81.82%, while that of the SA group was 30.43% (p < 0.05). There was no significant difference between the AA group and SA group only in the brain potential of the parietal lobe (F4), left temporal lobe (C3) and right temporal lobe (T8) (P > 0.05), but there was a significant difference between other brain regions (P < 0.05). In addition, correlation analysis showed that there was a certain positive correlation between the total PSQI score, SAS score, efficacy level, and SSVEP value in the AA group as follows: C4 and the total PSQI score (r = 0.595, P = 0.041), F3 and SAS score (r = 0.604, P = 0.037), FPz and efficiency level of the frontal lobe (r = 0.581, P = 0.048), and O2 and efficiency level of the occipital lobe (r = 0.704, P = 0.011). Therefore, acupuncture have a good clinical effect on patients with insomnia and emotional disorders and have a significant regulatory effect on abnormally excited brain potentials.
Collapse
Affiliation(s)
- Leixiao Zhang
- Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanli Deng
- Sichuan Second Chinese Medicine Hospital, Chengdu, China
| | - Ruting Hui
- Chengdu First People's Hospital, Chengdu, China
| | - Yu Tang
- Chongqing Emergency Medical Center, Chongqing, China
| | - Siyi Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Li
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youping Hu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Youping Hu ✉
| | - Ning Li
- Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, China,Ning Li ✉
| |
Collapse
|
14
|
Liu X, Klugah-Brown B, Zhang R, Chen H, Zhang J, Becker B. Pathological fear, anxiety and negative affect exhibit distinct neurostructural signatures: evidence from psychiatric neuroimaging meta-analysis. Transl Psychiatry 2022; 12:405. [PMID: 36151073 PMCID: PMC9508096 DOI: 10.1038/s41398-022-02157-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Internalizing disorders encompass anxiety, fear and depressive disorders, which exhibit overlap at both conceptual and symptom levels. Given that a neurobiological evaluation is lacking, we conducted a Seed-based D-Mapping comparative meta-analysis including coordinates as well as original statistical maps to determine common and disorder-specific gray matter volume alterations in generalized anxiety disorder (GAD), fear-related anxiety disorders (FAD, i.e., social anxiety disorder, specific phobias, panic disorder) and major depressive disorder (MDD). Results showed that GAD exhibited disorder-specific altered volumes relative to FAD including decreased volumes in left insula and lateral/medial prefrontal cortex as well as increased right putamen volume. Both GAD and MDD showed decreased prefrontal volumes compared to controls and FAD. While FAD showed less robust alterations in lingual gyrus compared to controls, this group presented intact frontal integrity. No shared structural abnormalities were found. Our study is the first to provide meta-analytic evidence for distinct neuroanatomical abnormalities underlying the pathophysiology of anxiety-, fear-related and depressive disorders. These findings may have implications for determining promising target regions for disorder-specific neuromodulation interventions (e.g. transcranial magnetic stimulation or neurofeedback).
Collapse
Affiliation(s)
- Xiqin Liu
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Benjamin Klugah-Brown
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Ran Zhang
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Huafu Chen
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Jie Zhang
- grid.8547.e0000 0001 0125 2443Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, 200433 Shanghai, P. R. China ,grid.8547.e0000 0001 0125 2443Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, 200433 Shanghai, P. R. China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China.
| |
Collapse
|
15
|
Hou L, Zhang W, Huang Q, Zhou R. Altered local gyrification index and corresponding resting-state functional connectivity in individuals with high test anxiety. Biol Psychol 2022; 174:108409. [PMID: 35988834 DOI: 10.1016/j.biopsycho.2022.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Previous studies have reported that test anxiety is closely related to unreasonable cognitive patterns and maladaptive emotional responses. However, its underlying brain structural and functional basis has not been thoroughly studied. This study aimed to evaluate the potential difference in local gyration index (LGI) and corresponding resting-state functional connectivity (RSFC) in individuals with high test anxiety (HTA) compared with low test anxiety (LTA). Twenty-six individuals with HTA and 28 individuals with LTA underwent T1-weighted structural and resting-state functional magnetic resonance imaging scans. Using FreeSurfer software, we contrasted the LGI between the HTA and LTA groups using a surface-based general linear model to map group contrasts on a vertex-by-vertex basis. By selecting the cortical regions with significant differences in the LGI analysis as the regions of interest, the seed-based RSFC analysis was further carried out using the Resting-State fMRI Data Analysis Toolkit to examine the differences in the functional connectivity of these cortical regions with the whole brain between the two groups. The results showed that the LGI in several cortical regions of the executive control network (ECN) and the right lateral occipital gyrus was lower in the HTA group than in the LTA group. Furthermore, compared with the LTA group, the HTA group exhibited abnormal RSFC within the ECN, between the ECN and the visual network, and between the ECN and the sensorimotor network. Our findings might provide preliminary evidence for brain morphology and functional alterations in individuals with HTA and contribute to a better understanding of the pathophysiology of TA. DATA STATEMENT: The data that support the findings of this study are available from the corresponding author upon reasonable request after completing a formal data sharing agreement.
Collapse
Affiliation(s)
- Lulu Hou
- Department of Psychology, Shanghai Normal University, Shanghai, 200234, China; Department of Psychology, Nanjing University, Nanjing, 210023, China
| | - Wenpei Zhang
- Department of Psychology, Nanjing University, Nanjing, 210023, China; School of Business, Anhui University of Technology, Maanshan, 243032, China
| | - Qiong Huang
- Department of Brain and Learning Science, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Renlai Zhou
- Department of Psychology, Nanjing University, Nanjing, 210023, China; State Key Laboratory of Media Convergence Production Technology and Systems, Beijing, 100803, China.
| |
Collapse
|
16
|
Zhang Q, Li B, Jin S, Liu W, Liu J, Xie S, Zhang L, Kang Y, Ding Y, Zhang X, Cheng W, Yang Z. Comparing the Effectiveness of Brain Structural Imaging, Resting-state fMRI, and Naturalistic fMRI in Recognizing Social Anxiety Disorder in Children and Adolescents. Psychiatry Res Neuroimaging 2022; 323:111485. [PMID: 35567906 DOI: 10.1016/j.pscychresns.2022.111485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 01/11/2023]
Abstract
Social anxiety disorder (SAD) is a common anxiety disorder in childhood and adolescence. Studies on SAD in adults have reported both structural and functional aberrancies of the brain at the group level. However, evidence has shown differences in anxiety-related brain abnormalities between adolescents and adults. Since children and adolescents can afford limited scan time, optimizing the scan tasks is essential for SAD research in children and adolescents. Thus, we need to address whether brain structure, resting-state fMRI, and naturalistic imaging enable individualized identification of SAD in children and adolescents, which measurement is more effective, and whether pooling multi-modal features can improve the identification of SAD. We comprehensively addressed these questions by building machine learning models based on parcel-wise brain features. We found that naturalistic fMRI yielded higher classification accuracy (69.17%) than the other modalities and the classification performance showed dependence on the contents of the movie. The classification models also identified contributing brain regions, some of which exhibited correlations with the symptoms scores of SAD. However, pooling brain features from the three modalities did not help enhance the classification accuracy. These results support the application of carefully designed naturalistic imaging in recognizing children and adolescents at risk of SAD.
