1
|
Zhang Y, Liu X, Li Z, Li H, Miao Z, Wan B, Xu X. Advances on the Mechanisms and Therapeutic Strategies in Non-coding CGG Repeat Expansion Diseases. Mol Neurobiol 2024; 61:10722-10735. [PMID: 38780719 DOI: 10.1007/s12035-024-04239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Non-coding CGG repeat expansions within the 5' untranslated region are implicated in a range of neurological disorders, including fragile X-associated tremor/ataxia syndrome, oculopharyngeal myopathy with leukodystrophy, and oculopharyngodistal myopathy. This review outlined the general characteristics of diseases associated with non-coding CGG repeat expansions, detailing their clinical manifestations and neuroimaging patterns, which often overlap and indicate shared pathophysiological traits. We summarized the underlying molecular mechanisms of these disorders, providing new insights into the roles that DNA, RNA, and toxic proteins play. Understanding these mechanisms is crucial for the development of targeted therapeutic strategies. These strategies include a range of approaches, such as antisense oligonucleotides, RNA interference, genomic DNA editing, small molecule interventions, and other treatments aimed at correcting the dysregulated processes inherent in these disorders. A deeper understanding of the shared mechanisms among non-coding CGG repeat expansion disorders may hold the potential to catalyze the development of innovative therapies, ultimately offering relief to individuals grappling with these debilitating neurological conditions.
Collapse
Affiliation(s)
- Yutong Zhang
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Xuan Liu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Zeheng Li
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Hao Li
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
- Department of Neurology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215124, China
| | - Zhigang Miao
- The Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Bo Wan
- The Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Xingshun Xu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China.
- The Institute of Neuroscience, Soochow University, Suzhou City, China.
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
2
|
Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024; 13:1638. [PMID: 39404401 PMCID: PMC11476109 DOI: 10.3390/cells13191638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The 3D bioprinting technique has made enormous progress in tissue engineering, regenerative medicine and research into diseases such as cancer. Apart from individual cells, a collection of cells, such as organoids, can be printed in combination with various hydrogels. It can be hypothesized that 3D bioprinting will even become a promising tool for mechanobiological analyses of cells, organoids and their matrix environments in highly defined and precisely structured 3D environments, in which the mechanical properties of the cell environment can be individually adjusted. Mechanical obstacles or bead markers can be integrated into bioprinted samples to analyze mechanical deformations and forces within these bioprinted constructs, such as 3D organoids, and to perform biophysical analysis in complex 3D systems, which are still not standard techniques. The review highlights the advances of 3D and 4D printing technologies in integrating mechanobiological cues so that the next step will be a detailed analysis of key future biophysical research directions in organoid generation for the development of disease model systems, tissue regeneration and drug testing from a biophysical perspective. Finally, the review highlights the combination of bioprinted hydrogels, such as pure natural or synthetic hydrogels and mixtures, with organoids, organoid-cell co-cultures, organ-on-a-chip systems and organoid-organ-on-a chip combinations and introduces the use of assembloids to determine the mutual interactions of different cell types and cell-matrix interferences in specific biological and mechanical environments.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Characterization of a mGluR5 Knockout Rat Model with Hallmarks of Fragile X Syndrome. Life (Basel) 2022; 12:life12091308. [PMID: 36143345 PMCID: PMC9504063 DOI: 10.3390/life12091308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The number of reported cases of neurodevelopmental disorders has increased significantly in the last few decades, but the etiology of these diseases remains poorly understood. There is evidence of a fundamental link between genetic abnormalities and symptoms of autism spectrum disorders (ASDs), and the most common monogenetic inheritable form of ASDs is Fragile X Syndrome (FXS). Previous studies indicate that FXS is linked to glutamate signaling regulation by the G-protein-coupled metabotropic glutamate receptor 5 (mGluR5), which has been shown to have a regulatory role in neuroinflammation. We characterized the effect of knocking out mGluR5 in an organism known to have complex cognitive functions—the rat. The heterozygous phenotype is the most clinically relevant; therefore, we performed analysis in heterozygous pups. We showed developmental abnormalities in heterozygous mGluR5 knockout rats, as well as a significant increase in chemokine (C-X-C motif) ligand 1 (CXCL) expression, a hallmark indicator of early onset inflammation. We quantified an increase in microglial density in the knockout pups and quantified morphological phenotypes representative of greater reactivity in the male vs. female and postnatal day 28 heterozygous pups compared to postnatal day 14 heterozygous pups. In response to injury, reactive microglia release matrix metalloproteases, contribute to extracellular matrix (ECM) breakdown, and are responsible for eradicating cellular and molecular debris. In our study, the changes in microglial density and reactivity correlated with abnormalities in the mRNA expression levels of ECM proteins and with the density of perineuronal nets. We saw atypical neuropsychiatric behavior in open field and elevated plus tests in heterozygous pups compared to wild-type litter and age-matched controls. These results demonstrate the pathological potential of the mGluR5 knockout in rats and further support the presence of neuroinflammatory roots in ASDs.
