1
|
Mattingly ML, Anglin DA, Ruple BA, Scarpelli MC, Bergamasco JG, Godwin JS, Mobley CB, Frugé AD, Libardi CA, Roberts MD. Acute and Chronic Resistance Training, Acute Endurance Exercise, nor Physiologically Plausible Lactate In Vitro Affect Skeletal Muscle Lactylation. Int J Mol Sci 2024; 25:12216. [PMID: 39596281 PMCID: PMC11594461 DOI: 10.3390/ijms252212216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
We examined changes in skeletal muscle protein lactylation and acetylation in response to acute resistance exercise, chronic resistance training (RT), and a single endurance cycling bout. Additionally, we performed in vitro experiments to determine if different sodium lactate treatments affect myotube protein lactylation and acetylation. The acute and chronic RT study (12 college-aged participants) consisted of 10 weeks of unilateral leg extensor RT with vastus lateralis (VL) biopsies taken at baseline, 24 h following the first RT bout, and the morning of the last day of the RT bout. For the acute cycling study (9 college-aged participants), VL biopsies were obtained before, 2 h after, and 8 h after 60 min of cycling. For in vitro experiments, C2C12 myotubes were treated with varying levels of sodium lactate, including LOW (1 mM for 24 h), HIGH (10 mM for 24 h), and PULSE (10 mM for 30 min followed by 1 mM for 23.5-h). Neither acute nor chronic RT significantly affected nuclear or cytoplasmic protein lactylation. However, cytoplasmic protein acetylation was significantly reduced following one RT bout (-15%, p = 0.002) and chronic RT (-16%, p = 0.006). Cycling did not acutely alter post-exercise global protein lactylation or acetylation patterns. Lastly, varying 24 h lactate treatments did not alter nuclear or cytoplasmic protein lactylation or acetylation, cytoplasmic protein synthesis levels, or myotube diameters. These findings continue to support the idea that exercise induces more dynamic changes in skeletal muscle protein acetylation, but not lactylation. However, further human research with more sampling timepoints and a lactylomics approach are needed to determine if, at all, different exercise modalities affect skeletal muscle protein lactylation.
Collapse
Affiliation(s)
| | | | - Bradley A. Ruple
- Geriatric Research Education and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT 84148, USA
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Maira C. Scarpelli
- MUSCULAB—Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos—UFSCar, São Carlos 13565-905, Brazil; (M.C.S.)
| | - Joao G. Bergamasco
- MUSCULAB—Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos—UFSCar, São Carlos 13565-905, Brazil; (M.C.S.)
| | | | | | - Andrew D. Frugé
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
- College of Nursing, Auburn University, Auburn, AL 36849, USA
| | - Cleiton A. Libardi
- MUSCULAB—Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos—UFSCar, São Carlos 13565-905, Brazil; (M.C.S.)
| | | |
Collapse
|
2
|
Li D, Jia J, Zeng H, Zhong X, Chen H, Yi C. Efficacy of exercise rehabilitation for managing patients with Alzheimer's disease. Neural Regen Res 2024; 19:2175-2188. [PMID: 38488551 PMCID: PMC11034587 DOI: 10.4103/1673-5374.391308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 11/25/2023] [Indexed: 04/24/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and degenerative neurological disease characterized by the deterioration of cognitive functions. While a definitive cure and optimal medication to impede disease progression are currently unavailable, a plethora of studies have highlighted the potential advantages of exercise rehabilitation for managing this condition. Those studies show that exercise rehabilitation can enhance cognitive function and improve the quality of life for individuals affected by AD. Therefore, exercise rehabilitation has been regarded as one of the most important strategies for managing patients with AD. Herein, we provide a comprehensive analysis of the currently available findings on exercise rehabilitation in patients with AD, with a focus on the exercise types which have shown efficacy when implemented alone or combined with other treatment methods, as well as the potential mechanisms underlying these positive effects. Specifically, we explain how exercise may improve the brain microenvironment and neuronal plasticity. In conclusion, exercise is a cost-effective intervention to enhance cognitive performance and improve quality of life in patients with mild to moderate cognitive dysfunction. Therefore, it can potentially become both a physical activity and a tailored intervention. This review may aid the development of more effective and individualized treatment strategies to address the challenges imposed by this debilitating disease, especially in low- and middle-income countries.