Collapse
Affiliation(s)
- Qinjian Zhang
- School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Baobin Li
- School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyu Jin
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Liu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuqi Xie
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinzhi Kang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Ding
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochen Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhong Cheng
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhi Yang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
17
|
Dubol M, Stiernman L, Wikström J, Lanzenberger R, Neill Epperson C, Sundström-Poromaa I, Bixo M, Comasco E. Differential grey matter structure in women with premenstrual dysphoric disorder: evidence from brain morphometry and data-driven classification. Transl Psychiatry 2022; 12:250. [PMID: 35705554 PMCID: PMC9200862 DOI: 10.1038/s41398-022-02017-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
Premenstrual dysphoric disorder (PMDD) is a female-specific condition classified in the Diagnostic and Statical Manual-5th edition under depressive disorders. Alterations in grey matter volume, cortical thickness and folding metrics have been associated with a number of mood disorders, though little is known regarding brain morphological alterations in PMDD. Here, women with PMDD and healthy controls underwent magnetic resonance imaging (MRI) during the luteal phase of the menstrual cycle. Differences in grey matter structure between the groups were investigated by use of voxel- and surface-based morphometry. Machine learning and multivariate pattern analysis were performed to test whether MRI data could distinguish women with PMDD from healthy controls. Compared to controls, women with PMDD had smaller grey matter volume in ventral posterior cortices and the cerebellum (Cohen's d = 0.45-0.76). Region-of-interest analyses further indicated smaller volume in the right amygdala and putamen of women with PMDD (Cohen's d = 0.34-0.55). Likewise, thinner cortex was observed in women with PMDD compared to controls, particularly in the left hemisphere (Cohen's d = 0.20-0.74). Classification analyses showed that women with PMDD can be distinguished from controls based on grey matter morphology, with an accuracy up to 74%. In line with the hypothesis of an impaired top-down inhibitory circuit involving limbic structures in PMDD, the present findings point to PMDD-specific grey matter anatomy in regions of corticolimbic networks. Furthermore, the results include widespread cortical and cerebellar regions, suggesting the involvement of distinct networks in PMDD pathophysiology.
Collapse
Affiliation(s)
- Manon Dubol
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, 753 09, Sweden
| | - Louise Stiernman
- Department of Clinical Sciences, Umeå University, Umeå, 901 85, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, 751 85, Sweden
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, 1090, Austria
| | - C Neill Epperson
- Department of Psychiatry, Department of Family Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | - Marie Bixo
- Department of Clinical Sciences, Umeå University, Umeå, 901 85, Sweden
| | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, 753 09, Sweden.
| |
Collapse
|
18
|
Kim MK, Eom H, Kwon JH, Kyeong S, Kim JJ. Neural effects of a short-term virtual reality self-training program to reduce social anxiety. Psychol Med 2022; 52:1296-1305. [PMID: 32880252 DOI: 10.1017/s0033291720003098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Social anxiety disorder (SAD) is characterized by anxiety regarding social situations, avoidance of external social stimuli, and negative self-beliefs. Virtual reality self-training (VRS) at home may be a good interim modality for reducing social fears before formal treatment. This study aimed to find neurobiological evidence for the therapeutic effect of VRS. METHODS Fifty-two patients with SAD were randomly assigned to a VRS or waiting list (WL) group. The VRS group received an eight-session VRS program for 2 weeks, whereas the WL group received no intervention. Clinical assessments and functional magnetic resonance imaging scanning with the distress and speech evaluation tasks were repeatedly performed at baseline and after 3 weeks. RESULTS The post-VRS assessment showed significantly decreased anxiety and avoidance scores, distress index, and negative evaluation index for 'self', but no change in the negative evaluation index for 'other'. Patients showed significant responses to the distress task in various regions, including both sides of the prefrontal regions, occipital regions, insula, and thalamus, and to the speech evaluation task in the bilateral anterior cingulate cortex. Among these, significant neuronal changes after VRS were observed only in the right lingual gyrus and left thalamus. CONCLUSIONS VRS-induced improvements in the ability to pay attention to social stimuli without avoidance and even positively modulate emotional cues are based on functional changes in the visual cortices and thalamus. Based on these short-term neuronal changes, VRS can be a first intervention option for individuals with SAD who avoid society or are reluctant to receive formal treatment.
Collapse
Affiliation(s)
- Min-Kyeong Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyojung Eom
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Hee Kwon
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sunghyon Kyeong
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Jin Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Zhang X, Suo X, Yang X, Lai H, Pan N, He M, Li Q, Kuang W, Wang S, Gong Q. Structural and functional deficits and couplings in the cortico-striato-thalamo-cerebellar circuitry in social anxiety disorder. Transl Psychiatry 2022; 12:26. [PMID: 35064097 PMCID: PMC8782859 DOI: 10.1038/s41398-022-01791-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Although functional and structural abnormalities in brain regions involved in the neurobiology of fear and anxiety have been observed in patients with social anxiety disorder (SAD), the findings have been heterogeneous due to small sample sizes, demographic confounders, and methodological differences. Besides, multimodal neuroimaging studies on structural-functional deficits and couplings are rather scarce. Herein, we aimed to explore functional network anomalies in brain regions with structural deficits and the effects of structure-function couplings on the SAD diagnosis. High-resolution structural magnetic resonance imaging (MRI) and resting-state functional MRI images were obtained from 49 non-comorbid patients with SAD and 53 demography-matched healthy controls. Whole-brain voxel-based morphometry analysis was conducted to investigate structural alterations, which were subsequently used as seeds for the resting-state functional connectivity analysis. In addition, correlation and mediation analyses were performed to probe the potential roles of structural-functional deficits in SAD diagnosis. SAD patients had significant gray matter volume reductions in the bilateral putamen, right thalamus, and left parahippocampus. Besides, patients with SAD demonstrated widespread resting-state dysconnectivity in cortico-striato-thalamo-cerebellar circuitry. Moreover, dysconnectivity of the putamen with the cerebellum and the right thalamus with the middle temporal gyrus/supplementary motor area partially mediated the effects of putamen/thalamus atrophy on the SAD diagnosis. Our findings provide preliminary evidence for the involvement of structural and functional deficits in cortico-striato-thalamo-cerebellar circuitry in SAD, and may contribute to clarifying the underlying mechanisms of structure-function couplings for SAD. Therefore, they could offer insights into the neurobiological substrates of SAD.
