1
|
Becker BK, Grady CM, Markl AE, Torres Rodriguez AA, Pollock DM. Elevated renal afferent nerve activity in a rat model of endothelin B receptor deficiency. Am J Physiol Renal Physiol 2023; 325:F235-F247. [PMID: 37348026 PMCID: PMC10396274 DOI: 10.1152/ajprenal.00064.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023] Open
Abstract
Renal nerves have been an attractive target for interventions aimed at lowering blood pressure; however, the specific roles of renal afferent (sensory) versus efferent sympathetic nerves in mediating hypertension are poorly characterized. A number of studies have suggested that a sympathoexcitatory signal conveyed by renal afferents elicits increases in blood pressure, whereas other studies identified sympathoinhibitory afferent pathways. These sympathoinhibitory pathways have been identified as protective against salt-sensitive increases in blood pressure through endothelin B (ETB) receptor activation. We hypothesized that ETB-deficient (ETB-def) rats, which are devoid of functional ETB receptors except in adrenergic tissues, lack appropriate sympathoinhibition and have lower renal afferent nerve activity following a high-salt diet compared with transgenic controls. We found that isolated renal pelvises from high salt-fed ETB-def animals lack a response to a physiological stimulus, prostaglandin E2, compared with transgenic controls but respond equally to a noxious stimulus, capsaicin. Surprisingly, we observed elevated renal afferent nerve activity in intact ETB-def rats compared with transgenic controls under both normal- and high-salt diets. ETB-def rats have been previously shown to have heightened global sympathetic tone, and we also observed higher total renal sympathetic nerve activity in ETB-def rats compared with transgenic controls under both normal- and high-salt diets. These data indicate that ETB receptors are integral mediators of the sympathoinhibitory renal afferent reflex (renorenal reflex), and, in a genetic rat model of ETB deficiency, the preponderance of sympathoexcitatory renal afferent nerve activity prevails and may contribute to hypertension.NEW & NOTEWORTHY Here, we found that endothelin B receptors are an important contributor to renal afferent nerve responsiveness to a high-salt diet. Rats lacking endothelin B receptors have increased afferent nerve activity that is not responsive to a high-salt diet.
Collapse
Affiliation(s)
- Bryan K Becker
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Caroline M Grady
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Alexa E Markl
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Alfredo A Torres Rodriguez
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Skin biomarkers associated with complex regional pain syndrome (CRPS) Type I: a systematic review. Rheumatol Int 2022; 42:937-947. [PMID: 34997300 DOI: 10.1007/s00296-021-05061-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
Despite increasing research, the pathophysiology of Complex Regional Pain Syndrome (CRPS) remains poorly understood. Due to its easy accessibility, the skin represents an ideal approach to gain a better understanding of the underlying processes. We conducted a systematic review of original studies investigating potential biomarkers cutaneous biomarkers in CRPS. Original articles with a minimum level IV of evidence were screened using the following databases: Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE and Web of Science Core Collection. Quality assessment was performed using the Methodological Index for Non-Randomized Studies criteria. A total of 11 studies exploring cutaneous biomarkers in 299 CRPS Type I patients were included. The biomarkers identified revealed implications of the following pathophysiological processes: inflammation via interleukins and TNF-a, vascular dysregulation (ET-1/NOx disturbances and hypoxia-high lactate), small fiber neuropathy and hypersensitivity. In terms of skin morphology, evidence suggests: neurite loss, increased expression and disturbed migration of mast cells, as well as an increased expression of α1-adrenoceptors on keratinocytes. The data supporting hypersensitivity had a high risk of bias on quality assessment. The current review has emphasized the current state of knowledge regarding the cutaneous biomarkers in patients suffering from CRPS Type I. Our results serve as a basis for future developments of techniques that would either facilitate diagnosis or may represent therapeutic targets. Trial registration PROSPERO: CRD42020203405. Level of evidence: IV (Systematic Review).
