1
|
Yelkenci HE, Degirmenci Z, Koc HI, Bayirli S, Baltaci SB, Altunay S, Oztekin N, Kocak M, Kilic E, Beker MC. Vinpocetine Ameliorates Neuronal Injury After Cold-Induced Traumatic Brain Injury in Mice. Mol Neurobiol 2025; 62:3956-3972. [PMID: 39361199 DOI: 10.1007/s12035-024-04515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 09/15/2024] [Indexed: 02/04/2025]
Abstract
Traumatic brain injury (TBI), also known as intracranial injury, is a common condition with the highest incidence rate among neurodegenerative disorders and poses a significant public health burden. Various methods are used in the treatment of TBI, but the effects of cold-induced traumatic brain injury have not been thoroughly studied. In this context, vinpocetine (VPN), derived from Vinca minor, exhibits notable anti-inflammatory and antioxidant properties. VPN is known for its neuroprotective role and is generally utilized for treating various neurodegenerative disorders. However, the function of VPN after cold-induced TBI needs to be studied in more detail. This study aims to investigate the neuroprotective effects of VPN at varying doses (5 mg/kg or 10 mg/kg) after cold-induced TBI. C57BL/6 mice were sacrificed 2 or 28 days after cold-induced TBI. Results indicate that VPN administration significantly reduces brain infarct volume, brain swelling, blood-brain barrier disruption, and DNA fragmentation in a dose-dependent manner. Additionally, VPN enhances neuronal survival in the ipsilesional cortex. In the long term, VPN treatment (5 mg/kg/day or 10 mg/kg/day, initiated 48 h post-TBI) improved locomotor activity, cell proliferation, neurogenesis, and decreased whole brain atrophy, specifically motor cortex atrophy. We performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate the underlying mechanisms to profile proteins and signaling pathways influenced by prolonged VPN treatment post-TBI. Notably, we found that 192 different proteins were significantly altered by VPN treatment, which is a matter of further investigation for the development of therapeutic targets. Our study has shown that VPN may have a neuroprotective role in cold-induced TBI.
Collapse
Affiliation(s)
- Hayriye E Yelkenci
- Department of Chemistry, Istanbul Technical University, Istanbul, Türkiye
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Zehra Degirmenci
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Halil I Koc
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Sevban Bayirli
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Saltuk B Baltaci
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Serdar Altunay
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Nevin Oztekin
- Department of Chemistry, Istanbul Technical University, Istanbul, Türkiye
| | - Mehmet Kocak
- Department of Biostatistics and Medical Informatics, International School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Türkiye
| | - Mustafa C Beker
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye.
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Türkiye.
| |
Collapse
|
2
|
Gonawala L, Madhumaali M, Ismail H, Jayasooriya N, Wijekoon N, Rajapakshe S, Erangika H, Amaratunga D, Gunaratna R, W M Steinbusch H, Mohan C, Chiang YC, Paranagama P, de Silva KRD. Phytochemistry and nutraceutical potential of Ceylon Cinnamomum species native to Sri Lanka. Nat Prod Res 2024:1-12. [PMID: 39709632 DOI: 10.1080/14786419.2024.2438269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/06/2024] [Accepted: 12/01/2024] [Indexed: 12/24/2024]
Abstract
Cinnamon is a spice that is renowned for its several medicinal and cosmetic benefits. The research study examined the essential oil content, antioxidant, and anti-inflammatory properties of seven Cinnamomum species native to Sri Lanka. Cinnamon bark and leaf samples were used to extract essential oils, methanol, and hexane. Essential oil extracts underwent GC-MS analysis, while all extracts were subjected to antioxidant and anti-inflammatory assays. The bark of Sri Vijaya and C. rivulorum, along with the leaves of Sri Vijaya and C. sinharajaense, exhibited remarkable antioxidant properties. The cinnamaldehyde percentage of Sri Gemunu was the highest at 61.63%, while the bark of C. sinharajaense contained 59.19%. The leaves of Sri Gemunu had the highest eugenol content, determining at 91.45%. C. zeylanicum and its strains have been found to exhibit the highest antioxidant and anti-inflammatory properties. C. sinharajaense and C. rivulorum are two wild cinnamon species that show potential for potential medicinal uses. Thus, these species have great potential for further research on their biological properties and their possible applications in various fields, such as pharmaceuticals.
Collapse
Affiliation(s)
- Lakmal Gonawala
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Maheehsa Madhumaali
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Hanouf Ismail
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Nishara Jayasooriya
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Nalaka Wijekoon
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Shanuk Rajapakshe
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Harshanie Erangika
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | | | - Rajitha Gunaratna
- Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Sri Lanka
| | - Harry W M Steinbusch
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Chandra Mohan
- Department of Bioengineering, University of Houston, Houston, TX, USA
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Taiwan
- Taiwan and Sri Lanka Environmental Change Sciences and Technology Innovation Center (TS/ECSTIC), Department of Zoology, Faculty of applied Sciences, University of Sri Jayewardenepura, Sri Lanka
| | | | - K Ranil D de Silva
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, The Netherlands
- Taiwan and Sri Lanka Environmental Change Sciences and Technology Innovation Center (TS/ECSTIC), Department of Zoology, Faculty of applied Sciences, University of Sri Jayewardenepura, Sri Lanka
| |
Collapse
|
3
|
Beker MC, Altintas MO, Dogan E, Bayraktaroglu C, Balaban B, Ozpinar A, Sengun N, Altunay S, Kilic E. Inhibition of phosphodiesterase 10A mitigates neuronal injury by modulating apoptotic pathways in cold-induced traumatic brain injury. Mol Cell Neurosci 2024; 131:103977. [PMID: 39437931 DOI: 10.1016/j.mcn.2024.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Brain injury develops from a complex series of pathophysiological phases, resulting in acute necrotic or delayed apoptotic cell death after traumatic brain injury (TBI). Inhibition of apoptotic cell death is critical for the treatment of acute neurodegenerative disorders, such as TBI. Here, we investigated the role of phosphodiesterase 10A (PDE10A) in the development of neuronal injury, particularly in apoptotic cell death. Using the PDE10A inhibitor TAK-063, we found that PDE10A inhibition is associated with decreased brain injury, brain swelling, and blood brain barrier disruption 48 h after cold-induced TBI. Furthermore, a particularly notable result was observed with 3 mg/kg TAK-063, which reduced disseminated neuronal injury. Protein abundance analysis revealed that PDE10A inhibition activates survival kinases AKT and ERK-1/-2, which were associated with the decreased activation of MMP-9 and PTEN. Additionally, iNOS and nNOS levels significantly reduced in the TAK-063 group, playing roles in inflammation and apoptosis. A planar surface immunoassay was performed for in-depth analyses of the apoptotic signaling pathways. We observed that inhibition of PDE10A resulted in the decreased expression of TNFRSF1A, TNFRSF10B, and TNFRSF6 receptors, particularly inducing apoptotic cell death. Moreover, these findings correlated with reduced levels of pro-apoptotic proteins, including PTEN, p27, Cytochrome-c, cleaved Caspase-3, Bad, and p53. Interestingly, TAK-063 treatment reduced levels of anti-apoptotic proteins or enzymes, including XIAP, Claspin, and HIF1α, without affecting Bcl-x, MCL-1, SMAC, HO-1, HO-2, HSP27, HSP60, and HSP70. The findings suggest that PDE10A regulates cellular signaling predominantly pro-apoptotic pathways, and inhibition of this protein is a promising approach for the treatment of acute brain injury.