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing, 400044, China
| | - Han Lai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Min He
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qingyuan Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361000, China.
| |
Collapse
|
20
|
Wang X, Cheng B, Wang S, Lu F, Luo Y, Long X, Kong D. Distinct grey matter volume alterations in adult patients with panic disorder and social anxiety disorder: A systematic review and voxel-based morphometry meta-analysis. J Affect Disord 2021; 281:805-823. [PMID: 33243552 DOI: 10.1016/j.jad.2020.11.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/18/2020] [Accepted: 11/08/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND The paradox of similar diagnostic criteria but potentially different neuropathologies in panic disorder (PD) and social anxiety disorder (SAD) needs to be clarified. METHODS We performed a qualitative systematic review and a quantitative whole-brain voxel-based morphometry (VBM) meta-analysis with an anisotropic effect-size version of seed-based D mapping (AES-SDM) to explore whether the alterations of grey matter volume (GMV) in PD are similar to or different from those in SAD, together with potential confounding factors. RESULTS A total of thirty-one studies were eligible for inclusion, eighteen of which were included in the meta-analysis. Compared to the respective healthy controls (HC), qualitative and quantitative analyses revealed smaller cortical-subcortical GMVs in PD patients in brain areas including the prefrontal and temporal-parietal cortices, striatum, thalamus and brainstem, predominantly right-lateralized regions, and larger GMVs in the prefrontal and temporal-parietal-occipital cortices, and smaller striatum and thalamus in SAD patients. Quantitatively, the right inferior frontal gyrus (IFG) deficit was specifically implicated in PD patients, whereas left striatum-thalamus deficits were specific to SAD patients, without shared GMV alterations in both disorders. Sex, the severity of clinical symptoms, psychiatric comorbidity, and concomitant medication use were negatively correlated with smaller regional GMV alterations in PD patients. CONCLUSION PD and SAD may represent different anxiety sub-entities at the neuroanatomical phenotypes level, with different specific neurostructural deficits in the right IFG of PD patients, and the left striatum and thalamus of SAD patients. This combination of differences and specificities can potentially be used to guide the development of diagnostic biomarkers for these disorders.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu 610036, China.
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Song Wang
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Fengmei Lu
- Department of Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu 610036, China
| | - Ya Luo
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xipeng Long
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Di Kong
- Department of Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu 610036, China
| |
Collapse
|
21
|
Zhang X, Luo Q, Wang S, Qiu L, Pan N, Kuang W, Lui S, Huang X, Yang X, Kemp GJ, Gong Q. Dissociations in cortical thickness and surface area in non-comorbid never-treated patients with social anxiety disorder. EBioMedicine 2020; 58:102910. [PMID: 32739867 PMCID: PMC7393569 DOI: 10.1016/j.ebiom.2020.102910] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Abnormalities of functional activation and cortical volume in brain regions involved in the neurobiology of fear and anxiety have been implicated in the pathophysiology of social anxiety disorder (SAD). However, few studies have performed separate measurements of cortical thickness (CT) and cortical surface area (CSA) which reflect different neurobiological processes. Thus, we aimed to explore the cortical morphological anomaly separately in SAD using FreeSurfer. METHODS High-resolution structural magnetic resonance images were obtained from 32 non-comorbid never-treated adult SAD patients and 32 demography-matched healthy controls. Cortical morphometry indices including CT and CSA were separately determined by FreeSurfer and compared between the two groups via whole-brain vertex-wise analysis, while partial correlation analysis using age and gender as covariates were conducted. FINDINGS The patients with SAD showed decreased CT but increased CSA near-symmetrically in the bilateral prefrontal cortex (PFC) of the dorsolateral, dorsomedial, and ventromedial subdivisions, as well as the right lateral orbitofrontal cortex; increased CSA in the left superior temporal gyrus (STG) was also observed in SAD. The CSA in the left PFC was negatively correlated with the disease duration. INTERPRETATION As the balloon model hypothesis suggests that the tangentially stretched cortex may cause dissociations in cortical morphometry and affect the cortical capacity for information processing, our findings of dissociated morphological alterations in the PFC and cortical expansion in the STG may reflect the morphological alterations of the functional reorganization in those regions, and highlight the important role of those structures in the pathophysiology and neurobiology of SAD. FUNDING This study was funded by the National Natural Science Foundation of China (Grant Nos. 31700964, 31800963, 81621003, and 81820108018).
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lihua Qiu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China; Department of Radiology, The Second People's Hospital of Yibin, Yibin 644000, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Weihong Kuang
- Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, PR, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing 400044, China.
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China; Department of Psychology, School of Public Administration, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
22
|
Costache ME, Frick A, Månsson K, Engman J, Faria V, Hjorth O, Hoppe JM, Gingnell M, Frans Ö, Björkstrand J, Rosén J, Alaie I, Åhs F, Linnman C, Wahlstedt K, Tillfors M, Marteinsdottir I, Fredrikson M, Furmark T. Higher- and lower-order personality traits and cluster subtypes in social anxiety disorder. PLoS One 2020; 15:e0232187. [PMID: 32348331 PMCID: PMC7190155 DOI: 10.1371/journal.pone.0232187] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/08/2020] [Indexed: 02/03/2023] Open
Abstract
Social anxiety disorder (SAD) can come in different forms, presenting problems for diagnostic classification. Here, we examined personality traits in a large sample of patients (N = 265) diagnosed with SAD in comparison to healthy controls (N = 164) by use of the Revised NEO Personality Inventory (NEO-PI-R) and Karolinska Scales of Personality (KSP). In addition, we identified subtypes of SAD based on cluster analysis of the NEO-PI-R Big Five personality dimensions. Significant group differences in personality traits between patients and controls were noted on all Big Five dimensions except agreeableness. Group differences were further noted on most lower-order facets of NEO-PI-R, and nearly all KSP variables. A logistic regression analysis showed, however, that only neuroticism and extraversion remained significant independent predictors of patient/control group when controlling for the effects of the other Big Five dimensions. Also, only neuroticism and extraversion yielded large effect sizes when SAD patients were compared to Swedish normative data for the NEO-PI-R. A two-step cluster analysis resulted in three separate clusters labelled Prototypical (33%), Introvert-Conscientious (29%), and Instable-Open (38%) SAD. Individuals in the Prototypical cluster deviated most on the Big Five dimensions and they were at the most severe end in profile analyses of social anxiety, self-rated fear during public speaking, trait anxiety, and anxiety-related KSP variables. While additional studies are needed to determine if personality subtypes in SAD differ in etiological and treatment-related factors, the present results demonstrate considerable personality heterogeneity in socially anxious individuals, further underscoring that SAD is a multidimensional disorder.
