1
|
Singh A, Reynolds JNJ. Therapeutic ultrasound: an innovative approach for targeting neurological disorders affecting the basal ganglia. Front Neuroanat 2024; 18:1469250. [PMID: 39417047 PMCID: PMC11480080 DOI: 10.3389/fnana.2024.1469250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
The basal ganglia are involved in motor control and action selection, and their impairment manifests in movement disorders such as Parkinson's disease (PD) and dystonia, among others. The complex neuronal circuitry of the basal ganglia is located deep inside the brain and presents significant treatment challenges. Conventional treatment strategies, such as invasive surgeries and medications, may have limited effectiveness and may result in considerable side effects. Non-invasive ultrasound (US) treatment approaches are becoming increasingly recognized for their therapeutic potential for reversibly permeabilizing the blood-brain barrier (BBB), targeting therapeutic delivery deep into the brain, and neuromodulation. Studies conducted on animals and early clinical trials using ultrasound as a therapeutic modality have demonstrated promising outcomes for controlling symptom severity while preserving neural tissue. These results could improve the quality of life for patients living with basal ganglia impairments. This review article explores the therapeutic frontiers of ultrasound technology, describing the brain mechanisms that are triggered and engaged by ultrasound. We demonstrate that this cutting-edge method could transform the way neurological disorders associated with the basal ganglia are managed, opening the door to less invasive and more effective treatments.
Collapse
Affiliation(s)
| | - John N. J. Reynolds
- Translational Brain Plasticity Laboratory, Department of Anatomy, School of Biomedical Sciences, and the Brain Health Research Center, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Ma X, Wang X, Zhu K, Ma R, Chu F, Liu X, Zhang S, Yin T, Zhou X, Liu Z. Study on the Role of Physical Fields in TMAS to Modulate Synaptic Plasticity in Mice. IEEE Trans Biomed Eng 2024; 71:1531-1541. [PMID: 38117631 DOI: 10.1109/tbme.2023.3342012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
OBJECTIVE Transcranial magneto-acoustic stimulation (TMAS) is a composite technique combining static magnetic and coupled electric fields with transcranial ultrasound stimulation (TUS) and has shown advantages in neuromodulation. However, the role of these physical fields in neuromodulation is unclear. Synaptic plasticity is the cellular basis for learning and memory. In this paper, we varied the intensity of static magnetic, electric and ultrasonic fields respectively to investigate the modulation of synaptic plasticity by these physical fields. METHODS There are control, static magnetic field (0.1 T/0.2 T), TUS (0.15/0.3 MPa), and TMAS (0.15 MPa + 0.2 V/m, 0.3 MPa + 0.2 V/m, 0.3 MPa + 0.4 V/m) groups. Hippocampal areas were stimulated at 5 min daily for 7 days and in vivo electrophysiological experiments were performed. RESULTS TMAS induced greater LTP, LTD, and paired-pulse ratio (PPR) than TUS, reflecting that TMAS has a more significant modulation in both long- and short- term synaptic plasticity. In TMAS, a doubling of the electric field amplitude increases LTP, LTD and PPR to a greater extent than a doubling of the acoustic pressure. Increasing the static magnetic field intensity has no significant effect on the modulation of synaptic plasticity. CONCLUSION This paper argues that electric fields should be the main reason for the difference in modulation between TMAS and TUS and that changing the amplitude of the electric field affected the modulation of TMAS more than changing the acoustic pressure. SIGNIFICANCE This study elucidates the roles of the physical fields in TMAS and provides a parameterisation way to guide TMAS applications based on the dominant roles of the physical fields.