Collapse
Affiliation(s)
- Mustafa C Beker
- Department of Physiology, School of Medicine, Istanbul Medeniyet University, Istanbul, Türkiye; Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye.
| | - Mehmet O Altintas
- Department of Physiology, School of Medicine, Ankara Medipol University, Ankara, Türkiye
| | - Enes Dogan
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Cigdem Bayraktaroglu
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Buse Balaban
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye; Department of Medical Biology, Institute of Health Sciences, University of Health Sciences Turkey, Istanbul, Türkiye
| | - Aysenur Ozpinar
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Nursena Sengun
- Department of Physiology, School of Medicine, Istanbul Medeniyet University, Istanbul, Türkiye
| | - Serdar Altunay
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Ertugrul Kilic
- Department of Physiology, School of Medicine, Istanbul Medeniyet University, Istanbul, Türkiye; Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
4
|
Sakul AA, Balcikanli Z, Ozsoy NA, Orhan C, Sahin N, Tuzcu M, Juturu V, Kilic E, Sahin K. A highly bioavailable curcumin formulation ameliorates inflammation cytokines and neurotrophic factors in mice with traumatic brain injury. Chem Biol Drug Des 2024; 103:e14439. [PMID: 38230778 DOI: 10.1111/cbdd.14439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
A novel curcumin formulation increases relative absorption by 46 times (CurcuWIN®) of the total curcuminoids over the unformulated standard curcumin form. However, the exact mechanisms by which curcumin demonstrates its neuroprotective effects are not fully understood. This study aimed to investigate the impact of a novel formulation of curcumin on the expression of brain-derived neurotrophic factor (BDNF), glial fibrillary acidic protein (GFAP), a main component of the glial scar and growth-associated protein-43 (GAP-43), a signaling molecule in traumatic brain injury (TBI). Mice (adult, male, C57BL/6j) were randomly divided into three groups as follows: TBI group (TBI-induced mice); TBI + CUR group (TBI mice were injected i.p. curcumin just after TBI); TBI+ CurcuWIN® group (TBI mice were injected i.p. CurcuWIN® just after TBI). Brain injury was induced using a cold injury model. Injured brain tissue was stained with Cresyl violet to evaluate infarct volume and brain swelling, analyzed, and measured using ImageJ by Bethesda (MD, USA). Western blot analysis was performed to determine the protein levels related to injury. While standard curcumin significantly reduced brain injury, CurcuWIN® showed an even greater reduction associated with reductions in glial activation, NF-κB, and the inflammatory cytokines IL-1β and IL-6. Additionally, both standard curcumin and CurcuWIN® led to increased BDNF, GAP-43, ICAM-1, and Nrf2 expression. Notably, CurcuWIN® enhanced their expression more than standard curcumin. This data suggests that highly bioavailable curcumin formulation has a beneficial effect on the traumatic brain in mice.
Collapse
Affiliation(s)
- Ayse Arzu Sakul
- Department of Pharmacology, School of Medicine, University of Istanbul Medipol, Istanbul, Turkey
| | - Zeynep Balcikanli
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Nilay Ates Ozsoy
- Department of Pharmacology, School of Medicine, University of Istanbul Medipol, Istanbul, Turkey
- Regenerative and Restorative Medical Research Center, Experimental Neurology Laboratory, Istanbul Medipol University, Istanbul, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University Elazig, Elazig, Turkey
| | - Vijaya Juturu
- Scientific and Clinical Affairs, Research, and Development, OmniActives Health Technologies Inc., Morristown, New Jersey, USA
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
5
|
Davis CK, Vemuganti R. Antioxidant therapies in traumatic brain injury. Neurochem Int 2022; 152:105255. [PMID: 34915062 PMCID: PMC11884749 DOI: 10.1016/j.neuint.2021.105255] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022]
Abstract
Oxidative stress plays a crucial role in traumatic brain injury (TBI) pathogenesis. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) formed in excess after TBI synergistically contribute to secondary brain damage together with lipid peroxidation products (reactive aldehydes) and inflammatory mediators. Furthermore, oxidative stress, endoplasmic reticulum stress and inflammation potentiate each other. Following TBI, excessive oxidative stress overloads the endogenous cellular antioxidant system leading to cell death. To combat oxidative stress, several antioxidant therapies were tested in preclinical animal models of TBI. These include free radical scavengers, activators of antioxidant systems, Inhibitors of free radical generating enzymes and antioxidant enzymes. Many of these therapies showed promising outcomes including reduced edema, blood-brain barrier (BBB) protection, smaller contusion volume, and less inflammation. In addition, many antioxidant therapies also promoted better sensory, motor, and cognitive functional recovery after TBI. Overall, preventing oxidative stress is a viable therapeutic option to minimize the secondary damage and to improve the quality of life after TBI.