Collapse
Affiliation(s)
- Dan Li
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Jinning Jia
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Haibo Zeng
- Department of Pathology, Huichang County People’s Hospital, Ganzhou, Jiangxi Province, China
| | - Xiaoyan Zhong
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Zhang R, Liu S, Mousavi SM. Cognitive Dysfunction and Exercise: From Epigenetic to Genetic Molecular Mechanisms. Mol Neurobiol 2024; 61:6279-6299. [PMID: 38286967 DOI: 10.1007/s12035-024-03970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Maintaining good health is crucial, and exercise plays a vital role in achieving this goal. It offers a range of positive benefits for cognitive function, regardless of age. However, as our population ages and life expectancy increases, cognitive impairment has become a prevalent issue, often coexisting with age-related neurodegenerative conditions. This can result in devastating consequences such as memory loss, difficulty speaking, and confusion, greatly hindering one's ability to lead an ordinary life. In addition, the decrease in mental capacity has a significant effect on an individual's physical and emotional well-being, greatly reducing their overall level of contentment and causing a significant financial burden for communities. While most current approaches aim to slow the decline of cognition, exercise offers a non-pharmacological, safe, and accessible solution. Its effects on cognition are intricate and involve changes in the brain's neural plasticity, mitochondrial stability, and energy metabolism. Moreover, exercise triggers the release of cytokines, playing a significant role in the body-brain connection and its impact on cognition. Additionally, exercise can influence gene expression through epigenetic mechanisms, leading to lasting improvements in brain function and behavior. Herein, we summarized various genetic and epigenetic mechanisms that can be modulated by exercise in cognitive dysfunction.
Collapse
Affiliation(s)
- Runhong Zhang
- Department of Physical Education, Luliang University, Lishi, 033000, Shanxi, China.
| | - Shangwu Liu
- Department of Physical Education, Luliang University, Lishi, 033000, Shanxi, China
| | | |
Collapse
|
4
|
Qian P, Wang S, Zhang T, Wu J. Transcriptional Expression of Histone Acetyltransferases and Deacetylases During the Recovery of Acute Exercise in Mouse Hippocampus. J Mol Neurosci 2024; 74:34. [PMID: 38565829 DOI: 10.1007/s12031-024-02215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Protein acetylation, which is dynamically maintained by histone acetyltransferases (HATs) and deacetylases (HDACs), might play essential roles in hippocampal exercise physiology. However, whether HATs/HDACs are imbalanced during the recovery phase following acute exercise has not been determined. Groups of exercised mice with different recovery periods after acute exercise (0 h, 0.5 h, 1 h, 4 h, 7 h, and 24 h) were constructed, and a group of sham-exercised mice was used as the control. The mRNA levels of HATs and HDACs were detected via real-time quantitative polymerase chain reaction. Lysine acetylation on the total proteins and some specific locations on histones were detected via western blotting, as were various acylation modifications on the total proteins. Except for four unaffected genes (Hdac4, Ncoa1, Ncoa2, and Sirt1), the mRNA expression trajectories of 21 other HATs or HDACs affected by exercise could be categorized into three clusters. The genes in Cluster 1 increased quickly following exercise, with a peak at 0.5 h and/or 1 h, and remained at high levels until 24 h. Cluster 2 genes presented a gradual increase with a delayed peak at 4 h or 7 h postexercise before returning to baseline. The expression of Cluster 3 genes decreased at 0.5 h and/or 1 h, with some returning to overexpression (Hdac1 and Sirt3). Although most HATs were upregulated and half of the affected HDACs were downregulated at 0.5 h postexercise, the global or residue-specific histone acetylation levels were unchanged. In contrast, the levels of several metabolism-related acylation products of total proteins, including acetylation, succinylation, 2-hydroxyisobutyryllysine, β-hydroxybutyryllysine, and lactylation, decreased and mainly occurred on nonhistones immediately after exercise. During the 24-h recovery phase after acute exercise, the transcriptional trajectory of HATs or the same class of HDACs in the hippocampus exhibited heterogeneity. Although acute exercise did not affect the selected sites on histone lysine residues, it possibly incurred changes in acetylation and other acylation on nonhistone proteins.