Collapse
Affiliation(s)
| | - Andreas Frick
- The Beijer Laboratory, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Kristoffer Månsson
- Department of Psychology, Uppsala University, Uppsala, Sweden
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany and London, United Kingdom
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Jonas Engman
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Vanda Faria
- Department of Psychology, Uppsala University, Uppsala, Sweden
- Center for Pain and The Brain, Department of Anesthesiology, Harvard Medical School, Boston Children’s Hospital, Perioperative and Pain Medicine, Boston, MA, United States of America
- Department of Otorhinolaryngology, Smell & Taste Clinic, TU Dresden, Dresden, Germany
| | - Olof Hjorth
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | | | - Malin Gingnell
- Department of Psychology, Uppsala University, Uppsala, Sweden
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Örjan Frans
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Johannes Björkstrand
- Department of Psychology, Uppsala University, Uppsala, Sweden
- Department of Psychology, Lund University, Lund, Sweden
| | - Jörgen Rosén
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Iman Alaie
- Department of Psychology, Uppsala University, Uppsala, Sweden
- Department of Neuroscience, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden
| | - Fredrik Åhs
- Department of Psychology and Social Work, Mid Sweden University, Östersund, Sweden
| | - Clas Linnman
- Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States of America
| | - Kurt Wahlstedt
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Maria Tillfors
- Department of Social and Psychological Studies, Karlstad University, Karlstad, Sweden
| | - Ina Marteinsdottir
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mats Fredrikson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Furmark
- Department of Psychology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
23
|
Jayakar R, Tone EB, Crosson B, Turner JA, Anderson PL, Phan KL, Klumpp H. Amygdala volume and social anxiety symptom severity: Does segmentation technique matter? Psychiatry Res Neuroimaging 2020; 295:111006. [PMID: 31760338 PMCID: PMC6982531 DOI: 10.1016/j.pscychresns.2019.111006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022]
Abstract
The amygdala factors prominently in neurobiological models of social anxiety (SA), yet amygdala volume findings regarding SA have been inconsistent and largely focused on case-control characterization. One source of discrepant findings could be variability in volumetric techniques. Therefore, we compared amygdala volumes derived via an automated technique (Freesurfer) against a manually corrected approach, also involving Freesurfer. Additionally, we tested whether the relationship between volume and SA symptom severity would differ across volumetric techniques. We pooled participants (n = 76) from archival studies. SA severity was assessed with the Liebowitz Social Anxiety Scale; scores ranged from non-clinical to clinical levels. Freesurfer produced significantly larger amygdalar volumes for participants with poor image quality. Even after excluding such participants, paired sample t-tests showed Freesurfer's boundaries produced significantly larger amygdalar volumes than manually corrected ones, bilaterally. Yet, intra-class correlation coefficients between the two methods were high, which suggests that Freesurfer's over-estimation of amygdala volume was systemic. Regardless of segmentation technique, volumes were not associated with SA symptom severity. Potentially, amygdala sub-regions may yield clearer patterns regarding SA symptoms. Further, our study underscores the importance of image quality for segmentation of the amygdala, and image quality may be particularly valuable when examining anatomical data for subtle inter-individual differences.
Collapse
Affiliation(s)
- Reema Jayakar
- Department of Psychology, Georgia State University, Atlanta, GA 30303, USA.
| | - Erin B Tone
- Department of Psychology, Georgia State University, Atlanta, GA 30303, USA.
| | - Bruce Crosson
- Department of Psychology, Georgia State University, Atlanta, GA 30303, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA; Department of Neurology, Emory University, Atlanta, GA 30329, USA.
| | - Jessica A Turner
- Department of Psychology, Georgia State University, Atlanta, GA 30303, USA.
| | - Page L Anderson
- Department of Psychology, Georgia State University, Atlanta, GA 30303, USA.
| | - K Luan Phan
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA.
| | - Heide Klumpp
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
24
|
The spontaneous activity and functional network of the occipital cortex is correlated with state anxiety in healthy adults. Neurosci Lett 2019; 715:134596. [PMID: 31711976 DOI: 10.1016/j.neulet.2019.134596] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022]
Abstract
The occipital lobe has been implicated in anxiety disorder, however, its contributions to anxiety in healthy adults remain less clear. We conducted a resting-state functional magnetic resonance imaging study to explore the relationship between the amplitude of low-frequency fluctuation (ALFF), functional connectivity (FC), and state anxiety level in the healthy population. First, the results showed that the ALFF of the left inferior occipital gyrus (IOG) was negatively correlated with state anxiety. Furthermore, state anxiety was positively correlated with the FC between the left IOG and the right medial superior frontal gyrus and right cerebellum 8 area and negatively correlated with the FC between the left IOG and the left superior parietal gyrus. These results indicate that the occipital lobe of healthy individuals is involved in processing of anxiety in part through a frontal-parietal network.
Collapse
|
25
|
Ergül C, Ulasoglu-Yildiz C, Kurt E, Koyuncu A, Kicik A, Demiralp T, Tükel R. Intrinsic functional connectivity in social anxiety disorder with and without comorbid attention deficit hyperactivity disorder. Brain Res 2019; 1722:146364. [DOI: 10.1016/j.brainres.2019.146364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 06/20/2019] [Accepted: 08/06/2019] [Indexed: 01/16/2023]
|
26
|
Bas-Hoogendam JM. Commentary: Gray Matter Structural Alterations in Social Anxiety Disorder: A Voxel-Based Meta-Analysis. Front Psychiatry 2019; 10:1. [PMID: 30723425 PMCID: PMC6349716 DOI: 10.3389/fpsyt.2019.00001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/02/2019] [Indexed: 01/04/2023] Open
Affiliation(s)
- Janna Marie Bas-Hoogendam
- Institute of Psychology, Leiden University, Leiden, Netherlands.,Department of Psychiatry, Leiden University Medical Center, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden, Netherlands
| |
Collapse
|
27
|
Bas-Hoogendam JM, van Steenbergen H, Tissier RLM, Houwing-Duistermaat JJ, Westenberg PM, van der Wee NJA. Subcortical brain volumes, cortical thickness and cortical surface area in families genetically enriched for social anxiety disorder - A multiplex multigenerational neuroimaging study. EBioMedicine 2018; 36:410-428. [PMID: 30266294 PMCID: PMC6197574 DOI: 10.1016/j.ebiom.2018.08.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Social anxiety disorder (SAD) is a disabling psychiatric condition with a genetic background. Brain alterations in gray matter (GM) related to SAD have been previously reported, but it remains to be elucidated whether GM measures are candidate endophenotypes of SAD. Endophenotypes are measurable characteristics on the causal pathway from genotype to phenotype, providing insight in genetically-based disease mechanisms. Based on a review of existing evidence, we examined whether GM characteristics meet two endophenotype criteria, using data from a unique sample of SAD-patients and their family-members of two generations. First, we investigated whether GM characteristics co-segregate with social anxiety within families genetically enriched for SAD. Secondly, heritability of the GM characteristics was estimated. METHODS Families with a genetic predisposition for SAD participated in the Leiden Family Lab study on SAD; T1-weighted MRI brain scans were acquired (n = 110, 8 families). Subcortical volumes, cortical thickness and cortical surface area were determined for a-priori determined regions of interest (ROIs). Next, associations with social anxiety and heritabilities were estimated. FINDINGS Several subcortical and cortical GM characteristics, derived from frontal, parietal and temporal ROIs, co-segregated with social anxiety within families (uncorrected p-level) and showed moderate to high heritability. INTERPRETATION These findings provide preliminary evidence that GM characteristics of multiple ROIs, which are distributed over the brain, are candidate endophenotypes of SAD. Thereby, they shed light on the genetic vulnerability for SAD. Future research is needed to confirm these results and to link them to functional brain alterations and to genetic variations underlying these GM changes. FUND: Leiden University Research Profile 'Health, Prevention and the Human Life Cycle'.