Collapse
Affiliation(s)
- Charles K Davis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
6
|
Protective Effect of Lutein/Zeaxanthin Isomers in Traumatic Brain Injury in Mice. Neurotox Res 2021; 39:1543-1550. [PMID: 34129176 DOI: 10.1007/s12640-021-00385-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
Previous studies revealed that oxidative stress and inflammation are the main contributors to secondary injury after traumatic brain injury (TBI). In an earlier study, we reported that lutein/zeaxanthin isomers (L/Zi) exert antioxidative and anti-inflammatory effects by activating the nuclear factor-kappa B (NF-κB) and nuclear factor-erythroid 2-related factor 2 (Nrf2) pathways. However, its precise role and underlying mechanisms were largely unknown after TBI. This study was conducted to investigate the potential mechanism of L/Zi isomers in a TBI model induced by a cold injury model in mice. To investigate the effects of L/Zi, male C57BL/6j mice-induced brain injury using the cold trauma model was allocated into two groups (n = 7): (i) TBI + vehicle group and (ii) TBI + L/Zi group (20 mg/kg BW). Brain samples were collected 24 h later for analyses. L/Zi given immediately after the injury decreased infarct volume and blood-brain barrier (BBB) permeability; L/Zi treatment also significantly reduced proinflammatory cytokines, including interleukin1 beta (IL-1β), interleukin 6 (IL-6), and NF-κB levels and increased growth-associated protein 43 (GAP-43), neural cell adhesion molecule (NCAM), brain-derived neurotrophic factor (BDNF), and Nrf2 levels compared with vehicle control. These data suggest that L/Zi improves mitochondrial function in TBI models, possibly decreasing inflammation and activating the Nrf2 pathway.
Collapse
|
7
|
Ciftci E, Karacay R, Caglayan A, Altunay S, Ates N, Altintas MO, Doeppner TR, Yulug B, Kilic E. Neuroprotective effect of lithium in cold- induced traumatic brain injury in mice. Behav Brain Res 2020; 392:112719. [PMID: 32479849 DOI: 10.1016/j.bbr.2020.112719] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/20/2020] [Accepted: 05/18/2020] [Indexed: 11/17/2022]
Abstract
Apart from its well-established therapeutic activity on bipolar disorder and depression, lithium exerts neuroprotective activity upon neurodegenerative disorders, such as traumatic brain injury (TBI). However, the cellular signaling mechanisms mediating lithium's neuroprotective activity and long-term dose- and time-dependent effects on close and remote proximity are largely unknown. Herein, we tested prophylactic and acute effects of lithium (2 mmol/kg) after cold- induced TBI. In both conditions, treatments with lithium resulted in reduced infarct volume and apoptosis. Its acute treatment resulted in the increase of Akt, ERK-1/2 and GSK-3 α/β phosphoylations. Interestingly, its prophylactic treatment instead resulted in decreased phosphorylations of Akt, ERK-1/2, p38, JNK-1 moderately and GSK-3 α/β significantly. Then, we tested subacute (35-day follow-up) role of low (0.2 mmol/kg) and high dose (2 mmol/kg) lithium and revealed that high dose lithium group was the most mobile so the least depressed in the tail suspension test. Anxiety level was assessed by light-dark test, all groups' anxiety levels were decreased with time, but lithium had no effect on anxiety like behavior. When subacute effects of injury and drug treatment were evaluated on the defined brain regions, infarct volume was decreased in the high dose lithium group significantly. In contrast to other brain regions, hippocampal atrophies were observed in both lithium treatment groups, which were significant in the low dose lithium group in both hemispheres, which was associated with the reduced cell proliferation and neurogenesis. Our data demonstrate that lithium treatment protects neurons from TBI. However, long term particularly low-dose lithium causes hippocampal atrophy and decreased neurogenesis.
Collapse
Affiliation(s)
- Elvan Ciftci
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Reyda Karacay
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Aysun Caglayan
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Serdar Altunay
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Nilay Ates
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Pharmacology, Istanbul, Turkey
| | - Mehmet O Altintas
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Thorsten R Doeppner
- University of Göttingen Medical School, Dept. of Neurology, Göttingen, Germany
| | - Burak Yulug
- Alanya Alaaddin Keykubat University, Faculty of Medicine, Dept. of Neurology, Antalya, Turkey
| | - Ertugrul Kilic
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey.
| |
Collapse
|
8
|
Abrahamson EE, Poloyac SM, Dixon CE, Dekosky ST, Ikonomovic MD. Acute and chronic effects of single dose memantine after controlled cortical impact injury in adult rats. Restor Neurol Neurosci 2020; 37:245-263. [PMID: 31177251 DOI: 10.3233/rnn-190909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Altered glutamatergic neurotransmission after traumatic brain injury (TBI) contributes to excitotoxic cell damage and death. Prevention or suppression of such changes is a desirable goal for treatment of TBI. Memantine (3,5-dimethyl-1-adamantanamine), an uncompetitive NMDA receptor antagonist with voltage-dependent open channel blocking kinetics, was reported to be neuroprotective in preclinical models of excitotoxicity, brain ischemia, and in TBI when administered prophylactically, immediately, or within minutes after injury. METHODS The current study examined effects of memantine administered by single intraperitoneal injection to adult male rats at a more clinically relevant delay of one hour after moderate-severe controlled cortical impact (CCI) injury or sham surgery. Histopathology was assessed on days 1, 7, 21, and 90, vestibulomotor function (beam balance and beam walk) was assessed on days 1-5 and 71-75, and spatial memory (Morris water maze test, MWM) was assessed on days 14-21 and 83-90 after CCI injury or sham surgery. RESULTS When administered at 10 mg/kg, but not 2.5 or 5 mg/kg, memantine preserved cortical tissue and reduced neuronal degeneration 1 day after injury, and attenuated loss of synaptophysin immunoreactivity in the hippocampus 7 days after injury. No effects of 10 mg/kg memantine were observed on histopathology at 21 and 90 days after CCI injury or sham surgery, or on vestibulomotor function and spatial memory acquisition assessed during any of the testing periods. However, 10 mg/kg memantine resulted in trends for improved search strategy in the MWM memory retention probe trial. CONCLUSIONS Administration of memantine at a clinically-relevant delay after moderate-severe CCI injury has beneficial effects on acute outcomes, while more significant improvement on subacute and chronic outcomes may require repeated drug administration or its combination with another therapy.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh PA, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh PA, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh PA, USA
| | - C Edward Dixon
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh PA, USA.,Department of Neurosurgery, University of Pittsburgh, Pittsburgh PA, USA
| | - Steven T Dekosky
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh PA, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh PA, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
9
|
SafialHosseini Z, Bigdeli M, Khaksar S, Aliaghaei A. Allograft of Sertoli Cell Transplantation in Combination with Memantine Alleviates Ischemia-Induced Tissue Damages in An Animal Model of Rat. CELL JOURNAL 2019; 22:334-343. [PMID: 31863659 PMCID: PMC6947000 DOI: 10.22074/cellj.2020.6689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/08/2019] [Indexed: 11/04/2022]
Abstract
Objective Brain ischemia is the most common disease in the world caused by the disruption of the blood supply of
brain tissue. Cell therapy is one of the new and effective strategies used for the prevention of brain damages. Sertoli
cells (SCs) can hide from the host immune system and secrete trophic factors. So, these cells have attracted the
attention of researchers as a therapeutic option for the treatment of neurodegenerative diseases. Also, memantine,
as a reducer of glutamate and intracellular calcium, is a suitable candidate for the treatment of cerebral ischemia. The
principal target of this research was to examine the effect of SC transplantation along with memantine on ischemic
injuries.