Collapse
Affiliation(s)
- Ping Qian
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
- Department of Internal Medicine, Affiliated Children Hospital of Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
- Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
5
|
Feizolahi F, Arabzadeh E, Sarshin A, Falahi F, Dehghannayeri Z, Ali Askari A, Wong A, Aghaei F, Zargani M. Effects of Exercise Training and L-Arginine Loaded Chitosan Nanoparticles on Hippocampus Histopathology, β-Secretase Enzyme Function, APP, Tau, Iba1and APOE-4 mRNA in Aging Rats. Neurotox Res 2024; 42:21. [PMID: 38441819 DOI: 10.1007/s12640-024-00699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
The objective of this study was to evaluate the combined and independent effects of exercise training and L-Arginine loaded chitosan nanoparticles (LA CNPs) supplementation on hippocampal Tau, App, Iba1, and ApoE gene expression, oxidative stress, β-secretase enzyme activity, and hippocampus histopathology in aging rats. Thirty-five male Wistar rats were randomly assigned to five groups (n = 7 in each): Young (8 weeks old), Old (20 months old), old + L-arginine supplementation (Old Sup), old + exercise (Old Exe) and old + L-arginine supplementation + exercise (Old Sup + Exe). LA CNPs were administered to the supplement groups through gavage at a dosage of 500 mg/kg/day for 6-weeks. Exercise groups were subjected to a swimming exercise program five days/week for the same duration. Upon the completion of their interventions, the animals underwent behavioral and open-field task tests and were subsequently sacrificed for hippocampus genetic and histopathological evaluation. For histopathological analysis of brain, Cresyl violet staining was used. Congo Red staining was employed to confirm amyloid plaques in the hippocampus. Expressions of Tau, App, Iba1, and ApoE genes were determined by real-time PCR. In contrast to the Old group, Old Exe and Old Sup + Exe groups spent more time in the central space in the open field task (p < 0.05) and have more live cells in the hippocampus. Old rats (Old, Old Sup and Old Exe groups) exhibited a significant Aβ peptide accumulation and increases in APP, Tau, Iba1, APOE-4 mRNA and MDA, along with decreases in SOD compared to the young group (p < 0.05). However, LA CNPs supplementation, exercise, and their combination (Old Sup, Old Exe and Old Sup + Exe) significantly reduced MDA, Aβ plaque as well as APP, Tau, Iba1, and APOE-4 mRNA compared to the Old group (p < 0.05). Consequently, the administration of LA CNPs supplements and exercise might regulate the risk factors of hippocampus cell and tissue.
Collapse
Affiliation(s)
- Foad Feizolahi
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Sarshin
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Farshad Falahi
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Zahra Dehghannayeri
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Ali Ali Askari
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Fariba Aghaei
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mehdi Zargani
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran.
| |
Collapse
|
6
|
Zlatanova HI, Georgieva-Kotetarova MT, Vilmosh NB, Kandilarov IK. Evaluation of the Effect of Cariprazine on Memory and Cognition in Experimental Rodent Models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14748. [PMID: 36429467 PMCID: PMC9690696 DOI: 10.3390/ijerph192214748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The main symptoms of schizophrenia are categorized as positive, negative, and cognitive. Cognitive impairments do not generally respond to antipsychotics. Cariprazine is a novel antipsychotic conceived with the idea that high affinity for D3 receptors may elicit a favorable response in the management of cognitive deficits. We evaluated the pro-cognitive properties of 14-day long pre-treatment with cariprazine (0.25, 0.5, and 1 mg/kg b.w. intraperitoneally) in experimental rodent models with scopolamine-induced memory impairment employing novel object recognition test (NORT), T-maze, Y-maze, and passive avoidance tasks (step-through and step-down). Statistical analysis was performed with One Way ANOVA. In NORT cariprazine increased the recognition index. In T-maze and Y-maze cariprazine increased the working memory index as well as the percentage of spontaneous alternation. Cariprazine improved learning and memory in both short-term and long-term memory retention tests in step-down and step-through tasks. Cariprazine improves learning, recognition, and spatial memory in rats with scopolamine-induced memory impairment. Cariprazine's beneficial effect on cognition is likely due to its affinity for D3 receptors, as well as agonism at 5-HT1A receptors. Most probably, the cognitive-enhancing properties of cariprazine are the result of integrated modulation in the amygdala, hippocampus, and prefrontal cortex.
Collapse
|
7
|
Physical-Exercise-Induced Antioxidant Effects on the Brain and Skeletal Muscle. Antioxidants (Basel) 2022; 11:antiox11050826. [PMID: 35624690 PMCID: PMC9138070 DOI: 10.3390/antiox11050826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Erythroid-related nuclear factor 2 (NRF2) and the antioxidant-responsive-elements (ARE) signaling pathway are the master regulators of cell antioxidant defenses, playing a key role in maintaining cellular homeostasis, a scenario in which proper mitochondrial function is essential. Increasing evidence indicates that the regular practice of physical exercise increases cellular antioxidant defenses by activating NRF2 signaling. This manuscript reviewed classic and ongoing research on the beneficial effects of exercise on the antioxidant system in both the brain and skeletal muscle.