Collapse
|
3
|
Xie Z, Dong S, Zhang Y, Yuan Y. Transcranial ultrasound stimulation at the peak-phase of theta-cycles in the hippocampus improve memory performance. Neuroimage 2023; 283:120423. [PMID: 37884166 DOI: 10.1016/j.neuroimage.2023.120423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
The present study aimed to investigate the effectiveness of closed-loop transcranial ultrasound stimulation (closed-loop TUS) as a non-invasive, high temporal-spatial resolution method for modulating brain function to enhance memory. For this purpose, we applied closed-loop TUS to the CA1 region of the rat hippocampus for 7 consecutive days at different phases of theta cycles. Following the intervention, we evaluated memory performance through behavioral testing and recorded the neural activity. Our results indicated that closed-loop TUS applied at the peak phase of theta cycles significantly improves the memory performance in rats, as evidenced by behavioral testing. Furthermore, we observed that closed-loop TUS modifies the power and cross-frequency coupling strength of local field potentials (LFPs) during memory task, as well as modulates neuronal activity patterns and synaptic transmission, depending on phase of stimulation relative to theta rhythm. We demonstrated that closed-loop TUS can modulate neural activity and memory performance in a phase-dependent manner. Specifically, we observed that effectiveness of closed-loop TUS in regulating neural activity and memory is dependent on the timing of stimulation in relation to different theta phase. The findings implied that closed-loop TUS may have the capability to alter neural activity and memory performance in a phase-sensitive manner, and suggested that the efficacy of closed-loop TUS in modifying neural activity and memory was contingent on timing of stimulation with respect to the theta rhythm. Moreover, the improvement in memory performance after closed-loop TUS was found to be persistent.
Collapse
Affiliation(s)
- Zhenyu Xie
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Shuxun Dong
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Yiyao Zhang
- Neuroscience Institute, NYU Langone Health, New York 10016, USA.
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
4
|
Choi MH, Li N, Popelka G, Butts Pauly K. Development and validation of a computational method to predict unintended auditory brainstem response during transcranial ultrasound neuromodulation in mice. Brain Stimul 2023; 16:1362-1370. [PMID: 37690602 DOI: 10.1016/j.brs.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Transcranial ultrasound stimulation (TUS) is a promising noninvasive neuromodulation modality. The inadvertent and unpredictable activation of the auditory system in response to TUS obfuscates the interpretation of non-auditory neuromodulatory responses. OBJECTIVE The objective was to develop and validate a computational metric to quantify the susceptibility to unintended auditory brainstem response (ABR) in mice premised on time frequency analyses of TUS signals and auditory sensitivity. METHODS Ultrasound pulses with varying amplitudes, pulse repetition frequencies (PRFs), envelope smoothing profiles, and sinusoidal modulation frequencies were selected. Each pulse's time-varying frequency spectrum was differentiated across time, weighted by the mouse hearing sensitivity, then summed across frequencies. The resulting time-varying function, computationally predicting the ABR, was validated against experimental ABR in mice during TUS with the corresponding pulse. RESULTS There was a significant correlation between experimental ABRs and the computational predictions for 19 TUS signals (R2 = 0.97). CONCLUSIONS To reduce ABR in mice during in vivo TUS studies, 1) reduce the amplitude of a rectangular continuous wave envelope, 2) increase the rise/fall times of a smoothed continuous wave envelope, and/or 3) change the PRF and/or duty cycle of a rectangular or sinusoidal pulsed wave to reduce the gap between pulses and increase the rise/fall time of the overall envelope. This metric can aid researchers performing in vivo mouse studies in selecting TUS signal parameters that minimize unintended ABR. The methods for developing this metric can be adapted to other animal models.