Materials and Methods In this experimental research, male rats were classified into five groups: sham, control, SC
transplant recipient, memantine-treated, and SCs- and memantine-treated groups. SCs were taken from another rat
tissue and injected into the right striatum region. A week after stereotaxic surgery and SCs transplantation, memantine
was injected. Administered doses were 1 mg/kg and 20 mg/kg at a 12-hour interval. One hour after the final injection,
the surgical procedures for the induction of cerebral ischemia were performed. After 24 hours, some regions of the brain
including the cortex, striatum, and Piriform cortex-amygdala (Pir-Amy) were isolated for the evaluation of neurological
deficits, infarction volume, blood-brain barrier (BBB) permeability, and cerebral edema.
Results This study shows that a combination of SCs and memantine caused a significant decrease in neurological
defects, infarction volume, the permeability of the blood-brain barrier, and edema in comparison with the control group.
Conclusion Probably, memantine and SCs transplantation reduce the damage of cerebral ischemia, through the
secretion of growth factors, anti-inflammatory cytokines, and antioxidant factors.
Collapse
Affiliation(s)
- Zeinab SafialHosseini
- Department of Physiology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammadreza Bigdeli
- Department of Physiology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran. Electronic Address: .,Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Sepideh Khaksar
- Department of Herbal Science, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Anatomy and Cell Biology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
10
|
Beker MC, Caglayan B, Caglayan AB, Kelestemur T, Yalcin E, Caglayan A, Kilic U, Baykal AT, Reiter RJ, Kilic E. Interaction of melatonin and Bmal1 in the regulation of PI3K/AKT pathway components and cellular survival. Sci Rep 2019; 9:19082. [PMID: 31836786 PMCID: PMC6910929 DOI: 10.1038/s41598-019-55663-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
The circadian rhythm is driven by a master clock within the suprachiasmatic nucleus which regulates the rhythmic secretion of melatonin. Bmal1 coordinates the rhythmic expression of transcriptome and regulates biological activities, involved in cell metabolism and aging. However, the role of Bmal1 in cellular- survival, signaling, its interaction with intracellular proteins, and how melatonin regulates its expression is largely unclear. Here we observed that melatonin increases the expression of Bmal1 and both melatonin and Bmal1 increase cellular survival after oxygen glucose deprivation (OGD) while the inhibition of Bmal1 resulted in the decreased cellular survival without affecting neuroprotective effects of melatonin. By using a planar surface immunoassay for PI3K/AKT signaling pathway components, we revealed that both melatonin and Bmal1 increased phosphorylation of AKT, ERK-1/2, PDK1, mTOR, PTEN, GSK-3αβ, and p70S6K. In contrast, inhibition of Bmal1 resulted in decreased phosphorylation of these proteins, which the effect of melatonin on these signaling molecules was not affected by the absence of Bmal1. Besides, the inhibition of PI3K/AKT decreased Bmal1 expression and the effect of melatonin on Bmal1 after both OGD in vitro and focal cerebral ischemia in vivo. Our data demonstrate that melatonin controls the expression of Bmal1 via PI3K/AKT signaling, and Bmal1 plays critical roles in cellular survival via activation of survival kinases.
Collapse
Affiliation(s)
- Mustafa C Beker
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Berrak Caglayan
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Medical Biology, International School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Ahmet B Caglayan
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Taha Kelestemur
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Esra Yalcin
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Aysun Caglayan
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Ulkan Kilic
- Department of Medical Biology, School of Medicine, University of Health Sciences, 34668, Istanbul, Turkey
| | - Ahmet T Baykal
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752, Istanbul, Turkey
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, 78229, Texas, USA
| | - Ertugrul Kilic
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey.
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey.
| |
Collapse
|
11
|
Kelestemur T, Beker MC, Caglayan AB, Caglayan B, Altunay S, Kutlu S, Kilic E. Normobaric oxygen treatment improves neuronal survival functional recovery and axonal plasticity after newborn hypoxia-ischemia. Behav Brain Res 2019; 379:112338. [PMID: 31733311 DOI: 10.1016/j.bbr.2019.112338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/16/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Newborn hypoxia ischemia (HI) is one of the most prevalent cases in the emergency and can result from fetal hypoxia during delivery. In HI, restricted blood supply to the fetal brain may cause epilepsy or mental disorders. METHODS In the present study, seven-day-old pups were subjected HI and treated with different normobaric oxygen (NBO) concentrations (21%, 70% or 100%). In the acute phase, we analyzed infarct area, disseminate neuronal injury and surviving neurons. In addition, we studied the regulation of PTEN and MMP-9 proteins which were suggested to be activated by HI in the ischemic tissue. Moreover, long-term effects of NBO treatments were evaluated with open field, rotarod and Barnes maze tests. We also examined axonal plasticity with EGFP-AAV injection. RESULTS Here, we demonstrate that hyperoxic NBO concentration causes an increase in cellular survival and a decrease in the number of apoptotic cells, meanwhile inhibiting the proteins involved in cellular death mechanisms. Moreover, we found that hyperoxia decreases anxiety, promotes motor coordination and improve spatial learning and memory. Notably that axonal sprouting was promoted by hyperoxia. CONCLUSION Our data suggest that NBO is a promising approach for the treatment of newborn HI, which encourage proof-of-concept studies in newborn.