Collapse
|
4
|
Mo A, Snyder LG, Babington O, Chung WK, Sahin M, Srivastava S. Neurodevelopmental profile of HIVEP2-related disorder. Dev Med Child Neurol 2022; 64:654-661. [PMID: 34704275 PMCID: PMC8986546 DOI: 10.1111/dmcn.15100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022]
Abstract
AIM To characterize the neurodevelopmental profile and systemic features of HIVEP2-related disorder. METHOD This study used retrospective medical history and standardized assessment data from Simons Searchlight to describe the clinical characteristics of 12 individuals (eight males, four females; age range 3y 3mo-12y 8mo; mean age [SD] 7y 7mo [2y 11mo]) with pathogenic HIVEP2 variants, focusing on their levels of adaptive functioning, autism symptomology, and emotional and behavioral characteristics. RESULTS Common features included neonatal complications, hypotonia, developmental delay, intellectual disability, language impairment, gastroesophageal reflux, and strabismus. A minority of individuals had epilepsy, microcephaly, or a movement disorder. Based on the Vineland Adaptive Behavior Scales, Second Edition, affected individuals showed impairments in adaptive behavior (mean composite standard score [SD] 56.4 [10.2]; n=8). The cohort also had significant impairments in social problems, as measured by the Social Responsiveness Scale, Second Edition (mean total score [SD] 76.4 [11.3]; n=10) and clinically significant emotional and behavioral difficulties, as measured by the Child Behavior Checklist for ages 6-18 (mean total T score [SD] 66.9 [8.2]; n=8). INTERPRETATION These results show that individuals with HIVEP2-related disorder have impairments in adaptive and social-related behaviors as well as difficulties in emotional and behavioral symptoms.
Collapse
Affiliation(s)
- Alisa Mo
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Wendy K Chung
- Simons Foundation, New York, NY, USA.,Columbia University, New York, NY, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | | |
Collapse
|
5
|
Frkatovic A, Zaytseva OO, Klaric L. Genetic Regulation of Immunoglobulin G Glycosylation. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:259-287. [PMID: 34687013 DOI: 10.1007/978-3-030-76912-3_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Defining the genetic components that control glycosylation of the human immunoglobulin G (IgG) is an ongoing effort, which has so far been addressed by means of heritability, linkage and genome-wide association studies (GWAS). Unlike the synthesis of proteins, N-glycosylation biosynthesis is not a template-driven process, but rather a complex process regulated by both genetic and environmental factors. Current heritability studies have shown that while up to 75% of the variation in levels of some IgG glycan traits can be explained by genetics, some glycan traits are completely defined by environmental influences. Advances in both high-throughput genotyping and glycan quantification methods have enabled genome-wide association studies that are increasingly used to estimate associations of millions of single-nucleotide polymorphisms and glycosylation traits. Using this method, 18 genomic regions have so far been robustly associated with IgG N-glycosylation, discovering associations with genes encoding glycosyltransferases, but also transcription factors, co-factors, membrane transporters and other genes with no apparent role in IgG glycosylation. Further computational analyses have shown that IgG glycosylation is likely to be regulated through the expression of glycosyltransferases, but have also for the first time suggested which transcription factors are involved in the process. Moreover, it was also shown that IgG glycosylation and inflammatory diseases share common underlying causal genetic variants, suggesting that studying genetic regulation of IgG glycosylation helps not only to better understand this complex process but can also contribute to understanding why glycans are changed in disease. However, further studies are needed to unravel whether changes in IgG glycosylation are causing these diseases or the changes in the glycome are caused by the disease.