Collapse
Affiliation(s)
- Mi Hyun Choi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Gerald Popelka
- Department of Otolaryngology, Stanford School of Medicine, Stanford, CA, 94305, USA; Department of Radiology, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Kim Butts Pauly
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA; Department of Radiology, Stanford School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Wang W, Zhong Y, Zhou Y, Yu Y, Li J, Kang S, Ma Z, Fan X, Sun L, Tang L. Low-intensity pulsed ultrasound mitigates cognitive impairment by inhibiting muscle atrophy in hindlimb unloaded mice. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:1427-1438. [PMID: 37672304 DOI: 10.1121/10.0020835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
Microgravity leads to muscle loss, usually accompanied by cognitive impairment. Muscle reduction was associated with the decline of cognitive ability. Our previous studies showed that low-intensity pulsed ultrasound (LIPUS) promoted muscle hypertrophy and prevented muscle atrophy. This study aims to verify whether LIPUS can improve cognitive impairment by preventing muscle atrophy in hindlimb unloaded mice. In this study, mice were randomly divided into normal control (NC), hindlimb unloading (HU), hindlimb unloading + LIPUS (HU+LIPUS) groups. The mice in the HU+LIPUS group received a 30 mW/cm2 LIPUS irradiation on gastrocnemius for 20 min/d. After 21 days, LIPUS significantly prevented the decrease in muscle mass and strength caused by tail suspension. The HU+LIPUS mice showed an enhanced desire to explore unfamiliar environments and their spatial learning and memory abilities, enabling them to quickly identify differences between different objects, as well as their social discrimination abilities. MSTN is a negative regulator of muscle growth and also plays a role in regulating cognition. LIPUS significantly inhibited MSTN expression in skeletal muscle and serum and its receptor ActRIIB expression in brain, upregulated AKT and BDNF expression in brain. Taken together, LIPUS may improve the cognitive dysfunction in hindlimb unloaded rats by inhibiting muscle atrophy through MSTN/AKT/BDNF pathway.
Collapse
Affiliation(s)
- Wanzhao Wang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yi Zhong
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yaling Zhou
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yanan Yu
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiaxiang Li
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Sufang Kang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhanke Ma
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
6
|
Guerra A, Bologna M. Low-Intensity Transcranial Ultrasound Stimulation: Mechanisms of Action and Rationale for Future Applications in Movement Disorders. Brain Sci 2022; 12:brainsci12050611. [PMID: 35624998 PMCID: PMC9139935 DOI: 10.3390/brainsci12050611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Low-intensity transcranial ultrasound stimulation (TUS) is a novel non-invasive brain stimulation technique that uses acoustic energy to induce changes in neuronal activity. However, although low-intensity TUS is a promising neuromodulation tool, it has been poorly studied as compared to other methods, i.e., transcranial magnetic and electrical stimulation. In this article, we first focus on experimental studies in animals and humans aimed at explaining its mechanisms of action. We then highlight possible applications of TUS in movement disorders, particularly in patients with parkinsonism, dystonia, and tremor. Finally, we highlight the knowledge gaps and possible limitations that currently limit potential TUS applications in movement disorders. Clarifying the potential role of TUS in movement disorders may further promote studies with therapeutic perspectives in this field.
Collapse
Affiliation(s)
| | - Matteo Bologna
- IRCCS Neuromed, 86077 Pozzilli, Italy;
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
7
|
Zhang T, Pan N, Wang Y, Liu C, Hu S. Transcranial Focused Ultrasound Neuromodulation: A Review of the Excitatory and Inhibitory Effects on Brain Activity in Human and Animals. Front Hum Neurosci 2021; 15:749162. [PMID: 34650419 PMCID: PMC8507972 DOI: 10.3389/fnhum.2021.749162] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Non-invasive neuromodulation technology is important for the treatment of brain diseases. The effects of focused ultrasound on neuronal activity have been investigated since the 1920s. Low intensity transcranial focused ultrasound (tFUS) can exert non-destructive mechanical pressure effects on cellular membranes and ion channels and has been shown to modulate the activity of peripheral nerves, spinal reflexes, the cortex, and even deep brain nuclei, such as the thalamus. It has obvious advantages in terms of security and spatial selectivity. This technology is considered to have broad application prospects in the treatment of neurodegenerative disorders and neuropsychiatric disorders. This review synthesizes animal and human research outcomes and offers an integrated description of the excitatory and inhibitory effects of tFUS in varying experimental and disease conditions.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Na Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
- Center of Epilepsy, Institute of Sleep and Consciousness Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Shimin Hu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| |
Collapse
|
8
|
Canaparo R, Foglietta F, Giuntini F, Francovich A, Serpe L. The bright side of sound: perspectives on the biomedical application of sonoluminescence. Photochem Photobiol Sci 2021; 19:1114-1121. [PMID: 32685951 DOI: 10.1039/d0pp00133c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Light is a physical phenomenon that is very important to human life, and has been investigated in its nature, behaviour and properties throughout human history although the most impressive improvements in the use of light in human activities, and of course in medicine, began just two centuries ago. However, despite the enormous progress in diagnosis, therapy and surgery to assess health and treat diseases, the delivery of light sources in vivo remains a challenge. In this regard, several strategies have been developed to overcome this drawback, the most interesting of which is the involvement of ultrasound. In this review, the authors examine how ultrasound may improve light delivery in vivo with a special emphasis on one of the most intriguing ultrasound-mediated phenomena called sonoluminescence, which is the conversion of mechanical ultrasound energy into light.