Collapse
Affiliation(s)
- Taha Kelestemur
- School of Medicine, Department of Physiology, Istanbul Medipol University, 34810, Istanbul, Turkey; Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Mustafa C Beker
- School of Medicine, Department of Physiology, Istanbul Medipol University, 34810, Istanbul, Turkey; Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Ahmet B Caglayan
- Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, 34810, Istanbul, Turkey; International School of Medicine, Department of Physiology, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Berrak Caglayan
- Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, 34810, Istanbul, Turkey; International School of Medicine, Department of Medical Biology, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Serdar Altunay
- School of Medicine, Department of Physiology, Istanbul Medipol University, 34810, Istanbul, Turkey; Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Selim Kutlu
- School of Medicine, Department of Physiology, Necmettin Erbakan University, 42080, Konya, Turkey
| | - Ertugrul Kilic
- School of Medicine, Department of Physiology, Istanbul Medipol University, 34810, Istanbul, Turkey; Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, 34810, Istanbul, Turkey.
| |
Collapse
|
12
|
Machado CA, Silva ACSE, de Miranda AS, Cordeiro TME, Ferreira RN, de Souza LC, Teixeira AL, de Miranda AS. Immune-Based Therapies for Traumatic Brain Injury: Insights from Pre-Clinical Studies. Curr Med Chem 2019; 27:5374-5402. [PMID: 31291871 DOI: 10.2174/0929867326666190710173234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/24/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Abstract
Traumatic Brain Injury (TBI) is a major public health problem. It is the leading cause of death and disability, especially among children and young adults. The neurobiology basis underlying TBI pathophysiology remains to be fully revealed. Over the past years, emerging evidence has supported the hypothesis that TBI is an inflammatory based condition, paving the way for the development of potential therapeutic targets. There is no treatment capable to prevent or minimize TBIassociated outcomes. Therefore, the search for effective therapies is a priority goal. In this context, animal models have become valuable tools to study molecular and cellular mechanisms involved in TBI pathogenesis as well as novel treatments. Herein, we discuss therapeutic strategies to treat TBI focused on immunomodulatory and/or anti-inflammatory approaches in the pre-clinical setting.
Collapse
Affiliation(s)
- Caroline Amaral Machado
- Laboratorio de Neurobiologia, Departamento de Morfologia, Instituto de Ciencias Biologicas, UFMG, Brazil
| | - Ana Cristina Simões E Silva
- Laboratorio Interdisciplinar de Investigacao Medica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Amanda Silva de Miranda
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thiago Macedo E Cordeiro
- Laboratorio Interdisciplinar de Investigacao Medica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Rodrigo Novaes Ferreira
- Laboratorio de Neurobiologia, Departamento de Morfologia, Instituto de Ciencias Biologicas, UFMG, Brazil
| | - Leonardo Cruz de Souza
- Laboratorio Interdisciplinar de Investigacao Medica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, United States
| | - Aline Silva de Miranda
- Laboratorio Interdisciplinar de Investigacao Medica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
13
|
Caglayan AB, Beker MC, Caglayan B, Yalcin E, Caglayan A, Yulug B, Hanoglu L, Kutlu S, Doeppner TR, Hermann DM, Kilic E. Acute and Post-acute Neuromodulation Induces Stroke Recovery by Promoting Survival Signaling, Neurogenesis, and Pyramidal Tract Plasticity. Front Cell Neurosci 2019; 13:144. [PMID: 31031599 PMCID: PMC6474396 DOI: 10.3389/fncel.2019.00144] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/22/2019] [Indexed: 01/19/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has gained interest as a non-invasive treatment for stroke based on the data promoting its effects on functional recovery. However, the exact action mechanisms by which the rTMS exert beneficial effects in cellular and molecular aspect are largely unknown. To elucidate the effects of high- and low-frequency rTMS in the acute-ischemic brain, we examined how rTMS influences injury development, cerebral blood flow (CBF), DNA fragmentation, neuronal survival, pro- and anti-apoptotic protein activations after 30 and 90 min of focal cerebral ischemia. In addition, inflammation, angiogenesis, growth factors and axonal outgrowth related gene expressions, were analyzed. Furthermore, we have investigated the effects of rTMS on post-acute ischemic brain, particularly on spontaneous locomotor activity, perilesional tissue remodeling, axonal sprouting of corticobulbar tracts, glial scar formation and cell proliferation, in which rTMS was applied starting 3 days after the stroke onset for 28 days. In the high-frequency rTMS received animals reduced DNA fragmentation, infarct volume and improved CBF were observed, which were associated with increased Bcl-xL activity and reduced Bax, caspase-1, and caspase-3 activations. Moreover, increased angiogenesis, growth factors; and reduced inflammation and axonal sprouting related gene expressions were observed. These results correlated with reduced microglial activation, neuronal degeneration, glial scar formation and improved functional recovery, tissue remodeling, contralesional pyramidal tract plasticity and neurogenesis in the subacute rTMS treated animals. Overall, we propose that high-frequency rTMS in stroke patients can be used to promote functional recovery by inducing the endogenous repair and recovery mechanisms of the brain.