Collapse
|
8
|
Plaza-Diaz J, Izquierdo D, Torres-Martos Á, Baig AT, Aguilera CM, Ruiz-Ojeda FJ. Impact of Physical Activity and Exercise on the Epigenome in Skeletal Muscle and Effects on Systemic Metabolism. Biomedicines 2022; 10:126. [PMID: 35052805 PMCID: PMC8773693 DOI: 10.3390/biomedicines10010126] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Exercise and physical activity induces physiological responses in organisms, and adaptations in skeletal muscle, which is beneficial for maintaining health and preventing and/or treating most chronic diseases. These adaptations are mainly instigated by transcriptional responses that ensue in reaction to each individual exercise, either resistance or endurance. Consequently, changes in key metabolic, regulatory, and myogenic genes in skeletal muscle occur as both an early and late response to exercise, and these epigenetic modifications, which are influenced by environmental and genetic factors, trigger those alterations in the transcriptional responses. DNA methylation and histone modifications are the most significant epigenetic changes described in gene transcription, linked to the skeletal muscle transcriptional response to exercise, and mediating the exercise adaptations. Nevertheless, other alterations in the epigenetics markers, such as epitranscriptomics, modifications mediated by miRNAs, and lactylation as a novel epigenetic modification, are emerging as key events for gene transcription. Here, we provide an overview and update of the impact of exercise on epigenetic modifications, including the well-described DNA methylations and histone modifications, and the emerging modifications in the skeletal muscle. In addition, we describe the effects of exercise on epigenetic markers in other metabolic tissues; also, we provide information about how systemic metabolism or its metabolites influence epigenetic modifications in the skeletal muscle.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
| | - David Izquierdo
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
| | - Álvaro Torres-Martos
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
| | - Aiman Tariq Baig
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 85M, Canada
| | - Concepción M. Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz, Center Munich, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
9
|
Urdinguio RG, Tejedor JR, Fernández-Sanjurjo M, Pérez RF, Peñarroya A, Ferrero C, Codina-Martínez H, Díez-Planelles C, Pinto-Hernández P, Castilla-Silgado J, Coto-Vilcapoma A, Díez-Robles S, Blanco-Agudín N, Tomás-Zapico C, Iglesias-Gutiérrez E, Fernández-García B, Fernandez AF, Fraga MF. Physical exercise shapes the mouse brain epigenome. Mol Metab 2021; 54:101398. [PMID: 34801767 PMCID: PMC8661702 DOI: 10.1016/j.molmet.2021.101398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To analyze the genome-wide epigenomic and transcriptomic changes induced by long term resistance or endurance training in the hippocampus of wild-type mice. METHODS We performed whole-genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) of mice hippocampus after 4 weeks of specific training. In addition, we used a novel object recognition test before and after the intervention to determine whether the exercise led to an improvement in cognitive function. RESULTS Although the majority of DNA methylation changes identified in this study were training-model specific, most were associated with hypomethylation and were enriched in similar histone marks, chromatin states, and transcription factor biding sites. It is worth highlighting the significant association found between the loss of DNA methylation in Tet1 binding sites and gene expression changes, indicating the importance of these epigenomic changes in transcriptional regulation. However, endurance and resistance training activate different gene pathways, those being associated with neuroplasticity in the case of endurance exercise, and interferon response pathways in the case of resistance exercise, which also appears to be associated with improved learning and memory functions. CONCLUSIONS Our results help both understand the molecular mechanisms by which different exercise models exert beneficial effects for brain health and provide new potential therapeutic targets for future research.
Collapse
Affiliation(s)
- Rocío G Urdinguio
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Juan Ramon Tejedor
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Manuel Fernández-Sanjurjo
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Raúl F Pérez
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Alfonso Peñarroya
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Cecilia Ferrero
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Helena Codina-Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain; Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo 33006, Spain
| | - Carlos Díez-Planelles
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Paola Pinto-Hernández
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Juan Castilla-Silgado
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Almudena Coto-Vilcapoma
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Sergio Díez-Robles
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Noelia Blanco-Agudín
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Cristina Tomás-Zapico
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Eduardo Iglesias-Gutiérrez
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain.
| | - Benjamín Fernández-García
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain; Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo 33006, Spain
| | - Agustin F Fernandez
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain.