Collapse
Affiliation(s)
- Azra Frkatovic
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Olga O Zaytseva
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Lucija Klaric
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Park J, Colombo R, Schäferhoff K, Janiri L, Grimmel M, Sturm M, Grasshoff U, Dufke A, Haack TB, Kehrer M. Novel HIVEP2 Variants in Patients with Intellectual Disability. Mol Syndromol 2019; 10:195-201. [PMID: 31602191 DOI: 10.1159/000499060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2019] [Indexed: 12/31/2022] Open
Abstract
Intellectual disability (ID) occurs in approximately 1% of the population. Over the last years, broad sequencing approaches such as whole exome sequencing (WES) substantially contributed to the definition of the molecular defects underlying nonsyndromic ID. Pathogenic variants in HIVEP2, which encodes the human immunodeficiency virus type I enhancer binding protein 2, have recently been reported as a cause of ID, developmental delay, behavioral disorders, and dysmorphic features. HIVEP2 serves as a transcriptional factor regulating NF-ĸB and diverse genes that are essential in neural development. To date, only 8 patients with pathogenic de novo nonsense or frameshift variants and 1 patient with a pathogenic missense variant in HIVEP2 have been reported. By WES, we identified 2 novel truncating HIVEP2 variants, c.6609_6616delTGAGGGTC (p.Glu2204*) and c.6667C>T (p.Arg2223*), in 2 young adults presenting with developmental delay and mild ID without any dysmorphic features, systemic malformations, or behavioral issues.
Collapse
Affiliation(s)
- Joohyun Park
- Institute of Medical Genetics and Applied Genomics, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Roberto Colombo
- Institute of Clinical Biochemistry, Faculty of Medicine, Catholic University, Rome, Italy.,Institute of IRCCS Policlinico Gemelli, Rome, Italy
| | - Karin Schäferhoff
- Institute of Medical Genetics and Applied Genomics, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Luigi Janiri
- Institute of Psychiatry and Psychology, Faculty of Medicine, Catholic University, Rome, Italy.,Institute of IRCCS Policlinico Gemelli, Rome, Italy
| | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Andreas Dufke
- Institute of Medical Genetics and Applied Genomics, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Martin Kehrer
- Institute of Medical Genetics and Applied Genomics, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Oh-Nishi A, Koga K, Maeda T, Suhara T. A possible serologic biomarker for maternal immune activation-associated neurodevelopmental disorders found in the rat models. Neurosci Res 2016; 113:63-70. [PMID: 27425770 DOI: 10.1016/j.neures.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/21/2016] [Accepted: 07/07/2016] [Indexed: 12/26/2022]
Abstract
Epidemiological studies have shown that maternal infection during early pregnancy increases the risk of neurodevelopmental disorders (i.e., schizophrenia or autism) in offspring. Recently, diagnostic/stratification biomarkers for the maternal immune activation background in patients with neurodevelopmental disorders have been energetically searched for in the patient blood. Here, we report a novel serologic marker candidate for the disorders found in the maternal immune activation (MIA) rat model. Serum proteome analysis of the MIA rat showed that the immunoglobulin (Ig) light chain is reproducibly augmented. The Ig light chain in sera takes two forms - free form or bound to the Ig heavy chain. Only the former is an inflammatory disease marker, but pro-inflammatory cytokine levels in the sera of the MIA rats were below detectable limits of the ELISA protocol we used. We thereby carried out serum assays of Ig light chains and pro-inflammatory cytokines of commercially available schizophrenia patient sera for research. Although the number of samples was limited, we found augmentation of free Ig light chains but not pro-inflammatory cytokines in sporadic schizophrenia patient sera. Our findings suggest that Ig light chain assay of the schizophrenia/autism patient sera would be worthy to be validated in larger scale.
Collapse
Affiliation(s)
- Arata Oh-Nishi
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan.
| | - Kaori Koga
- Anatech Corporation, Tokyo 113-0034, Japan
| | - Tadakazu Maeda
- Professor Emeritus, Kitasato University, Kanagawa 252-0373, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba 263-8555, Japan
| |
Collapse
|