Collapse
Affiliation(s)
- Ahmet B Caglayan
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| | - Mustafa C Beker
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| | - Berrak Caglayan
- Regenerative and Restorative Medical Research Center, Istanbul, Turkey.,Department of Medical Biology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Esra Yalcin
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| | - Aysun Caglayan
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| | - Burak Yulug
- Department of Neurology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Lutfu Hanoglu
- Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Selim Kutlu
- Department of Physiology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Thorsten R Doeppner
- Regenerative and Restorative Medical Research Center, Istanbul, Turkey.,Department of Neurology, Faculty of Medicine, University of Goettingen, Göttingen, Germany
| | - Dirk M Hermann
- Department of Neurology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| |
Collapse
|
14
|
Yulug B, Ozansoy M, Alokten M, Ozansoy MBC, Cankaya S, Hanoglu L, Kilic U, Kilic E. Minocycline Increases in-vitro Cortical Neuronal Cell Survival after Laser Induced Axotomy. ACTA ACUST UNITED AC 2019; 15:105-109. [PMID: 30813881 PMCID: PMC7579254 DOI: 10.2174/1574884714666190226093119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/02/2019] [Accepted: 02/16/2019] [Indexed: 12/13/2022]
Abstract
Background Antibiotic therapies targeting multiple regenerative mechanisms have the potential for neuroprotective effects, but the diversity of experimental strategies and analyses of non-standardised therapeutic trials are challenging. In this respect, there are no cases of successful clinical application of such candidate molecules when it comes to human patients. Methods After 24 hours of culturing, three different minocycline (Sigma-Aldrich, M9511, Germany) concentrations (1 µM, 10 µM and 100 µM) were added to the primary cortical neurons 15 minutes before laser axotomy procedure in order to observe protective effect of minocycline in these dosages. Results Here, we have shown that minocycline exerted a significant neuroprotective effect at 1 and 100μM doses. Beyond confirming the neuroprotective effect of minocycline in a more standardised and advanced in-vitro trauma model, our findings could have important implications for future studies that concentrate on the translational block between animal and human studies. Conclusion Such sophisticated approaches might also help to conquer the influence of human-made variabilities in critical experimental injury models. To the best of our knowledge, this is the first study showing that minocycline increases in-vitro neuronal cell survival after laser-axotomy.
Collapse
Affiliation(s)
- Burak Yulug
- Department of Neurology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya/Alanya, Turkey
| | - Mehmet Ozansoy
- Istanbul Medipol University, Regenerative and Restorative Medicine Research Center, Istanbul, Turkey,Department of Physiology, Istanbul Medipol University, International School of Medicine, Istanbul, Turkey
| | - Merve Alokten
- Istanbul Medipol University, Regenerative and Restorative Medicine Research Center, Istanbul, Turkey
| | - Muzaffer B C Ozansoy
- Istanbul Medipol University, Regenerative and Restorative Medicine Research Center, Istanbul, Turkey,Department of Physiology, Istanbul Medipol University, School of Medicine, Istanbul, Turkey
| | - Seyda Cankaya
- Department of Neurology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya/Alanya, Turkey
| | - Lutfu Hanoglu
- Department of Neurology, Istanbul, Faculty of Medicine, Medipol University, Istanbul, Turkey
| | - Ulkan Kilic
- Department of Medical Biology, University of Health Sciences, Faculty of Medicine, Istanbul, Turkey
| | - Ertugrul Kilic
- Department of Physiology, Istanbul Medipol University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
15
|
Yulug B, Cankaya S. Translational perspective: is cinnamon a suitable agent for cognitive impairment and Alzheimer's disease associated with brain trauma? Neural Regen Res 2019; 14:1372-1373. [PMID: 30964057 PMCID: PMC6524496 DOI: 10.4103/1673-5374.253518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Burak Yulug
- Department of Neurology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Seyda Cankaya
- Department of Neurology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| |
Collapse
|
16
|
Allyl isothiocyanate attenuates oxidative stress and inflammation by modulating Nrf2/HO-1 and NF-κB pathways in traumatic brain injury in mice. Mol Biol Rep 2018; 46:241-250. [DOI: 10.1007/s11033-018-4465-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/01/2018] [Indexed: 01/18/2023]
|
17
|
The multiple functions of melatonin in regenerative medicine. Ageing Res Rev 2018; 45:33-52. [PMID: 29630951 DOI: 10.1016/j.arr.2018.04.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Melatonin research has been experiencing hyper growth in the last two decades; this relates to its numerous physiological functions including anti-inflammation, oncostasis, circadian and endocrine rhythm regulation, and its potent antioxidant activity. Recently, a large number of studies have focused on the role of melatonin in the regeneration of cells or tissues after their partial loss. In this review, we discuss the recent findings on the molecular involvement of melatonin in the regeneration of various tissues including the nervous system, liver, bone, kidney, bladder, skin, and muscle, among others.
Collapse
|
18
|
O'Neil DA, Nicholas MA, Lajud N, Kline AE, Bondi CO. Preclinical Models of Traumatic Brain Injury: Emerging Role of Glutamate in the Pathophysiology of Depression. Front Pharmacol 2018; 9:579. [PMID: 29910733 PMCID: PMC5992468 DOI: 10.3389/fphar.2018.00579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022] Open
Abstract
More than 10 million people worldwide incur a traumatic brain injury (TBI) each year, with two million cases occurring in the United States. TBI survivors exhibit long-lasting cognitive and affective sequelae that are associated with reduced quality of life and work productivity, as well as mental and emotional disturbances. While TBI-related disabilities often manifest physically and conspicuously, TBI has been linked with a "silent epidemic" of psychological disorders, including major depressive disorder (MDD). The prevalence of MDD post-insult is approximately 50% within the 1st year. Furthermore, given they are often under-reported when mild, TBIs could be a significant overall cause of MDD in the United States. The emergence of MDD post-TBI may be rooted in widespread disturbances in the modulatory role of glutamate, such that glutamatergic signaling becomes excessive and deleterious to neuronal integrity, as reported in both clinical and preclinical studies. Following this acute glutamatergic storm, regulators of glutamatergic function undergo various manipulations, which include, but are not limited to, alterations in glutamatergic subunit composition, release, and reuptake. This review will characterize the glutamatergic functional and signaling changes that emerge and persist following experimental TBI, utilizing evidence from clinical, molecular, and rodent behavioral investigations. Special care will be taken to speculate on how these manipulations may correlate with the development of MDD following injury in the clinic, as well as pharmacotherapies to date. Indisputably, TBI is a significant healthcare issue that warrants discovery and subsequent refinement of therapeutic strategies to improve neurobehavioral recovery and mental health.