Collapse
Affiliation(s)
- Roberto Canaparo
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125, Torino, Italy.
| | - Federica Foglietta
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, L3 2AJ, Liverpool, UK
| | - Andrea Francovich
- Institut de Physiologie, Université de Fribourg, Chemin du Musee 5, 1770, Fribourg, Switzerland
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125, Torino, Italy
| |
Collapse
|
9
|
Blackmore J, Shrivastava S, Sallet J, Butler CR, Cleveland RO. Ultrasound Neuromodulation: A Review of Results, Mechanisms and Safety. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1509-1536. [PMID: 31109842 PMCID: PMC6996285 DOI: 10.1016/j.ultrasmedbio.2018.12.015] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 12/13/2018] [Accepted: 12/29/2018] [Indexed: 05/03/2023]
Abstract
Ultrasonic neuromodulation is a rapidly growing field, in which low-intensity ultrasound (US) is delivered to nervous system tissue, resulting in transient modulation of neural activity. This review summarizes the findings in the central and peripheral nervous systems from mechanistic studies in cell culture to cognitive behavioral studies in humans. The mechanisms by which US mechanically interacts with neurons and could affect firing are presented. An in-depth safety assessment of current studies shows that parameters for the human studies fall within the safety envelope for US imaging. Challenges associated with accurately targeting US and monitoring the response are described. In conclusion, the literature supports the use of US as a safe, non-invasive brain stimulation modality with improved spatial localization and depth targeting compared with alternative methods. US neurostimulation has the potential to be used both as a scientific instrument to investigate brain function and as a therapeutic modality to modulate brain activity.
Collapse
Affiliation(s)
- Joseph Blackmore
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Shamit Shrivastava
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Jerome Sallet
- Wellcome Centre for Integrative Nueroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Robin O Cleveland
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Roosevelt Drive, Oxford, UK.
| |
Collapse
|
10
|
Wang Y, Xie P, Zhou S, Wang X, Yuan Y. Low-intensity pulsed ultrasound modulates multi-frequency band phase synchronization between LFPs and EMG in mice. J Neural Eng 2019; 16:026036. [PMID: 30780150 DOI: 10.1088/1741-2552/ab0879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Low-intensity pulsed ultrasound stimulation (LIPUS) targeted to the mouse motor cortex can simultaneously induce local field potentials (LFPs) and electromyogram (EMG) responses. However, the functional coupling relationship between LFP and EMG signals has not been elucidated to date. This study aimed to investigate the phase synchronization between LFP and EMG signals induced by LIPUS over the mouse motor cortex. APPROACH LIPUS at 500 kHz with varied sonication intensities and duty cycles (DCs), was delivered to the mouse motor cortex. LFPs of the motor cortex and EMG responses of the tail were simultaneously recorded during LIPUS. We then evaluated two control groups using the same experimental parameters, but changed the position of EMG recording to the hind leg and the ultrasound stimulus target to the primary visual cortex. The phase synchronization between LFPs and EMG signals was evaluated by performing a phase locking value (PLV) analysis in the time-frequency domain and was compared across specific frequency bands. MAIN RESULTS The results showed that LIPUS increased the phase synchronization in a broad frequency band (5-150 Hz), and the maximum duration of the increased PLV was stable at approximately 200 ms. It is worth noting that the sonication parameters directly affected the time-frequency domain distribution of cortico-muscular synchronization. Specifically, significant alpha and beta synchronization appeared at 0.2 and 0.4 W cm-2 I sppa stimulation, while gamma synchronization occurred at 0.8 and 1.1 W cm-2 I sppa stimulation. The synchronization in all frequency bands apparently increased at 30% DC. Beta synchronization weakened when the DC was less than 30%. Furthermore, no significant phase synchronization was observed in the two control groups. SIGNIFICANCE Considering the close association between specific motor function and cortical-muscular synchronization in different frequency bands, we suggest that LIPUS over the motor cortex could selectively modulate motor function via different sonication parameters. Additionally, the phase synchronization between LFPs and EMG might be an invaluable index for assessing the ultrasonic effect on the motor system, which could be used in future clinical research to optimize ultrasound parameters. Thus, this study provides new insight into evaluating the neuromodulatory effects of ultrasound on motor function, thereby supporting the therapeutic application of ultrasound in neurological disorders characterized by motor deficits.