Collapse
|
3
|
Matsuura K, Sakai A, Watanabe Y, Mikahara Y, Sakamoto A, Suzuki H. Endothelin receptor type A is involved in the development of oxaliplatin-induced mechanical allodynia and cold allodynia acting through spinal and peripheral mechanisms in rats. Mol Pain 2021; 17:17448069211058004. [PMID: 34894846 PMCID: PMC8679041 DOI: 10.1177/17448069211058004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Oxaliplatin, a platinum-based chemotherapeutic agent, frequently causes severe
neuropathic pain typically encompassing cold allodynia and long-lasting mechanical
allodynia. Endothelin has been shown to modulate nociceptive transmission in a variety of
pain disorders. However, the action of endothelin varies greatly depending on many
variables, including pain causes, receptor types (endothelin type A (ETA) and B
(ETB) receptors) and organs (periphery and spinal cord). Therefore, in this
study, we investigated the role of endothelin in a Sprague–Dawley rat model of
oxaliplatin-induced neuropathic pain. Intraperitoneal administration of bosentan, a dual
ETA/ETB receptor antagonist, effectively blocked the development
or prevented the onset of both cold allodynia and mechanical allodynia. The preventive
effects were exclusively mediated by ETA receptor antagonism. Intrathecal
administration of an ETA receptor antagonist prevented development of
long-lasting mechanical allodynia but not cold allodynia. In marked contrast, an
intraplantar ETA receptor antagonist had a suppressive effect on cold allodynia
but only had a partial and transient effect on mechanical allodynia. In conclusion,
ETA receptor antagonism effectively prevented long-lasting mechanical
allodynia through spinal and peripheral actions, while cold allodynia was prevented
through peripheral actions.
Collapse
Affiliation(s)
- Kae Matsuura
- Department of Anesthesiology, 26367Nippon Medical School, Bunkyo-ku, Japan.,Department of Pharmacology, 26367Nippon Medical School, Bunkyo-ku, Japan
| | - Atsushi Sakai
- Department of Pharmacology, 26367Nippon Medical School, Bunkyo-ku, Japan
| | - Yuji Watanabe
- Department of Pharmacology, 26367Nippon Medical School, Bunkyo-ku, Japan
| | - Yasunori Mikahara
- Department of Pharmacology, 26367Nippon Medical School, Bunkyo-ku, Japan
| | - Atsuhiro Sakamoto
- Department of Anesthesiology, 26367Nippon Medical School, Bunkyo-ku, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, 26367Nippon Medical School, Bunkyo-ku, Japan
| |
Collapse
|
4
|
Liu Y, Liang Y, Gao M, Li Y, Zhao T, Zhao Y. Animal Models of Complex Regional Pain Syndrome Type I. J Pain Res 2021; 14:3711-3721. [PMID: 34899000 PMCID: PMC8654689 DOI: 10.2147/jpr.s333270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/28/2021] [Indexed: 12/01/2022] Open
Abstract
Complex regional pain syndrome (CRPS) is a chronic pain disorder characterized by spontaneous or evoked regionally-confined pain which is out of proportion to the initial trauma event. The disease can seriously affect the quality of the patients' life, increase the psychological burden, and cause various degrees of disability. Despite the awareness of CRPS among medical practitioners for over a century, its pathogenesis remains unclear, and the available treatment is still unsatisfactory. Effective animal models are the foundation of disease research, which is helpful in understanding the pathogenesis and an in-depth exploration of the appropriate therapeutic approaches. Currently, researchers have established a series of animal models of the disease. There are four main CRPSI animal models: chronic post-ischemic pain (CPIP) model, tibial fracture/cast immobilization model, passive transfer-trauma model, and the needlestick-nerve-injury (NNI) model. The modeling methods of these models are constantly improving over time. In preclinical studies, the interpretation of experimental results and the horizontal comparison between similar studies may be affected by the nature of the experimental animal breeds, sex, diet, and psychology. There is need to facilitate the choice of appropriate animal models and avoid the interference of the factors influencing animal models on the interpretation of research results. The review will provide a basic overview of the influencing factors, modeling methods, and the characteristics of CRPSI animal models.
Collapse
Affiliation(s)
- Yu Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| | - Ying Liang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| | - Min Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| | - Yingchun Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| | - Tingting Zhao
- Shaanxi University of Traditional Chinese Medicine, Xi’an, Shaanxi, 712046, People’s Republic of China
| | - Yani Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| |
Collapse
|
5
|
Gonçalves ECD, Vieira G, Gonçalves TR, Simões RR, Brusco I, Oliveira SM, Calixto JB, Cola M, Santos ARS, Dutra RC. Bradykinin Receptors Play a Critical Role in the Chronic Post-ischaemia Pain Model. Cell Mol Neurobiol 2021; 41:63-78. [PMID: 32222846 PMCID: PMC11448614 DOI: 10.1007/s10571-020-00832-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Complex regional pain syndrome type-I (CRPS-I) is a chronic painful condition resulting from trauma. Bradykinin (BK) is an important inflammatory mediator required in acute and chronic pain response. The objective of this study was to evaluate the association between BK receptors (B1 and B2) and chronic post-ischaemia pain (CPIP) development in mice, a widely accepted CRPS-I model. We assessed mechanical and cold allodynia, and paw oedema in male and female Swiss mice exposed to the CPIP model. Upon induction, the animals were treated with BKR antagonists (HOE-140 and DALBK); BKR agonists (Tyr-BK and DABK); antisense oligonucleotides targeting B1 and B2 and captopril by different routes in the model (7, 14 and 21 days post-induction). Here, we demonstrated that treatment with BKR antagonists, by intraperitoneal (i.p.), intraplantar (i.pl.), and intrathecal (i.t.) routes, mitigated CPIP-induced mechanical allodynia and oedematogenic response, but not cold allodynia. On the other hand, i.pl. administration of BKR agonists exacerbated pain response. Moreover, a single treatment with captopril significantly reversed the anti-allodynic effect of BKR antagonists. In turn, the inhibition of BKRs gene expression in the spinal cord inhibited the nociceptive behaviour in the 14th post-induction. The results of the present study suggest the participation of BKRs in the development and maintenance of chronic pain associated with the CPIP model, possibly linking them to CRPS-I pathogenesis.