Collapse
Affiliation(s)
- Janna Marie Bas-Hoogendam
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands; Department of Psychiatry, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Henk van Steenbergen
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Renaud L M Tissier
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands.
| | | | - P Michiel Westenberg
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| |
Collapse
|
28
|
Günther V, Ihme K, Kersting A, Hoffmann KT, Lobsien D, Suslow T. Volumetric Associations Between Amygdala, Nucleus Accumbens, and Socially Anxious Tendencies in Healthy Women. Neuroscience 2018; 374:25-32. [PMID: 29378282 DOI: 10.1016/j.neuroscience.2018.01.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 01/04/2023]
Abstract
Socially anxious individuals report higher social fears and feelings of distress in interpersonal interactions. Structural neuroimaging studies indicate brain morphological abnormalities in patients with social anxiety disorder (SAD), but findings are heterogeneous and partially discrepant. Studies on structural correlates of socially anxious tendencies in participants without clinical diagnoses are scarce. Using structural magnetic resonance imaging, the present study examined the relationship between social interaction anxiety and gray matter (GM) volume in 38 healthy women. The amygdala and nucleus accumbens (NAcc) were defined as a priori regions of interest. Moreover, exploratory whole-brain analyses were conducted. Higher levels of social anxiety significantly predicted increased GM volume in the right amygdala [k = 262 voxels, voxel-level threshold at p < .05 (uncorrected), with a cluster-corrected significance level of p = 0.05 calculated by Monte Carlo Simulations] and bilateral NAcc [left: k = 52 voxels, right: k = 49 voxels; at p < .05 (corrected for search volume)]. These relationships remained significant when controlling for a potential influence of trait anxiety. Additionally, socially anxious tendencies were associated with an enlarged striatum [i.e., putamen and caudate; left: k = 567 voxels, right: k = 539 voxels; at p < .001 (uncorrected)]. Our findings indicate that higher social interaction anxiety in healthy individuals is related to amygdalar and striatal volumetric increases. These brain regions are known to be involved in social perception, anxiety, and the avoidance of harm. Future studies may clarify whether the observed morphological alterations constitute a structural vulnerability factor for SAD.
Collapse
Affiliation(s)
- Vivien Günther
- Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig, Leipzig, Germany
| | - Klas Ihme
- Institute of Transportation Systems, German Aerospace Center, Braunschweig, Germany
| | - Anette Kersting
- Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig, Leipzig, Germany
| | | | - Donald Lobsien
- Department of Neuroradiology, University of Leipzig, Leipzig, Germany
| | - Thomas Suslow
- Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
29
|
Chen WT, Chou KH, Lee PL, Hsiao FJ, Niddam DM, Lai KL, Fuh JL, Lin CP, Wang SJ. Comparison of gray matter volume between migraine and "strict-criteria" tension-type headache. J Headache Pain 2018; 19:4. [PMID: 29335889 PMCID: PMC5768588 DOI: 10.1186/s10194-018-0834-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/02/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Despite evidently distinct symptoms, tension-type headache (TTH) and migraine are highly comorbid and exhibit many similarities in clinical practice. The purpose of this study was to investigate whether both types of headaches are similar in brain morphology. METHODS Consecutive patients with TTH and age- and sex-matched patients with migraine and healthy controls were enrolled for brain magnetic resonance imaging examination. Patients with TTH were excluded if they reported any headache features or associated symptoms of migraine. Changes in gray matter (GM) volume associated with headache diagnosis (TTH vs. migraine) and frequency (episodic vs. chronic) were examined using voxel-based morphometry. The correlation with headache profile and the discriminative ability between TTH and migraine were also investigated for these GM changes. RESULTS In comparison with controls (n = 43), the patients with TTH (25 episodic and 24 chronic) exhibited a GM volume increase in the anterior cingulate cortex, supramarginal gyrus, temporal pole, lateral occipital cortex, and caudate. The patients with migraine (31 episodic and 25 chronic) conversely exhibited a GM volume decrease in the orbitofrontal cortex. These GM changes did not correlate with any headache profile. A voxel-wise 2 × 2 factorial analysis further revealed the substantial effects of headache types and frequency in the comparison of GM volume between TTH and migraine. Specifically, the migraine group (vs. TTH) had a GM decrease in the superior and middle frontal gyri, cerebellum, dorsal striatum, and precuneus. The chronic group (vs. episodic group) otherwise demonstrated a GM decrease in the bilateral insula and anterior cingulate cortex. In receiver operating characteristic analysis, the GM volumes of the left superior frontal gyrus and right cerebellum V combined had good discriminative ability for distinguishing TTH and migraine (area under the curve = 0.806). CONCLUSIONS TTH and migraine are separate headache disorders with different characteristics in relation to GM changes. The major morphological difference between the two types of headaches is the relative GM decrease of the prefrontal and cerebellar regions in migraine, which may reflect a higher allostatic load associated with this disabling headache.
Collapse
Affiliation(s)
- Wei-Ta Chen
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan. .,Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Kun-Hsien Chou
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Lin Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Fu-Jung Hsiao
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - David M Niddam
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuan-Lin Lai
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
30
|
Besteher B, Squarcina L, Spalthoff R, Bellani M, Gaser C, Nenadić I, Brambilla P. Subclinical Agoraphobia Symptoms and Regional Brain Volumes in Non-clinical Subjects: Between Compensation and Resilience? Front Psychiatry 2018; 9:541. [PMID: 30546323 PMCID: PMC6279873 DOI: 10.3389/fpsyt.2018.00541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/11/2018] [Indexed: 01/22/2023] Open
Abstract
Background: Symptoms of anxiety are present not only in panic disorder or other anxiety disorders, but are highly prevalent in the general population. Despite increasing biological research on anxiety disorders, there is little research on understanding subclinical or sub-threshold symptoms relating to anxiety in non-clinical community samples, which could give clues to factors relating to resilience or compensatory changes. Aims:This study focused on brain structural correlates of subclinical anxiety/agoraphobia symptoms from a multi-center imaging study. Methods: We obtained high-resolution structural T1 MRI scans of 409 healthy young participants and used the CAT12 toolbox for voxel-based morphometry (VBM) analysis. Subjects provided self-ratings of anxiety using the SCL-90-R, from which we used the phobia subscale, covering anxiety symptoms related to those of panic and agoraphobia spectrum. Results: We found significant (p < 0.05, FDR-corrected) correlations (mostly positive) of cortical volume with symptom severity, including the right lingual gyrus and calcarine sulcus, as well as left calcarine sulcus, superior, middle, and inferior temporal gyri. Uncorrected exploratory analysis also revealed positive correlations with GMV in orbitofrontal cortex, precuneus, and insula. Conclusions: Our findings show brain structural associations of subclinical symptoms of anxiety, which overlap with those seen in panic disorder or agoraphobia. This is consistent with a dimensional model of anxiety, which is reflected not only functionally but also on the structural level.