Collapse
Affiliation(s)
- Yibo Wang
- Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Olmstead TA, Chiarelli PA, Griggs DJ, McClintic AM, Myroniv AN, Mourad PD. Transcranial and pulsed focused ultrasound that activates brain can accelerate remyelination in a mouse model of multiple sclerosis. J Ther Ultrasound 2018; 6:11. [PMID: 30555696 PMCID: PMC6287362 DOI: 10.1186/s40349-018-0119-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) impacts approximately 400,000 in the United States and is the leading cause of disability among young to middle aged people in the developed world. Characteristic of this disease, myelin within generally focal volumes of brain tissue wastes away under an autoimmune assault, either inexorably or through a cycle of demyelination and remyelination. This centrally located damage produces central and peripheral symptoms tied to the portion of brain within the MS lesion site. Interestingly, Gibson and colleagues noted that optical activation of transgenically tagged central neurons increased the thickness of the myelin sheath around those neurons. Since ultrasound, delivered transcranially, can also activate brain focally, we hypothesized that ultrasound stimulation that followed the temporal pattern of Gibson et al. applied to MS lesions in a mouse model might either decelerate the demyelination phase or accelerate its remyelination phase. METHODS We created a temporal pattern of ultrasound delivery that conformed to that of Gibson et al. and capable of activating mouse brain. We then applied ultrasound, transcranially, following that temporal pattern to separate cohorts of a mouse model of multiple sclerosis, using three different ultrasound carrier frequencies (0.625 MHz, 1.09 MHz, 2.0 MHz), during each of the demyelinating and remyelinating phases. After identifying the most promising protocol and MS brain state through qualitative analysis of myelin content, we performed additional studies for that condition then assayed for change in myelin content via quantitative analysis. RESULTS We identified one ultrasound protocol that significantly accelerated remyelination, without damage, as demonstrated with histological analysis. CONCLUSION MRI-guided focused ultrasound systems exist that can, in principle, deliver the ultrasound protocol we successfully tested here. In addition, MRI, as the clinical gold standard, can readily identify MS lesions. Given the relatively low intensity values of our ultrasound protocol - close to FDA limits - we anticipate that future success with this approach to MS therapy as tested using more realistic MS mouse models may one day translate to clinical trials that help address this devastating disease.
Collapse
Affiliation(s)
- T. A. Olmstead
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195 USA
| | - P. A. Chiarelli
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195 USA
| | - D. J. Griggs
- Division of Engineering and Mathematics, University of Washington, Bothell, WA 98011 USA
| | - A. M. McClintic
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195 USA
| | - A. N. Myroniv
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195 USA
| | - P. D. Mourad
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195 USA
- Division of Engineering and Mathematics, University of Washington, Bothell, WA 98011 USA
| |
Collapse
|
12
|
Bobola MS, Chen L, Ezeokeke CK, Kuznetsova K, Lahti AC, Lou W, Myroniv AN, Schimek NW, Selby ML, Mourad PD. A Review of Recent Advances in Ultrasound, Placed in the Context of Pain Diagnosis and Treatment. Curr Pain Headache Rep 2018; 22:60. [PMID: 29987680 PMCID: PMC6061208 DOI: 10.1007/s11916-018-0711-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ultrasound plays a significant role in the diagnosis and treatment of pain, with significant literature reaching back many years, especially with regard to diagnostic ultrasound and its use for guiding needle-based delivery of drugs. Advances in ultrasound over at least the last decade have opened up new areas of inquiry and potential clinical efficacy in the context of pain diagnosis and treatment. Here we offer an overview of the recent literature associated with ultrasound and pain in order to highlight some promising frontiers at the intersection of these two subjects. We focus first on peripheral application of ultrasound, for which there is a relatively rich, though still young, literature. We then move to central application of ultrasound, for which there is little literature but much promise.