Collapse
Affiliation(s)
- Elaine C D Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil
- Post-Graduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Graziela Vieira
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil
| | - Tainara R Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil
| | - Róli R Simões
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Indiara Brusco
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Sara M Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - João B Calixto
- Center of Innovation and Preclinical Research, Florianópolis, SC, 88056-000, Brazil
| | - Maíra Cola
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Rafael C Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil.
- Post-Graduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Laboratório de Autoimunidade e Imunofarmacologia (LAIF), Departamento de Ciências da Saúde, Universidade Federal de Santa Catarina, Campus Araranguá. Rodovia Jorge Lacerda, Km 35.4 - Jardim das Avenidas, Araranguá, SC, CEP 88906-072, Brazil.
| |
Collapse
|
6
|
Mazzardo-Martins L, Salm DC, Winkelmann-Duarte EC, Ferreira JK, Lüdtke DD, Frech KP, Belmonte LAO, Horewicz VV, Piovezan AP, Cidral-Filho FJ, Moré AOO, Martins DF. Electroacupuncture induces antihyperalgesic effect through endothelin-B receptor in the chronic phase of a mouse model of complex regional pain syndrome type I. Pflugers Arch 2018; 470:1815-1827. [DOI: 10.1007/s00424-018-2192-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/12/2018] [Accepted: 08/02/2018] [Indexed: 01/13/2023]
|
7
|
Tai LW, Pan Z, Sun L, Li H, Gu P, Wong SSC, Chung SK, Cheung CW. Suppression of Pax2 Attenuates Allodynia and Hyperalgesia through ET-1-ETAR-NFAT5 Signaling in a Rat Model of Neuropathic Pain. Neuroscience 2018; 384:139-151. [PMID: 29847776 DOI: 10.1016/j.neuroscience.2018.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 01/16/2023]
Abstract
Endothelin-1 (ET-1) and its receptors (ETAR/ETBR) emerge to be a key signaling axis in neuropathic pain processing and are recognized as new therapeutic targets. Yet, little is known on the functional regulation of ET-1 axis during neuropathic pain. Bioinformatics analysis indicated that paired box gene 2 (Pax2) or nuclear factor of activated T-cells 5 (NFAT5), two transcription factors involved in the modulation of neurotransmission, may regulate ET-1. Therefore, we hypothesized that ET-1 axis may be regulated by Pax2 or NFAT5 in the development of neuropathic pain. After partial sciatic nerve ligation (pSNL), rats displayed allodynia and hyperalgesia, which was associated with increased mRNA and protein expressions of spinal Pax2, NFAT5, and mRNA levels of ET-1 and ETAR, but not ETBR. Knockdown of Pax2 or NFAT5 with siRNA, or inhibition of ETAR with BQ-123 attenuated pSNL-induced pain-like behaviors. At molecular level, Pax2 siRNA, but not NFAT5 siRNA, downregulated ET-1 and ETAR, while ETAR inhibitor reduced NFAT5, indicating Pax2 in the upstream of ET-1 axis with NFAT5 in the downstream. Further, suppression of Pax2 (inhibiting ET-1) or impairment of ET-1 signaling (inhibition of ETAR and/or decrease of NFAT5) deactivated mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways, supporting the significance of functional regulation of ET-1 axis in neuropathic pain signaling. These findings demonstrate that Pax2 targeting ET-1-ETAR-NFAT5 is a novel regulatory mechanism underlying neuropathic pain.