Collapse
Affiliation(s)
- Darik A O'Neil
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Melissa A Nicholas
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Naima Lajud
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States.,División de Neurociencias, Centro de Investigación Biomédica de Michoacán - Instituto Mexicano del Seguro Social, Morelia, Mexico
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States.,Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Melatonin as a Therapy for Traumatic Brain Injury: A Review of Published Evidence. Int J Mol Sci 2018; 19:ijms19051539. [PMID: 29786658 PMCID: PMC5983792 DOI: 10.3390/ijms19051539] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/15/2022] Open
Abstract
Melatonin (MEL) is a hormone that is produced in the brain and is known to bind to MEL-specific receptors on neuronal membranes in several brain regions. MEL’s documented neuroprotective properties, low toxicity, and ability to cross the blood-brain-barrier have led to its evaluation for patients with traumatic brain injury (TBI), a condition for which there are currently no Food and Drug Administration (FDA)-approved therapies. The purpose of this manuscript is to summarize the evidence surrounding the use of melatonin after TBI, as well as identify existing gaps and future directions. To address this aim, a search of the literature was conducted using Pubmed, Google Scholar, and the Cochrane Database. In total, 239 unique articles were screened, and the 22 preclinical studies that met the a priori inclusion/exclusion criteria were summarized, including the study aims, sample (size, groups, species, strain, sex, age/weight), TBI model, therapeutic details (preparation, dose, route, duration), key findings, and conclusions. The evidence from these 22 studies was analyzed to draw comparisons across studies, identify remaining gaps, and suggest future directions. Taken together, the published evidence suggests that MEL has neuroprotective properties via a number of mechanisms with few toxic effects reported. Notably, available evidence is largely based on data from adult male rats and, to a lesser extent, mice. Few studies collected data beyond a few days of the initial injury, necessitating additional longer-term studies. Other future directions include diversification of samples to include female animals, pediatric and geriatric animals, and transgenic strains.
Collapse
|
20
|
Post-injury administration of a combination of memantine and 17β-estradiol is protective in a rat model of traumatic brain injury. Neurochem Int 2017; 111:57-68. [DOI: 10.1016/j.neuint.2017.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 11/23/2022]
|
21
|
Osier ND, Pham L, Pugh BJ, Puccio A, Ren D, Conley YP, Alexander S, Dixon CE. Brain injury results in lower levels of melatonin receptors subtypes MT1 and MT2. Neurosci Lett 2017; 650:18-24. [PMID: 28377323 DOI: 10.1016/j.neulet.2017.03.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 02/09/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a devastating and costly acquired condition that affects individuals of all ages, races, and geographies via a number of mechanisms. The effects of TBI on melatonin receptors remain unknown. PURPOSE The purpose of this study is to explore whether endogenous changes in two melatonin receptor subtypes (MT1 and MT2) occur after experimental TBI. SAMPLE A total of 25 adult male Sprague Dawley rats were used with 6 or 7 rats per group. METHODS Rats were randomly assigned to receive either TBI modeled using controlled cortical impact or sham surgery and to be sacrificed at either 6- or 24-h post-operatively. Brains were harvested, dissected, and flash frozen until whole cell lysates were prepared, and the supernatant fluid aliquoted and used for western blotting. Primary antibodies were used to probe for melatonin receptors (MT1 and MT2), and beta actin, used for a loading control. ImageJ and Image Lab software were used to quantify the data which was analyzed using t-tests to compare means. RESULTS Melatonin receptor levels were reduced in a brain region- and time point- dependent manner. Both MT1 and MT2 were reduced in the frontal cortex at 24h and in the hippocampus at both 6h and 24h. DISCUSSION MT1 and MT2 are less abundant after injury, which may alter response to MEL therapy. Studies characterizing MT1 and MT2 after TBI are needed, including exploration of the time course and regional patterns, replication in diverse samples, and use of additional variables, especially sleep-related outcomes. CONCLUSION TBI in rats resulted in lower levels of MT1 and MT2; replication of these findings is necessary as is evaluation of the consequences of lower receptor levels.
Collapse
Affiliation(s)
- Nicole D Osier
- University of Pittsburgh School of Nursing, Victoria Building, 3500 Victoria Street, Pittsburgh, PA, 15213, USA; Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research, Center - 6th floor, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| | - Lan Pham
- University of Pittsburgh School of Nursing, Victoria Building, 3500 Victoria Street, Pittsburgh, PA, 15213, USA.
| | - Bunny J Pugh
- Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research, Center - 6th floor, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| | - Ava Puccio
- University of Pittsburgh School of Nursing, Victoria Building, 3500 Victoria Street, Pittsburgh, PA, 15213, USA; University of Pittsburgh Department of Neurological Surgery, Brain Trauma Research Center, UPMC Presbyterian, Suite B-400, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| | - Dianxu Ren
- University of Pittsburgh School of Nursing, Victoria Building, 3500 Victoria Street, Pittsburgh, PA, 15213, USA.
| | - Yvette P Conley
- University of Pittsburgh School of Nursing, Victoria Building, 3500 Victoria Street, Pittsburgh, PA, 15213, USA; University of Pittsburgh Department of Human Genetics, Crabtree Hall, 130 De Soto Street, Pittsburgh, PA, 15261, USA.
| | - Sheila Alexander
- University of Pittsburgh School of Nursing, Victoria Building, 3500 Victoria Street, Pittsburgh, PA, 15213, USA; University of Pittsburgh School of Medicine, M240 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.