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain; Department of Organisms and Systems Biology (B.O.S), University of Oviedo, 33011 Oviedo, Asturias, Spain.
| |
Collapse
|
10
|
Fraga I, Weber C, Galiano WB, Iraci L, Wohlgemuth M, Morales G, Cercato C, Rodriguez J, Pochmann D, Dani C, Menz P, Bosco AD, Elsner VR. Effects of a multimodal exercise protocol on functional outcomes, epigenetic modulation and brain-derived neurotrophic factor levels in institutionalized older adults: a quasi-experimental pilot study. Neural Regen Res 2021; 16:2479-2485. [PMID: 33907037 PMCID: PMC8374571 DOI: 10.4103/1673-5374.313067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epigenetic changes have been shown to be associated with both aging process and aging-related diseases. There is evidence regarding the benefits of physical activity on the functionality, cognition, and quality of life of institutionalized older adults, however, the molecular mechanisms involved are not elucidated. The purpose of this pilot study was to investigate the effects of a multimodal exercise intervention on functional outcomes, cognitive performance, quality of life (QOL), epigenetic markers and brain-derived neurotrophic factor (BDNF) levels among institutionalized older adult individuals. Participants (n = 8) without dementia who were aged 73.38 ± 11.28 years and predominantly female (87.5%) were included in this quasi-experimental pilot study. A multimodal exercise protocol (cardiovascular capacity, strength, balance/agility and flexibility, perception and cognition) consisted of twice weekly sessions (60 minutes each) over 8 weeks. Balance (Berg Scale), mobility (Timed Up and Go test), functional capacity (Six-Minute Walk test), cognitive function (Mini-Mental State Examination) and QOL (the World Health Organization Quality of Life-BREF Scale questionnaire) were evaluated before and after the intervention. Blood sample (15 mL) was also collected before and after intervention for analysis of biomarkers global histone H3 acetylation and brain-derived neurotrophic factor levels. Significant improvements were observed in cognitive function, balance, mobility, functional capacity and QOL after the intervention. In addition, a tendency toward an increase in global histone H3 acetylation levels was observed, while brain-derived neurotrophic factor level remained unchanged. This study provided evidence that an 8-week multimodal exercise protocol has a significant effect on ameliorating functional outcomes and QOL in institutionalized older adult individuals. In addition, it was also able to promote cognitive improvement, which seems to be partially related to histone hyperacetylation status. The Ethics Research Committee of Centro Universitário Metodista-IPA, Brazil approved the current study on June 6, 2019 (approval No. 3.376.078).
Collapse
Affiliation(s)
- Iasmin Fraga
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Camila Weber
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Wériton Baldo Galiano
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Lucio Iraci
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Mariana Wohlgemuth
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Gabriela Morales
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Camila Cercato
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Juliana Rodriguez
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Daniela Pochmann
- Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Caroline Dani
- Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Pérsia Menz
- Physiotherapist, working in Long-Term Institutions, Porto Alegre, RS, Brasil
| | - Adriane Dal Bosco
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Viviane Rostirola Elsner
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul; Curso de Fisioterapia do Centro Universitário Metodista-IPA; Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| |
Collapse
|
11
|
Maejima H, Kitahara M, Takamatsu Y, Mani H, Inoue T. Effects of exercise and pharmacological inhibition of histone deacetylases (HDACs) on epigenetic regulations and gene expressions crucial for neuronal plasticity in the motor cortex. Brain Res 2020; 1751:147191. [PMID: 33152341 DOI: 10.1016/j.brainres.2020.147191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 01/12/2023]
Abstract
The objective of this study was to examine the effect of epigenetic treatment using an histone deacetylases (HDAC) inhibitor in addition to aerobic exercise on the epigenetic markers and neurotrophic gene expressions in the motor cortex, to find a more enriched brain pre-conditioning for motor learning in neurorehabilitation. ICR mice were divided into four groups based on two factors: HDAC inhibition and exercise. Intraperitoneal administration of an HDAC inhibitor (1.2 g/kg sodium butyrate, NaB) and treadmill exercise (approximately at 10 m/min for 60 min) were conducted five days a week for four weeks. NaB administration inhibited total HDAC activity and enhanced acetylation level of histones specifically in histone H4, accompanying the increase of transcription levels of immediate-early genes (IEGs) (c-fos and Arc) and neurotrophins (BDNF and NT-4) crucial for neuroplasticity in the motor cortex. However, exercise enhanced HDAC activity and acetylation level of histone H4 and H3 without the modification of transcription levels. In addition, there were no synergic effects between HDAC inhibition and the exercise regime on the gene expressions. This study showed that HDAC inhibition could present more enriched condition for neuroplasticity to the motor cortex. However, exercise-induced neurotrophic gene expressions could depend on exercise regimen based on the intensity, the term etc. Therefore, this study has a novelty suggesting that pharmacological HDAC inhibition could be an alternative potent approach to present a neuronal platform with enriched neuroplasticity for motor learning and motor recovery, however, an appropriate exercise regimen is expected in this approach.