Collapse
Affiliation(s)
- Lydia Wai Tai
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China
| | - Zhiqiang Pan
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Liting Sun
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China
| | - Haobo Li
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| | - Pan Gu
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China
| | - Stanley Sau Ching Wong
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China
| | - Sookja K Chung
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China; Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China
| | - Chi Wai Cheung
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Han MM, Yang CW, Cheung CW, Li J. Blockage of spinal endothelin A receptors attenuates bone cancer pain via regulation of the Akt/ERK signaling pathway in mice. Neuropeptides 2018; 68:36-42. [PMID: 29395120 DOI: 10.1016/j.npep.2018.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/17/2017] [Accepted: 01/21/2018] [Indexed: 10/18/2022]
Abstract
Bone cancer pain (BCP) is a common source of pain in patients with advanced stage and metastatic cancer; however, existing treatment for this kind of pain remains deficient. Being closely related to sensory change and inflammatory pain in both the central and peripheral nervous systems, endothelin A receptor (ETAR) plays an essential role in pain processing. As a result, ETAR antagonist has been reported to alleviate both neuropathic and inflammatory pain. Thus far, the role of ETAR in the process of BCP is still ambiguous. In this study, by using a BCP mouse model, the analgesic effect and molecular mechanism of the ETAR antagonist BQ-123 was investigated. Pain sensation in the BCP mouse model was investigated by the number of spontaneous flinches (NSF) and pain withdrawal threshold (PWT), and the mechanism of BCP was assessed by measuring p-Akt, p-Akt/t-Akt, p-ERK-1/2 and p-ERK-1/2/t-ERK-1/2 levels in L4-6 segments of the spinal cord. Our results demonstrated that BCP mice showed a higher NSF and a lower PWT score than Sham mice. In addition to the development of nociceptive sensitization, p-Akt, p-Akt/t-Akt, p-ERK-1/2 and p-ERK-1/2/t-ERK-1/2 were up-regulated correspondingly in L4-6 segments of the spinal cord in BCP mice. BQ-123 treatment showed a promising analgesic effect, and the effect was correlated to the down-regulation of p-Akt, p-Akt/t-Akt, p-ERK-1/2 and p-ERK-1/2/t-ERK-1/2 in spinal cord cells. The results suggested that intrathecal administration of BQ-123 was able to relieve BCP in mice as a consequence of suppressing the Akt and ERK signalling pathways.
Collapse
Affiliation(s)
- Ming-Ming Han
- School of Medicine, Shandong University, Jinan, Shandong, China; Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Cheng-Wei Yang
- School of Medicine, Shandong University, Jinan, Shandong, China; Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Chi-Wai Cheung
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, China; Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China
| | - Juan Li
- Department of Anesthesiology, Anhui Provincial Hospital, Anhui Medical University, Hefei, China; School of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
9
|
Fattori V, Serafim KGG, Zarpelon AC, Borghi SM, Pinho-Ribeiro FA, Alves-Filho JC, Cunha TM, Cunha FQ, Casagrande R, Verri WA. Differential regulation of oxidative stress and cytokine production by endothelin ET A and ET B receptors in superoxide anion-induced inflammation and pain in mice. J Drug Target 2016; 25:264-274. [PMID: 27701898 DOI: 10.1080/1061186x.2016.1245308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The present study investigated whether endothelin-1 acts via ETA or ETB receptors to mediate superoxide anion-induced pain and inflammation. Mice were treated with clazosentan (ETA receptor antagonist) or BQ-788 (ETB receptor antagonist) prior to stimulation with the superoxide anion donor, KO2. Intraplantar treatment with 30 nmol of clazosentan or BQ-788 reduced mechanical hyperalgesia (47% and 42%), thermal hyperalgesia (68% and 76%), oedema (50% and 30%); myeloperoxidase activity (64% and 32%), and overt-pain like behaviours, such as paw flinching (42% and 42%) and paw licking (38% and 62%), respectively. Similarly, intraperitoneal treatment with 30 nmol of clazosentan or BQ-788 reduced leukocyte recruitment to the peritoneal cavity (58% and 32%) and abdominal writhing (81% and 77%), respectively. Additionally, intraplantar treatment with clazosentan or BQ-788 decreased spinal (45% and 41%) and peripheral (47% and 47%) superoxide anion production as well as spinal (47% and 47%) and peripheral (33% and 54%) lipid peroxidation, respectively. Intraplantar treatment with clazosentan, but not BQ-788, reduced spinal (71%) and peripheral (51%) interleukin-1 beta as well as spinal (59%) and peripheral (50%) tumor necrosis factor-alpha production. Therefore, the present study unveils the differential mechanisms by which ET-1, acting on ETA or ETB receptors, regulates superoxide anion-induced inflammation and pain.