| | - C Edward Dixon
- Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research, Center - 6th floor, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA; University of Pittsburgh Department of Neurological Surgery, Brain Trauma Research Center, UPMC Presbyterian, Suite B-400, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; VA Pittsburgh Healthcare System, 4100 Allequippa St, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
22
|
Ramos E, Patiño P, Reiter RJ, Gil-Martín E, Marco-Contelles J, Parada E, de Los Rios C, Romero A, Egea J. Ischemic brain injury: New insights on the protective role of melatonin. Free Radic Biol Med 2017; 104:32-53. [PMID: 28065781 DOI: 10.1016/j.freeradbiomed.2017.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
Stroke represents one of the most common causes of brain's vulnerability for many millions of people worldwide. The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca2+ dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death. Understanding this cascade of molecular events is mandatory in order to develop new therapeutic strategies for stroke. In this review article, we have highlighted the pleiotropic effects of melatonin to counteract the multiple processes of the ischemic cascade. Additionally, experimental evidence supports its actions to ameliorate ischemic long-term behavioural and neuronal deficits, preserving the functional integrity of the blood-brain barrier, inducing neurogenesis and cell proliferation through receptor-dependent mechanism, as well as improving synaptic transmission. Consequently, the synthesis of melatonin derivatives designed as new multitarget-directed products has focused a great interest in this area. This latter has been reinforced by the low cost of melatonin and its reduced toxicity. Furthermore, its spectrum of usages seems to be wide and with the potential for improving human health. Nevertheless, the molecular and cellular mechanisms underlying melatonin´s actions need to be further exploration and accordingly, new clinical studies should be conducted in human patients with ischemic brain pathologies.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paloma Patiño
- Paediatric Unit, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology. University of Texas Health Science Center at San Antonio, USA
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - José Marco-Contelles
- Medicinal Chemistry Laboratory, Institute of General Organic Chemistry (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Esther Parada
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Cristobal de Los Rios
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Alejandro Romero
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Egea
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
23
|
Keskin I, Gunal MY, Ayturk N, Kilic U, Ozansoy M, Kilic E. Dose-dependent neuroprotective effect of enoxaparin on cold-induced traumatic brain injury. Neural Regen Res 2017; 12:761-764. [PMID: 28616032 PMCID: PMC5461613 DOI: 10.4103/1673-5374.206646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent evidence exists that enoxaparin can reduce brain injury because of its anticoagulant activity. To investigate the potential therapeutic effect of enoxaparin on cold-induced traumatic brain injury, at 20 minutes after modeling, male BALB/c mouse models of cold-induced traumatic brain injury were intraperitoneally administered 3 and 10 mg/kg enoxaparin or isotonic saline solution. Twenty-four hours later, enoxaparin at 10 mg/kg greatly reduced infarct volume, decreased cell apoptosis in the cortex and obviously increased serum level of total antioxidant status. By contrast, administration of enoxaparin at 3 mg/kg did not lead to these changes. These findings suggest that enoxaparin exhibits neuroprotective effect on cold-induced traumatic brain injury in a dose-dependent manner.
Collapse
Affiliation(s)
- Ilknur Keskin
- Department of Histology and Embryology, Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center (REMER), Medipol University, Istanbul, Turkey
| | - M Yalcin Gunal
- Department of Physiology, Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center (REMER), Medipol University, Istanbul, Turkey
| | - Nilufer Ayturk
- Department of Histology and Embryology, Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center (REMER), Medipol University, Istanbul, Turkey
| | - Ulkan Kilic
- Regenerative and Restorative Medical Research Center (REMER), Medipol University, Istanbul, Turkey.,Department of Medical Biology, Medipol University, Istanbul, Turkey
| | - Mehmet Ozansoy
- Department of Physiology, Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center (REMER), Medipol University, Istanbul, Turkey
| | - Ertugrul Kilic
- Department of Physiology, Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medical Research Center (REMER), Medipol University, Istanbul, Turkey
| |
Collapse
|
24
|
Patiño P, Parada E, Farré-Alins V, Molz S, Cacabelos R, Marco-Contelles J, López MG, Tasca CI, Ramos E, Romero A, Egea J. Melatonin protects against oxygen and glucose deprivation by decreasing extracellular glutamate and Nox-derived ROS in rat hippocampal slices. Neurotoxicology 2016; 57:61-68. [PMID: 27620136 DOI: 10.1016/j.neuro.2016.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 12/30/2022]
Abstract
Therapeutic interventions on pathological processes involved in the ischemic cascade, such as oxidative stress, neuroinflammation, excitotoxicity and/or apoptosis, are of urgent need for stroke treatment. Melatonin regulates a large number of physiological actions and its beneficial properties have been reported. The aim of this study was to investigate whether melatonin mediates neuroprotection in rat hippocampal slices subjected to oxygen-glucose-deprivation (OGD) and glutamate excitotoxicity. Thus, we describe here that melatonin significantly reduced the amount of lactate dehydrogenase released in the OGD-treated slices, reverted neuronal injury caused by OGD-reoxygenation in CA1 and CA3 hippocampal regions, restored the reduction of GSH content of the hippocampal slices induced by OGD, and diminished the oxidative stress produced in the reoxygenation period. Furthermore, melatonin afforded maximum protection against glutamate-induced toxicity and reversed the glutamate released almost basal levels, at 10 and 30μM concentration, respectively. Consequently, we propose that melatonin might strongly and positively influence the outcome of brain ischemia/reperfusion.
Collapse
Affiliation(s)
- Paloma Patiño
- Paediatric Unit, La Paz University Hospital, Paseo de la Castellana 261, 28046-Madrid, Spain
| | - Esther Parada
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain; Instituto Teófilo Hernando and Department of Pharmacology, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Victor Farré-Alins
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain; Instituto Teófilo Hernando and Department of Pharmacology, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Simone Molz
- Pharmacy School, Contestado University, 89460-000 Canoinhas, SC, Brazil
| | - Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, 15166-La Corunna, Spain; Chair of Genomic Medicine, Camilo José Cela University, Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC); Juan de la Cierva, 3; 28006-Madrid Spain
| | - Manuela G López
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain; Instituto Teófilo Hernando and Department of Pharmacology, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Carla I Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Eva Ramos
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040-Madrid, Spain
| | - Alejandro Romero
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040-Madrid, Spain.
| | - Javier Egea
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain; Instituto Teófilo Hernando and Department of Pharmacology, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain.
| |
Collapse
|