Collapse
Affiliation(s)
- Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan.
| | - Mika Kitahara
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Yasuyuki Takamatsu
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroki Mani
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Takahiro Inoue
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan; Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| |
Collapse
|
12
|
de Meireles LCF, Galvão F, Walker DM, Cechinel LR, de Souza Grefenhagen ÁI, Andrade G, Palazzo RP, Lovatel GA, Basso CG, Nestler EJ, Siqueira IR. Exercise Modalities Improve Aversive Memory and Survival Rate in Aged Rats: Role of Hippocampal Epigenetic Modifications. Mol Neurobiol 2019; 56:8408-8419. [PMID: 31250382 PMCID: PMC6918477 DOI: 10.1007/s12035-019-01675-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/09/2019] [Indexed: 12/15/2022]
Abstract
We aimed to investigate the effects of aging and different exercise modalities on aversive memory and epigenetic landscapes at brain-derived neurotrophic factor, cFos, and DNA methyltransferase 3 alpha (Bdnf, cFos, and Dnmt3a, respectively) gene promoters in hippocampus of rats. Specifically, active epigenetic histone markers (H3K9ac, H3K4me3, and H4K8ac) and a repressive mark (H3K9me2) were evaluated. Adult and aged male Wistar rats (2 and 22 months old) were subjected to aerobic, acrobatic, resistance, or combined exercise modalities for 20 min, 3 times a week, during 12 weeks. Aging per se altered histone modifications at the promoters of Bdnf, cFos, and Dnmt3a. All exercise modalities improved both survival rate and aversive memory performance in aged animals (n = 7-10). Exercise altered hippocampal epigenetic marks in an age- and modality-dependent manner (n = 4-5). Aerobic and resistance modalities attenuated age-induced effects on hippocampal Bdnf promoter H3K4me3. Besides, exercise modalities which improved memory performance in aged rats were able to modify H3K9ac or H3K4me3 at the cFos promoter, which could increase gene transcription. Our results highlight biological mechanisms which support the efficacy of all tested exercise modalities attenuating memory deficits induced by aging.
Collapse
Affiliation(s)
| | - Fernando Galvão
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Deena M Walker
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Reck Cechinel
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ágnis Iohana de Souza Grefenhagen
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Gisele Andrade
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Roberta Passos Palazzo
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gisele Agustini Lovatel
- Departamento de Fisioterapia, Universidade Federal de Santa Catarina, Araranguá, Santa Catarina, Brazil
| | - Carla Giovanna Basso
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eric J Nestler
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ionara Rodrigues Siqueira
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, CEP 90050-170, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
13
|
Increase in HDAC9 suppresses myoblast differentiation via epigenetic regulation of autophagy in hypoxia. Cell Death Dis 2019; 10:552. [PMID: 31320610 PMCID: PMC6639330 DOI: 10.1038/s41419-019-1763-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 02/08/2023]
Abstract
Extremely reduced oxygen (O2) levels are detrimental to myogenic differentiation and multinucleated myotube formation, and chronic exposure to high-altitude hypoxia has been reported to be an important factor in skeletal muscle atrophy. However, how chronic hypoxia causes muscle dysfunction remains unknown. In the present study, we found that severe hypoxia (1% O2) significantly inhibited the function of C2C12 cells (from a myoblast cell line). Importantly, the impairment was continuously manifested even during culture under normoxic conditions for several passages. Mechanistically, we revealed that histone deacetylases 9 (HDAC9), a member of the histone deacetylase family, was significantly increased in C2C12 cells under hypoxic conditions, thereby inhibiting intracellular autophagy levels by directly binding to the promoter regions of Atg7, Beclin1, and LC3. This phenomenon resulted in the sequential dephosphorylation of GSK3β and inactivation of the canonical Wnt pathway, impairing the function of the C2C12 cells. Taken together, our results suggest that hypoxia-induced myoblast dysfunction is due to aberrant epigenetic regulation of autophagy, and our experimental evidence reveals the possible molecular pathogenesis responsible for some muscle diseases caused by chronic hypoxia and suggests a potential therapeutic option.