Collapse
Affiliation(s)
- Michael S Bobola
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Lucas Chen
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | | | - Katy Kuznetsova
- Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Annamarie C Lahti
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Weicheng Lou
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Aleksey N Myroniv
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Nels W Schimek
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Madison L Selby
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Pierre D Mourad
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
- Applied Physics Laboratory, University of Washington, Seattle, WA, USA.
- Division of Engineering and Mathematics, University of Washington, Bothell, WA, USA.
| |
Collapse
|
13
|
Munoz F, Aurup C, Konofagou EE, Ferrera VP. Modulation of Brain Function and Behavior by Focused Ultrasound. Curr Behav Neurosci Rep 2018; 5:153-164. [PMID: 30393592 PMCID: PMC6208352 DOI: 10.1007/s40473-018-0156-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The past decade has seen rapid growth in the application of focused ultrasound (FUS) as a tool for basic neuroscience research and potential treatment of brain disorders. Here, we review recent developments in our understanding of how FUS can alter brain activity, perception and behavior when applied to the central nervous system, either alone or in combination with circulating agents. RECENT FINDINGS Focused ultrasound in the central nervous system can directly excite or inhibit neuronal activity, as well as affect perception and behavior. Combining FUS with intravenous microbubbles to open the blood-brain barrier also affects neural activity and behavior, and the effects may be more sustained than FUS alone. Opening the BBB also allows delivery of drugs that do not cross the intact BBB including viral vectors for gene delivery. SUMMARY While further research is needed to elucidate the biophysical mechanisms, focused ultrasound, alone or in combination with other factors, is rapidly maturing as an effective technology for altering brain activity. Future challenges include refining control over targeting specificity, the volume of affected tissue, cell-type specificity (excitatory or inhibitory), and the duration of neural and behavioral effects.
Collapse
Affiliation(s)
- Fabian Munoz
- Department of Neuroscience, Columbia University, New York, NY, 10027 USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027 USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, 10027 USA
| | - Christian Aurup
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027 USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027 USA
- Department of Radiology, Columbia University, New York, NY, 10027 USA
| | - Vincent P Ferrera
- Department of Neuroscience, Columbia University, New York, NY, 10027 USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027 USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, 10027 USA
- Department of Psychiatry, Columbia University, New York, NY, 10027 USA
| |
Collapse
|
14
|
Legon W, Ai L, Bansal P, Mueller JK. Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum Brain Mapp 2018; 39:1995-2006. [PMID: 29380485 DOI: 10.1002/hbm.23981] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/04/2018] [Accepted: 01/11/2018] [Indexed: 01/26/2023] Open
Abstract
Transcranial focused ultrasound (tFUS) has proven capable of stimulating cortical tissue in humans. tFUS confers high spatial resolutions with deep focal lengths and as such, has the potential to noninvasively modulate neural targets deep to the cortex in humans. We test the ability of single-element tFUS to noninvasively modulate unilateral thalamus in humans. Participants (N = 40) underwent either tFUS or sham neuromodulation targeted at the unilateral sensory thalamus that contains the ventro-posterior lateral (VPL) nucleus of thalamus. Somatosensory evoked potentials (SEPs) were recorded from scalp electrodes contralateral to median nerve stimulation. Activity of the unilateral sensory thalamus was indexed by the P14 SEP generated in the VPL nucleus and cortical somatosensory activity by subsequent inflexions of the SEP and through time/frequency analysis. Participants also under went tactile behavioral assessment during either the tFUS or sham condition in a separate experiment. A detailed acoustic model using computed tomography (CT) and magnetic resonance imaging (MRI) is also presented to assess the effect of individual skull morphology for single-element deep brain neuromodulation in humans. tFUS targeted at unilateral sensory thalamus inhibited the amplitude of the P14 SEP as compared to sham. There is evidence of translation of this effect to time windows of the EEG commensurate with SI and SII activities. These results were accompanied by alpha and beta power attenuation as well as time-locked gamma power inhibition. Furthermore, participants performed significantly worse than chance on a discrimination task during tFUS stimulation.