Collapse
Affiliation(s)
- Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | | | - Robert Spalthoff
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Marcella Bellani
- Department of Psychiatry, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Department of Neurology, Jena University Hospital, Jena, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Giessen and Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMMB), Marburg, Germany
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.,Department of Psychiatry and Behavioural Neurosciences, UT Houston Medical School, Houston, TX, United States
| |
Collapse
|
31
|
Wang X, Cheng B, Luo Q, Qiu L, Wang S. Gray Matter Structural Alterations in Social Anxiety Disorder: A Voxel-Based Meta-Analysis. Front Psychiatry 2018; 9:449. [PMID: 30298028 PMCID: PMC6160565 DOI: 10.3389/fpsyt.2018.00449] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/30/2018] [Indexed: 02/05/2023] Open
Abstract
The current insight into the neurobiological pathogenesis underlying social anxiety disorder (SAD) is still rather limited. We implemented a meta-analysis to explore the neuroanatomical basis of SAD. We undertook a systematic search of studies comparing gray matter volume (GMV) differences between SAD patients and healthy controls (HC) using a whole-brain voxel-based morphometry (VBM) approach. The anisotropic effect size version of seed-based d mapping (AES-SDM) meta-analysis was conducted to explore the GMV differences of SAD patients compared with HC. We included eleven studies with 470 SAD patients and 522 HC in the current meta-analysis. In the main meta-analysis, relative to HC, SAD patients showed larger GMVs in the left precuneus, right middle occipital gyrus (MOG) and supplementary motor area (SMA), as well as smaller GMV in the left putamen. In the subgroup analyses, compared with controls, adult patients (age ≥ 18 years) with SAD exhibited larger GMVs in the left precuneus, right superior frontal gyrus (SFG), angular gyrus, middle temporal gyrus (MTG), MOG and SMA, as well as a smaller GMV in the left thalamus; SAD patients without comorbid depressive disorder exhibited larger GMVs in the left superior parietal gyrus and precuneus, right inferior temporal gyrus, fusiform gyrus, MTG and superior temporal gyrus (STG), as well as a smaller GMV in the bilateral thalami; and currently drug-free patients with SAD exhibited a smaller GMV in the left thalamus compared with HC while no larger GMVs were found. For SAD patients with different clinical features, our study revealed directionally consistent larger cortical GMVs and smaller subcortical GMVs, including locationally consistent larger precuneus and thalamic deficits in the left brain. Age, comorbid depressive disorder and concomitant medication use of the patients might be potential confounders of SAD at the neuroanatomical level.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Clinical Psychology, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Qiang Luo
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Lihua Qiu
- Department of Radiology, the Second People's Hospital of Yibin, Yibin, China
| | - Song Wang
- Department of Clinical Psychology, the Fourth People's Hospital of Chengdu, Chengdu, China.,Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Yang X, Liu J, Meng Y, Xia M, Cui Z, Wu X, Hu X, Zhang W, Gong G, Gong Q, Sweeney JA, He Y. Network analysis reveals disrupted functional brain circuitry in drug-naive social anxiety disorder. Neuroimage 2017; 190:213-223. [PMID: 29223742 DOI: 10.1016/j.neuroimage.2017.12.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 10/17/2017] [Accepted: 12/05/2017] [Indexed: 02/05/2023] Open
Abstract
Social anxiety disorder (SAD) is a common and disabling condition characterized by excessive fear and avoidance of public scrutiny. Psychoradiology studies have suggested that the emotional and behavior deficits in SAD are associated with abnormalities in regional brain function and functional connectivity. However, little is known about whether intrinsic functional brain networks in patients with SAD are topologically disrupted. Here, we collected resting-state fMRI data from 33 drug-naive patients with SAD and 32 healthy controls (HC), constructed functional networks with 34 predefined regions based on previous meta-analytic research with task-based fMRI in SAD, and performed network-based statistic and graph-theory analyses. The network-based statistic analysis revealed a single connected abnormal circuitry including the frontolimbic circuit (termed the "fear circuit", including the dorsolateral prefrontal cortex, ventral medial prefrontal cortex and insula) and posterior cingulate/occipital areas supporting perceptual processing. In this single altered network, patients with SAD had higher functional connectivity than HC. At the global level, graph-theory analysis revealed that the patients exhibited a lower normalized characteristic path length than HC, which suggests a disorder-related shift of network topology toward randomized configurations. SAD-related deficits in nodal degree, efficiency and participation coefficient were detected in the parahippocampal gyrus, posterior cingulate cortex, dorsolateral prefrontal cortex, insula and the calcarine sulcus. Aspects of abnormal connectivity were associated with anxiety symptoms. These findings highlight the aberrant topological organization of functional brain network organization in SAD, which provides insights into the neural mechanisms underlying excessive fear and avoidance of social interactions in patients with debilitating social anxiety.
Collapse
Affiliation(s)
- Xun Yang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China; Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Jin Liu
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yajing Meng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Mingrui Xia
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zaixu Cui
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xi Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wei Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Gaolang Gong
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China; Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China; Department of Psychology, School of Public Administration, Sichuan University, Chengdu, 610065, China.
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, 45219, USA
| | - Yong He
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
33
|
Bas-Hoogendam JM, van Steenbergen H, Nienke Pannekoek J, Fouche JP, Lochner C, Hattingh CJ, Cremers HR, Furmark T, Månsson KN, Frick A, Engman J, Boraxbekk CJ, Carlbring P, Andersson G, Fredrikson M, Straube T, Peterburs J, Klumpp H, Phan KL, Roelofs K, Veltman DJ, van Tol MJ, Stein DJ, van der Wee NJ. Voxel-based morphometry multi-center mega-analysis of brain structure in social anxiety disorder. NEUROIMAGE-CLINICAL 2017; 16:678-688. [PMID: 30140607 PMCID: PMC6103329 DOI: 10.1016/j.nicl.2017.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/01/2017] [Indexed: 01/04/2023]
Abstract
Social anxiety disorder (SAD) is a prevalent and disabling mental disorder, associated with significant psychiatric co-morbidity. Previous research on structural brain alterations associated with SAD has yielded inconsistent results concerning the direction of the changes in gray matter (GM) in various brain regions, as well as on the relationship between brain structure and SAD-symptomatology. These heterogeneous findings are possibly due to limited sample sizes. Multi-site imaging offers new opportunities to investigate SAD-related alterations in brain structure in larger samples. An international multi-center mega-analysis on the largest database of SAD structural T1-weighted 3T MRI scans to date was performed to compare GM volume of SAD-patients (n = 174) and healthy control (HC)-participants (n = 213) using voxel-based morphometry. A hypothesis-driven region of interest (ROI) approach was used, focusing on the basal ganglia, the amygdala-hippocampal complex, the prefrontal cortex, and the parietal cortex. SAD-patients had larger GM volume in the dorsal striatum when compared to HC-participants. This increase correlated positively with the severity of self-reported social anxiety symptoms. No SAD-related differences in GM volume were present in the other ROIs. Thereby, the results of this mega-analysis suggest a role for the dorsal striatum in SAD, but previously reported SAD-related changes in GM in the amygdala, hippocampus, precuneus, prefrontal cortex and parietal regions were not replicated. Our findings emphasize the importance of large sample imaging studies and the need for meta-analyses like those performed by the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium. Multi-center mega-analysis on gray matter (GM) in social anxiety disorder (SAD) Largest sample available for analysis to date: 174 SAD-patients vs 213 controls Larger GM volume in the right putamen in SAD-patients No SAD-related alterations in amygdala-hippocampal, prefrontal or parietal regions Results stress need for larger samples and meta-analyses - cf. ENIGMA Consortium
Collapse
Affiliation(s)
- Janna Marie Bas-Hoogendam
- Institute of Psychology, Leiden University, Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
- Corresponding author at: Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands.