Collapse
Affiliation(s)
- Victor Fattori
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Karla G G Serafim
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Ana C Zarpelon
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Sergio M Borghi
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Felipe A Pinho-Ribeiro
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - José C Alves-Filho
- b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Thiago M Cunha
- b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Fernando Q Cunha
- b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Rúbia Casagrande
- c Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde , Universidade Estadual de Londrina , Londrina , Brazil
| | - Waldiceu A Verri
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| |
Collapse
|
10
|
Xu J, Tang Y, Xie M, Bie B, Wu J, Yang H, Foss JF, Yang B, Rosenquist RW, Naguib M. Activation of cannabinoid receptor 2 attenuates mechanical allodynia and neuroinflammatory responses in a chronic post-ischemic pain model of complex regional pain syndrome type I in rats. Eur J Neurosci 2016; 44:3046-3055. [PMID: 27717112 DOI: 10.1111/ejn.13414] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Jijun Xu
- Department of Pain Management; Cleveland Clinic; Cleveland OH USA
- Department of Immunology; Cleveland Clinic; Cleveland OH USA
| | - Yuying Tang
- Department of Anesthesiology; West China Second Hospital; Sichuan University; Chengdu Sichuan China
- Department of General Anesthesiology; Cleveland Clinic; Cleveland OH USA
| | - Mian Xie
- Department of Pain Management; Cleveland Clinic; Cleveland OH USA
| | - Bihua Bie
- Department of General Anesthesiology; Cleveland Clinic; Cleveland OH USA
| | - Jiang Wu
- Department of General Anesthesiology; Cleveland Clinic; Cleveland OH USA
| | - Hui Yang
- Department of General Anesthesiology; Cleveland Clinic; Cleveland OH USA
| | - Joseph F. Foss
- Department of General Anesthesiology; Cleveland Clinic; Cleveland OH USA
| | - Bin Yang
- Department of Pathology; Cleveland Clinic; Cleveland OH USA
| | | | - Mohamed Naguib
- Department of General Anesthesiology; Cleveland Clinic; Cleveland OH USA
- Anesthesiology Institute; Cleveland Clinic; 9500 Euclid Ave. - NE6-306 Cleveland OH 44195 USA
| |
Collapse
|
11
|
Serafim KGG, Navarro SA, Zarpelon AC, Pinho-Ribeiro FA, Fattori V, Cunha TM, Alves-Filho JC, Cunha FQ, Casagrande R, Verri WA. Bosentan, a mixed endothelin receptor antagonist, inhibits superoxide anion-induced pain and inflammation in mice. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:1211-21. [PMID: 26246053 DOI: 10.1007/s00210-015-1160-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/27/2015] [Indexed: 01/24/2023]
Abstract
Bosentan is a mixed endothelin receptor antagonist widely used to treat patients with pulmonary arterial hypertension, and the emerging literature suggests bosentan as a potent anti-inflammatory drug. Superoxide anion is produced in large amounts during inflammation, stimulates cytokine production, and thus contributes to inflammation and pain. However, it remains to be determined whether endothelin contributes to the inflammatory response triggered by the superoxide anion. The present study investigated the effects of bosentan in a mouse model of inflammation and pain induced by potassium superoxide, a superoxide anion donor. Male Swiss mice were treated with bosentan (10-100 mg/kg) by oral gavage, 1 h before potassium superoxide injection, and the inflammatory response was evaluated locally and at spinal cord (L4-L6) levels. Bosentan (100 mg/kg) inhibited superoxide anion-induced mechanical and thermal hyperalgesia, overt pain-like behavior (abdominal writhings, paw flinching, and licking), paw edema, myeloperoxidase activity (neutrophil marker) in the paw skin, and leukocyte recruitment in the peritoneal cavity. Bosentan also inhibited superoxide anion-induced interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) production, while it enhanced IL-10 production in the paw skin and spinal cord. Bosentan inhibited the reduction of antioxidant capacity (reduced glutathione, ferric reducing antioxidant power, and ABTS radical scavenging ability) induced by the superoxide anion. Finally, we demonstrated that intraplantar injection of potassium superoxide induces the mRNA expression of prepro-endothelin-1 in the paw skin and spinal cord. In conclusion, our results demonstrated that superoxide anion-induced inflammation, pain, cytokine production, and oxidative stress depend on endothelin; therefore, these responses are amenable to bosentan treatment.
Collapse
Affiliation(s)
- Karla G G Serafim
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Suelen A Navarro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Ana C Zarpelon
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Jose C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Hospital Universitário, Universidade Estadual de Londrina, Av. Robert Koch, 60, Londrina, Paraná, 86038-350, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil.
| |
Collapse
|