Collapse
Affiliation(s)
- Wynn Legon
- Division of Physical Therapy and Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Leo Ai
- Division of Physical Therapy and Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Priya Bansal
- Division of Physical Therapy and Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Jerel K Mueller
- Division of Physical Therapy and Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
15
|
Wright CJ, Haqshenas SR, Rothwell J, Saffari N. Unmyelinated Peripheral Nerves Can Be Stimulated in Vitro Using Pulsed Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2269-2283. [PMID: 28716433 DOI: 10.1016/j.ultrasmedbio.2017.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Appreciation for the medical and research potential of ultrasound neuromodulation is growing rapidly, with potential applications in non-invasive treatment of neurodegenerative disease and functional brain mapping spurring recent progress. However, little progress has been made in our understanding of the ultrasound-tissue interaction. The current study tackles this issue by measuring compound action potentials (CAPs) from an ex vivo crab walking leg nerve bundle and analysing the acoustic nature of successful stimuli using a passive cavitation detector (PCD). An unimpeded ultrasound path, new acoustic analysis techniques and simple biological targets are used to detect different modes of cavitation and narrow down the candidate biological effectors with high sensitivity. In the present case, the constituents of unmyelinated axonal tissue alone are found to be sufficient to generate de novo action potentials under ultrasound, the stimulation of which is significantly correlated to the presence of inertial cavitation and is never observed in its absence.
Collapse
Affiliation(s)
- Christopher J Wright
- Department of Mechanical Engineering, University College London, London, UK; University College London Institute of Neuroscience, London, UK.
| | - Seyyed R Haqshenas
- Department of Mechanical Engineering, University College London, London, UK
| | - John Rothwell
- University College London Institute of Neuroscience, London, UK
| | - Nader Saffari
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
16
|
Vogel KR, Ainslie GR, Schmidt MA, Wisor JP, Gibson KM. mTOR Inhibition Mitigates Molecular and Biochemical Alterations of Vigabatrin-Induced Visual Field Toxicity in Mice. Pediatr Neurol 2017; 66:44-52.e1. [PMID: 27816307 PMCID: PMC5866057 DOI: 10.1016/j.pediatrneurol.2016.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Gamma-vinyl-γ-aminobutyric acid (GABA) (vigabatrin) is an antiepileptic drug and irreversible GABA transaminase inhibitor associated with visual field impairment, which limits its clinical utility. We sought to relate altered visual evoked potentials associated with vigabatrin intake to transcriptional changes in the mechanistic target of rapamycin (mTOR) pathway and GABA receptors to expose further mechanisms of vigabatrin-induced visual field loss. METHODS Vigabatrin was administered to mice via an osmotic pump for two weeks to increase GABA levels. Visual evoked potentials were examined, eye samples were collected, and gene expression was measured by quantitative reverse transcription-polymerase chain reaction. Similarly, human retinal pigment epithelial cells (ARPE19) were exposed to vigabatrin and treated with mTOR inhibitors for mTOR pathway analysis and to assess alterations in organelle accumulation by microscopy. RESULTS Dysregulated expression of transcripts in the mTOR pathway, GABAA/B receptors, metabotropic glutamate (Glu) receptors 1/6, and GABA/glutamate transporters in the eye were found in association with visual evoked potential changes during vigabatrin administration. Rrag genes were upregulated in both mouse eye and ARPE19 cells. Immunoblot of whole eye revealed greater than three fold upregulation of a 200 kDa band when immunoblotted for ras-related guanosine triphosphate binding D. Microscopy of ARPE19 cells revealed selective reversal of vigabatrin-induced organelle accumulation by autophagy-inducing drugs, notably Torin 2. Changes in the mTOR pathway gene expression, including Rrag genes, were corrected by Torin 2 in ARPE19 cells. CONCLUSIONS Our studies, indicating GABA-associated augmentation of RRAG and mTOR signaling, support further preclinical evaluation of mTOR inhibitors as a therapeutic strategy to potentially mitigate vigabatrin-induced ocular toxicity.