| | - Henk van Steenbergen
- Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - J. Nienke Pannekoek
- Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Imperial College London, United Kingdom
| | - Jean-Paul Fouche
- Department of Psychiatry and Mental Health, University of Cape Town, Observatory, Cape Town, South Africa
| | - Christine Lochner
- SU/UCT MRC Unit on Anxiety & Stress Disorders, South Africa
- Department of Psychiatry, Stellenbosch University, Tygerberg, South Africa
| | - Coenraad J. Hattingh
- Department of Psychiatry and Mental Health, University of Cape Town, Observatory, Cape Town, South Africa
| | - Henk R. Cremers
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Tomas Furmark
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Kristoffer N.T. Månsson
- Department of Psychology, Uppsala University, Uppsala, Sweden
- Department of Psychology, Stockholm University, Stockholm, Sweden
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Frick
- Department of Psychology, Uppsala University, Uppsala, Sweden
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Engman
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Carl-Johan Boraxbekk
- Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Per Carlbring
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Gerhard Andersson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Behavioural Sciences and Learning, Psychology, Linköping University, Linköping, Sweden
| | - Mats Fredrikson
- Department of Psychology, Uppsala University, Uppsala, Sweden
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Jutta Peterburs
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Heide Klumpp
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - K. Luan Phan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - Karin Roelofs
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Dick J. Veltman
- Department of Psychiatry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Marie-José van Tol
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dan J. Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Observatory, Cape Town, South Africa
- SU/UCT MRC Unit on Anxiety & Stress Disorders, South Africa
| | - Nic J.A. van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
34
|
Zhao Y, Chen L, Zhang W, Xiao Y, Shah C, Zhu H, Yuan M, Sun H, Yue Q, Jia Z, Zhang W, Kuang W, Gong Q, Lui S. Gray Matter Abnormalities in Non-comorbid Medication-naive Patients with Major Depressive Disorder or Social Anxiety Disorder. EBioMedicine 2017. [PMID: 28633986 PMCID: PMC5514428 DOI: 10.1016/j.ebiom.2017.06.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background An overlap of clinical symptoms between major depressive disorder (MDD) and social anxiety disorder (SAD) suggests that the two disorders exhibit similar brain mechanisms. However, few studies have directly compared the brain structures of the two disorders. The aim of this study was to assess the gray matter volume (GMV) and cortical thickness alterations between non-comorbid medication-naive MDD patients and SAD patients. Methods High-resolution T1-weighted images were acquired from 37 non-comorbid MDD patients, 24 non-comorbid SAD patients and 41 healthy controls (HCs). Voxel-based morphometry analysis of the GMV (corrected with a false discovery rate of p < 0.001) and vertex-based analysis of cortical thickness (corrected with a clusterwise probability of p < 0.001) were performed, and group differences were compared by ANOVA followed by post hoc tests. Outcomes Relative to the HCs, both the MDD patients and SAD patients showed the following results: GMV reductions in the bilateral orbital frontal cortex (OFC), putamen, and thalamus; cortical thickening in the bilateral medial prefrontal cortex, posterior dorsolateral prefrontal cortex, insular cortex, left temporal pole, and right superior parietal cortex; and cortical thinning in the left lateral OFC and bilateral rostral middle frontal cortex. In addition, MDD patients specifically showed a greater thickness in the left fusiform gyrus and right lateral occipital cortex and a thinner thickness in the bilateral lingual and left cuneus. SAD patients specifically showed a thinner cortical thickness in the right precentral cortex. Interpretation Our results indicate that MDD and SAD share common patterns of gray matter abnormalities in the orbitofrontal-striatal-thalamic circuit, salience network and dorsal attention network. These consistent structural differences in the two patient groups may contribute to the broad spectrum of emotional, cognitive and behavioral disturbances observed in MDD patients and SAD patients. In addition, we found disorder-specific involvement of the visual processing regions in MDD and the precentral cortex in SAD. These findings provide new evidence regarding the shared and specific neuropathological mechanisms that underlie MDD and SAD. MDD and SAD share common gray matter abnormalities in the orbitofrontal-striatal-thalamic circuit, salience and dorsal attention network. MDD patients show disorder-specific involvement of the visual processing regions. SAD patients show disorder-specific involvement of the precentral cortex.
An overlap of clinical symptoms between major depressive disorder (MDD) and social anxiety disorder (SAD) suggests similar brain mechanisms for the two disorders. However, few studies have directly compared the brain structures of the two disorders. The aim of this study was to assess gray matter volume and cortical thickness alterations between non-comorbid medication-naive MDD patients and SAD patients. We found that MDD and SAD shared a common pattern of gray matter abnormalities in the orbitofrontal-striatal-thalamic circuit, salience network and dorsal attention network. MDD patients showed disorder-specific involvement of the visual processing regions. SAD patients showed disorder-specific involvement of the precentral cortex.
Collapse
Affiliation(s)
- Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Lizhou Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Yuan Xiao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Chandan Shah
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Hongru Zhu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Minlan Yuan
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Qiang Yue
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Wei Zhang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Weihong Kuang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China.