Collapse
|
14
|
Maejima H, Inoue T, Takamatsu Y. Therapeutic exercise accompanied by neuronal modulation to enhance neurotrophic factors in the brain with central nervous system disorders. Phys Ther Res 2019; 22:38-43. [PMID: 31289711 DOI: 10.1298/ptr.r0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Exercise is a primary therapeutic regimen in physical therapy to rehabilitate the motor function of patients with central nervous system (CNS) disorders such as cerebrovascular accident (CVA). Furthermore, exercise positively contributes to cognitive function related to neuroplasticity and neuroprotection in the hippocampus. Neurotrophins play a crucial role in neuroplasticity, neurogenesis, and neuroprotection in the CNS. Exercise enhances the expression of neurotrophins in the brain. Thus, novel regimens for kinesiotherapy in CNS disorders to further enhance exercise-induced expression are expected. In this review, we described three novel regimens for kinesiotherapy in CNS disorders based on the interaction between exercise and pharmacological treatment with the idea of "inhibition of inhibition" in the CNS.
Collapse
Affiliation(s)
- Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University
| | | | - Yasuyuki Takamatsu
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University
| |
Collapse
|
15
|
Social isolation and social support at adulthood affect epigenetic mechanisms, brain-derived neurotrophic factor levels and behavior of chronically stressed rats. Behav Brain Res 2019; 366:36-44. [PMID: 30880220 DOI: 10.1016/j.bbr.2019.03.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022]
Abstract
Epigenetic modulation of brain-derived neurotrophic factor (BDNF) provides one possible explanation for the dysfunctions induced by stress, such as psychiatric disorders and cognitive decline. Interestingly, social support can be protective against some of these effects, but the mechanisms of social buffering are poorly understood. Conversely, early isolation exacerbates the responses to stressors, although its effects in adulthood remain unclear. This study investigated the effects of social isolation and social buffering on hippocampal epigenetic mechanisms, BDNF levels and behavioral responses of chronically stressed young adult rats. Male Wistar rats (3 months) were assigned to accompanied (paired) or isolated housing. After one-month half of each group was submitted to a chronic unpredictable stress (CUS) protocol for 18 days. Among accompanied animals, only one was exposed to stress. Behavioral analysis encompassed the Open field, plus maze and inhibitory avoidance tasks. Hippocampal H3K9 and H4K12 acetylation, HDAC5 expression and BDNF levels were evaluated. Isolated housing increased HDAC5 expression, decreased H3K9 and H4K12 acetylation, reduced BDNF levels, and impaired long-term memory. Stress affected weight gain, induced anxiety-like behavior and decreased AcK9H3 levels. Interactions between housing conditions and social stress were seen only for HDAC5 expression, which showed a further increase in the isolated + CUS group but remained constant in accompanied animals. In conclusion, social isolation at adulthood induced epigenetic alterations and exacerbated the effects of chronic stress on HDAC5. Notwithstanding, social support counteracted the adverse effects of stress on HDAC5 expression.