Collapse
Affiliation(s)
- Kara R Vogel
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington
| | - Garrett R Ainslie
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington
| | - Michelle A Schmidt
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington
| | - Jonathan P Wisor
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington
| | - K Michael Gibson
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington.
| |
Collapse
|
17
|
Vogel KR, Ainslie GR, Jansen EEW, Salomons GS, Gibson KM. Therapeutic relevance of mTOR inhibition in murine succinate semialdehyde dehydrogenase deficiency (SSADHD), a disorder of GABA metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:33-42. [PMID: 27760377 PMCID: PMC5154833 DOI: 10.1016/j.bbadis.2016.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/24/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023]
Abstract
Aldehyde dehydrogenase 5a1-deficient (aldh5a1-/-) mice, the murine orthologue of human succinic semialdehyde dehydrogenase deficiency (SSADHD), manifest increased GABA (4-aminobutyric acid) that disrupts autophagy, increases mitochondria number, and induces oxidative stress, all mitigated with the mTOR (mechanistic target of rapamycin) inhibitor rapamycin [1]. Because GABA regulates mTOR, we tested the hypothesis that aldh5a1-/- mice would show altered levels of mRNA for genes associated with mTOR signaling and oxidative stress that could be mitigated by inhibiting mTOR. We observed that multiple metabolites associated with GABA metabolism (γ-hydroxybutyrate, succinic semialdehyde, D-2-hydroxyglutarate, 4,5-dihydrohexanoate) and oxidative stress were significantly increased in multiple tissues derived from aldh5a1-/- mice. These metabolic perturbations were associated with decreased levels of reduced glutathione (GSH) in brain and liver of aldh5a1-/- mice, as well as increased levels of adducts of the lipid peroxidation by-product, 4-hydroxy-2-nonenal (4-HNE). Decreased liver mRNA levels for multiple genes associated with mTOR signaling and oxidative stress parameters were detected in aldh5a1-/- mice, and several were significantly improved with the administration of mTOR inhibitors (Torin 1/Torin 2). Western blot analysis of selected proteins corresponding to oxidative stress transcripts (glutathione transferase, superoxide dismutase, peroxiredoxin 1) confirmed gene expression findings. Our data provide additional preclinical evidence for the potential therapeutic efficacy of mTOR inhibitors in SSADHD.
Collapse
Affiliation(s)
- K R Vogel
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - G R Ainslie
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - E E W Jansen
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Center, Neuroscience Campus, Amsterdam, The Netherlands
| | - G S Salomons
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Center, Neuroscience Campus, Amsterdam, The Netherlands
| | - K M Gibson
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA.
| |
Collapse
|
18
|
Abstract
Optogenetic methodology enables direct targeting of specific neural circuit elements for inhibition or excitation while spanning timescales from the acute (milliseconds) to the chronic (many days or more). Although the impact of this temporal versatility and cellular specificity has been greater for basic science than clinical research, it is natural to ask whether the dynamic patterns of neural circuit activity discovered to be causal in adaptive or maladaptive behaviors could become targets for treatment of neuropsychiatric diseases. Here, we consider the landscape of ideas related to therapeutic targeting of circuit dynamics. Specifically, we highlight optical, ultrasonic, and magnetic concepts for the targeted control of neural activity, preclinical/clinical discovery opportunities, and recently reported optogenetically guided clinical outcomes.
Collapse
Affiliation(s)
| | - Emily Ferenczi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|