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China.
| |
Collapse
|
35
|
Besteher B, Gaser C, Langbein K, Dietzek M, Sauer H, Nenadić I. Effects of subclinical depression, anxiety and somatization on brain structure in healthy subjects. J Affect Disord 2017; 215:111-117. [PMID: 28319687 DOI: 10.1016/j.jad.2017.03.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Dimensional approaches in highly prevalent psychiatric disorders like depression or anxiety could lead to a better understanding of pathogenesis and advantages in early detection and prevention. In an effort to better understand associations of brain structural variation across the depression/anxiety spectra, we investigated minor subclinical symptoms in a non-clinical healthy population. METHODS We studied 177 healthy subjects from the community, who underwent high-resolution T1-weighted 3T MRI and completed the symptom-checklist-90 (SCL-90-R). Using voxel-based morphometry (VBM) analysis with CAT12 software, we correlated SCL-90-R-subscales for depression, anxiety, and somatization with gray matter across the brain. RESULTS Significant positive gray matter correlations emerged across all three scales in different areas: the depression subscale correlated positively with gray matter in the Rolandic operculum, superior temporal gyrus (left) and postcentral gyrus (bilateral), the anxiety subscale correlated positively with middle temporal gyrus, Rolandic operculum, middle cingular gyrus and precuneus bilaterally, and the somatization subscale with left inferior prefrontal cortex. Somatization also showed negative correlations with cerebellar vermis and right supplementary motor area. LIMITATIONS Our study is limited to VBM and does not include surface-based measures. It also only contains subjects with very small psychological distress by partly overlapping symptoms. CONCLUSION Our findings are consistent with a non-linear relationship between symptom severity and cortical volume in several brain areas involved in both emotion regulation as well as altered in clinically manifest depressive/anxiety disorders.
Collapse
Affiliation(s)
- Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Department of Neurology, Jena University Hospital, Jena, Germany
| | - Kerstin Langbein
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Maren Dietzek
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Heinrich Sauer
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Department of Psychiatry and Psychotherapy, Philipps-University Marburg/Marburg University Hospital - UKGM, Marburg, Germany
| |
Collapse
|
36
|
Bas-Hoogendam JM, Blackford JU, Brühl AB, Blair KS, van der Wee NJ, Westenberg PM. Neurobiological candidate endophenotypes of social anxiety disorder. Neurosci Biobehav Rev 2016; 71:362-378. [DOI: 10.1016/j.neubiorev.2016.08.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/15/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023]
|
37
|
Lan CC, Tsai SJ, Huang CC, Wang YH, Chen TR, Yeh HL, Liu ME, Lin CP, Yang AC. Functional Connectivity Density Mapping of Depressive Symptoms and Loneliness in Non-Demented Elderly Male. Front Aging Neurosci 2016; 7:251. [PMID: 26793101 PMCID: PMC4709793 DOI: 10.3389/fnagi.2015.00251] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/21/2015] [Indexed: 01/26/2023] Open
Abstract
Background: Depression and loneliness are prevalent and highly correlated phenomena among the elderly and influence both physical and mental health. Brain functional connectivity changes associated with depressive symptoms and loneliness are not fully understood. Methods: A cross-sectional functional MRI study was conducted among 85 non-demented male elders. Geriatric depression scale-short form (GDS) and loneliness scale were used to evaluate the severity of depressive symptoms and loneliness, respectively. Whole brain voxel-wise resting-state functional connectivity density (FCD) mapping was performed to delineate short-range FCD (SFCD) and long-range FCD (LFCD). Regional correlations between depressive symptoms or loneliness and SFCD or LFCD were examined using general linear model (GLM), with age incorporated as a covariate and depressive symptoms and loneliness as predictors. Results: Positive correlations between depressive symptoms and LFCD were observed in left rectal gyrus, left superior frontal gyrus, right supraorbital gyrus, and left inferior temporal gyrus. Positive correlations between depressive symptoms and SFCD were observed in left middle frontal gyrus, left superior frontal gyrus, bilateral superior medial frontal gyrus, left inferior temporal gyrus, and left middle occipital region. Positive correlations between SFCD and loneliness were centered over bilateral lingual gyrus. Conclusion: Depressive symptoms are associated with FCD changes over frontal and temporal regions, which may involve the cognitive control, affective regulation, and default mode networks. Loneliness is associated with FCD changes in bilateral lingual gyri that are known to be important in social cognition. Depressive symptoms and loneliness may be associated with different brain regions in non-demented elderly male.
Collapse
Affiliation(s)
- Chen-Chia Lan
- Department of Psychiatry, Taichung Veterans General HospitalTaichung, Taiwan; Institute of Brain Science, National Yang-Ming UniversityTaipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General HospitalTaipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming UniversityTaipei, Taiwan
| | - Chu-Chung Huang
- Institute of Brain Science, National Yang-Ming University Taipei, Taiwan
| | - Ying-Hsiu Wang
- Department of Psychiatry, Taipei Veterans General HospitalTaipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming UniversityTaipei, Taiwan
| | - Tong-Ru Chen
- Department of Psychiatry, Taipei Veterans General HospitalTaipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming UniversityTaipei, Taiwan
| | | | - Mu-En Liu
- Department of Psychiatry, Taipei Veterans General HospitalTaipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming UniversityTaipei, Taiwan
| | - Ching-Po Lin
- Institute of Brain Science, National Yang-Ming University Taipei, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General HospitalTaipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming UniversityTaipei, Taiwan; Center for Dynamical Biomarkers and Translational Medicine, National Central UniversityChungli, Taiwan; Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
38
|
Tükel R, Aydın K, Yüksel Ç, Ertekin E, Koyuncu A, Taş C. Gray matter abnormalities in patients with social anxiety disorder: A voxel-based morphometry study. Psychiatry Res 2015; 234:106-12. [PMID: 26371455 DOI: 10.1016/j.pscychresns.2015.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/06/2015] [Accepted: 09/01/2015] [Indexed: 01/03/2023]
Abstract
The main objective of this study was to investigate the gray matter volume (GMV) differences between the patients with social anxiety disorder (SAD) and healthy controls, using VBM analysis. A total of 27 consecutive patients (15 women and 12 men) with SAD and 27 age and sex-matched healthy control subjects were included in this study. With magnetic resonance imaging, we examined GMV differences between SAD and healthy control groups. We found that GMV in the right middle and inferior temporal, left superior parietal, left precuneus and right fusiform areas were significantly greater in patients with SAD than in healthy controls. In addition, GMV in the right inferior and middle temporal regions were positively correlated with the social avoidance and total social anxiety scores of the participants in the SAD group. Lastly, greater GMV in the left superior parietal and precuneal regions were correlated with the higher disability in the social life of the patients with SAD. Our results suggest that the regions that showed significant GMV differences between the two groups play an important role in the pathophysiology of SAD and increased GMV in these regions might reflect a pathological process of neural abnormalities in this disorder.
Collapse
Affiliation(s)
- Raşit Tükel
- Department of Psychiatry, Istanbul University, Istanbul Faculty of Medicine, İstanbul, Turkey.
| | - Kubilay Aydın
- Department of Radiology, Neuroradiology Division, Istanbul University, Istanbul Faculty of Medicine, İstanbul, Turkey.
| | - Çağrı Yüksel
- McLean Hospital, Harvard Medical School, MA, USA.
| | - Erhan Ertekin
- Department of Psychiatry, Istanbul University, Istanbul Faculty of Medicine, İstanbul, Turkey.
| | | | - Cumhur Taş
- Department of Psychology, Uskudar University, İstanbul, Turkey; Division of Cognitive Neuropsychiatry and Psychiatric Preventative Medicine, Ruhr University, Bochum, NRW, Germany.
| |
Collapse
|