Collapse
|
16
|
Maejima H, Ninuma S, Okuda A, Inoue T, Hayashi M. Exercise and low-level GABAA receptor inhibition modulate locomotor activity and the expression of BDNF accompanied by changes in epigenetic regulation in the hippocampus. Neurosci Lett 2018; 685:18-23. [DOI: 10.1016/j.neulet.2018.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/11/2018] [Accepted: 07/05/2018] [Indexed: 11/24/2022]
|
17
|
Maejima H, Kanemura N, Kokubun T, Murata K, Takayanagi K. Exercise enhances cognitive function and neurotrophin expression in the hippocampus accompanied by changes in epigenetic programming in senescence-accelerated mice. Neurosci Lett 2017; 665:67-73. [PMID: 29129676 DOI: 10.1016/j.neulet.2017.11.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Abstract
Aerobic exercise is known to increase expression of neurotrophins, particularly brain-derived neurotrophic factor (BDNF), in the hippocampus and to improve cognitive function. Exercise exerts neuroprotective effects in the hippocampus by inducing epigenetic changes, which play crucial roles in aging and neurodegenerative diseases. Specifically, the activity levels of histone acetyltransferases (HATs) and histone deacetylases (HDACs) regulate histone acetylation and modulate gene transcription. The objective of the present study was to assess the interactive effects of exercise and aging on cognitive function, expression of neurotrophins (BDNF and neurotrophin-4) and their receptors (tyrosine receptor kinase B and p75), and epigenetic regulations, including the activity of HATs and HADCs in the hippocampus. We used the senescence-accelerated mouse (SAM) model, specifically 13-month-old SAM resistant 1(SAMR1) and SAM prone 1 (SAMP1) lines. Mice were distributed into four groups based on accelerated senescence and exercise status. Mice in the exercise groups exercised on a treadmill for approximately 60min a day, 5days a week. Aerobic exercise for 4 weeks improved cognitive function, accompanied by an increase in BDNF expression and a decrease in p75 transcription in both SAMR1 and SAMP1. In addition, the exercise regimen activated both HAT and HDAC in the hippocampus. Therefore, the present study reveals that despite accelerated senescence, long-term exercise improved cognitive function, upregulated the expression of BDNF, and downregulated p75, a receptor involved in apoptotic signaling. Furthermore, long-term exercise enhanced activity of both HAT and HDAC, which may contribute to the transcriptional regulation underlying the improvement of cognitive function.
Collapse
Affiliation(s)
- Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan.
| | - Naohiko Kanemura
- Department of Physical Therapy, Faculty of Health and Social Services, Saitama Prefectural University, Sannomiya 820, Koshigaya, 343-8540, Japan
| | - Takanori Kokubun
- Department of Physical Therapy, Faculty of Health and Social Services, Saitama Prefectural University, Sannomiya 820, Koshigaya, 343-8540, Japan
| | - Kenji Murata
- Department of Physical Therapy, Faculty of Health and Social Services, Saitama Prefectural University, Sannomiya 820, Koshigaya, 343-8540, Japan
| | - Kiyomi Takayanagi
- Department of Physical Therapy, Faculty of Health and Social Services, Saitama Prefectural University, Sannomiya 820, Koshigaya, 343-8540, Japan
| |
Collapse
|
18
|
Rakesh G, Szabo ST, Alexopoulos GS, Zannas AS. Strategies for dementia prevention: latest evidence and implications. Ther Adv Chronic Dis 2017; 8:121-136. [PMID: 28815009 DOI: 10.1177/2040622317712442] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/24/2017] [Indexed: 01/21/2023] Open
Abstract
Dementia is a common and debilitating syndrome with enormous impact on individuals and societies. Preventing disease onset or progression would translate to public health and societal benefits. In this review, we discuss the latest evidence on interventions that may show promise for the prevention of cognitive decline. We appraise existing evidence primarily drawn from randomized controlled trials, systematic reviews, and meta-analyses, but also highlight observational studies in humans and relevant work in model organisms. Overall, there is currently limited evidence to support a cause-effect relationship between any preventive strategy and the development or progression of dementia. However, studies to date suggest that a multifactorial intervention comprising regular exercise and healthy diet, along with the amelioration of vascular risk factors, psychosocial stress, and major depressive episodes may be most promising for the prevention of cognitive decline. We discuss the challenges, future directions, and implications of this line of research.
Collapse
Affiliation(s)
- Gopalkumar Rakesh
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Steven T Szabo
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - George S Alexopoulos
- Department of Psychiatry, Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medical College, White Plains, NY, USA
| | - Anthony S Zannas
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany
| |
Collapse
|
19
|
Fernandes J, Arida RM, Gomez-Pinilla F. Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neurosci Biobehav Rev 2017; 80:443-456. [PMID: 28666827 DOI: 10.1016/j.neubiorev.2017.06.012] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/18/2017] [Accepted: 06/26/2017] [Indexed: 02/08/2023]
Abstract
A large amount of evidence has demonstrated the power of exercise to support cognitive function, the effects of which can last for considerable time. An emerging line of scientific evidence indicates that the effects of exercise are longer lasting than previously thought up to the point to affect future generations. The action of exercise on epigenetic regulation of gene expression seem central to building an "epigenetic memory" to influence long-term brain function and behavior. In this review article, we discuss new developments in the epigenetic field connecting exercise with changes in cognitive function, including DNA methylation, histone modifications and microRNAs (miRNAs). The understanding of how exercise promotes long-term cognitive effects is crucial for directing the power of exercise to reduce the burden of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Jansen Fernandes
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Physiology-Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Ricardo Mario Arida
- Department of Physiology-Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|