1
|
Stricker PEF, de Oliveira NB, Mogharbel BF, Irioda AC, da Rosa NN, Lührs L, Saçaki CS, Munhoz da Rocha I, Alves LR, Poubel SB, Cardoso da Silva J, Carvalho PC, Fischer JSDG, de Carvalho KAT. Proteomic Characterization of Extracellular Vesicles from Human Neural Precursor Cells: A Promising Advanced Therapy for Neurodegenerative Diseases. Int J Nanomedicine 2025; 20:6675-6699. [PMID: 40444011 PMCID: PMC12121667 DOI: 10.2147/ijn.s502031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 05/01/2025] [Indexed: 06/02/2025] Open
Abstract
Background The therapeutic effect of stem cells is attributed to their direct maturation into somatic cells and their paracrine effects, which influence the extracellular environment. One such component released is extracellular vesicles containing proteins and genetic materials with immunomodulatory functions and facilitating cell-to-cell communication. Purpose The study's main objective was to characterize extracellular vesicles (EVs) from Human Neural Precursor Cells (hNPCs). Methods Wharton's Jelly mesenchymal stem cells (WJ-MSCs) were isolated by explant technique and characterized by flow cytometry and trilineage differentiation. The hNPCs obtained from neurospheres were produced by seeding WJ-MSCs on a natural functional biopolymer matrix. EVs derived from WJ-MSCs and hNPCs were isolated by precipitation methodology and characterized by flow cytometry, nanoparticle tracking analysis (NTA), scanning electron microscopy (TEM), and proteomic. Results hNPCs expressed proteins and genes characteristic of neural precursor cells. The EVs were characterized by flow cytometry and showed varied expression for the markers CD63, CD9, and CD81, indicating different subpopulations based on their origin of formation. NTA and TEM of the EVs exhibited characteristic size, shape, and structural integrity consistent with the criteria established by the International Society for Extracellular Vesicles (ISEV). EV-hNPCs function enrichment analysis of the proteomic results showed that these vesicles presented abundant proteins directly involved in neuronal biological processes such as plasticity, transduction, postsynaptic density, and overall brain development. Discussion The results indicate that EVs derived from hNPCs maintain key neural precursor characteristics and exhibit marker variability, suggesting distinct subpopulations. Their structural integrity aligns with ISEV standards, supporting their potential as reliable biological entities. The proteomic analysis highlights their role in neuronal functions, reinforcing their applicability in neurodegenerative research and therapeutic strategies. Conclusion The EVs were successfully isolated from hNPCs with abundant proteins involved in neuronal processes, making them attractive for acellular therapies to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Priscila Elias Ferreira Stricker
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Nathalia Barth de Oliveira
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Bassam Felipe Mogharbel
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Ana Carolina Irioda
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Nádia Nascimento da Rosa
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Larissa Lührs
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Claudia Sayuri Saçaki
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Isadora Munhoz da Rocha
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | - Lysangela Ronalte Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | - Saloe Bispo Poubel
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Julia Cardoso da Silva
- Computational Mass Spectrometry Group, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | - Paulo Costa Carvalho
- Computational Mass Spectrometry Group, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | | | - Katherine Athayde Teixeira de Carvalho
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Chen S, Xu Z, Yin J, Gu H, Shi Y, Guo C, Meng X, Li H, Huang X, Jiang Y, Wang Y. Predicting functional outcome in ischemic stroke patients using genetic, environmental, and clinical factors: a machine learning analysis of population-based prospective cohort study. Brief Bioinform 2024; 25:bbae487. [PMID: 39397424 PMCID: PMC11471838 DOI: 10.1093/bib/bbae487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
Ischemic stroke (IS) is a leading cause of adult disability that can severely compromise the quality of life for patients. Accurately predicting the IS functional outcome is crucial for precise risk stratification and effective therapeutic interventions. We developed a predictive model integrating genetic, environmental, and clinical factors using data from 7819 IS patients in the Third China National Stroke Registry. Employing an 80:20 split, we randomly divided the dataset into development and internal validation cohorts. The discrimination and calibration performance of models were evaluated using the area under the receiver operating characteristic curves (AUC) for discrimination and Brier score with calibration curve in the internal validation cohort. We conducted genome-wide association studies (GWAS) in the development cohort, identifying rs11109607 (ANKS1B) as the most significant variant associated with IS functional outcome. We employed principal component analysis to reduce dimensionality on the top 100 significant variants identified by the GWAS, incorporating them as genetic factors in the predictive model. We employed a machine learning algorithm capable of identifying nonlinear relationships to establish predictive models for IS patient functional outcome. The optimal model was the XGBoost model, which outperformed the logistic regression model (AUC 0.818 versus 0.756, P < .05) and significantly improved reclassification efficiency. Our study innovatively incorporated genetic, environmental, and clinical factors for predicting the IS functional outcome in East Asian populations, thereby offering novel insights into IS functional outcome.
Collapse
Affiliation(s)
- Siding Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Zhe Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
| | - Jinfeng Yin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
| | - Hongqiu Gu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
| | - Yanfeng Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
| | - Cang Guo
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
| | - Xinying Huang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
| | - Yong Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine (Beihang University and Capital Medical University), No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, 2019RU018, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai 200031, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
| |
Collapse
|
3
|
Ranieri A, La Monica I, Di Iorio MR, Lombardo B, Pastore L. Genetic Alterations in a Large Population of Italian Patients Affected by Neurodevelopmental Disorders. Genes (Basel) 2024; 15:427. [PMID: 38674362 PMCID: PMC11050211 DOI: 10.3390/genes15040427] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Neurodevelopmental disorders are a group of complex multifactorial disorders characterized by cognitive impairment, communication deficits, abnormal behaviour, and/or motor skills resulting from abnormal neural development. Copy number variants (CNVs) are genetic alterations often associated with neurodevelopmental disorders. We evaluated the diagnostic efficacy of the array-comparative genomic hybridization (a-CGH) method and its relevance as a routine diagnostic test in patients with neurodevelopmental disorders for the identification of the molecular alterations underlying or contributing to the clinical manifestations. In the present study, we analysed 1800 subjects with neurodevelopmental disorders using a CGH microarray. We identified 208 (7%) pathogenetic CNVs, 2202 (78%) variants of uncertain significance (VOUS), and 504 (18%) benign CNVs in the 1800 patients analysed. Some alterations contain genes potentially related to neurodevelopmental disorders including CHRNA7, ANKS1B, ANKRD11, RBFOX1, ASTN2, GABRG3, SHANK2, KIF1A SETBP1, SNTG2, CTNNA2, TOP3B, CNTN4, CNTN5, and CNTN6. The identification of interesting significant genes related to neurological disorders with a-CGH is therefore an essential step in the diagnostic procedure, allowing a better understanding of both the pathophysiology of these disorders and the mechanisms underlying their clinical manifestations.
Collapse
Affiliation(s)
- Annaluisa Ranieri
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
| | - Ilaria La Monica
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Rosaria Di Iorio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Barbara Lombardo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
4
|
Mušálková D, Přistoupilová A, Jedličková I, Hartmannová H, Trešlová H, Nosková L, Hodaňová K, Bittmanová P, Stránecký V, Jiřička V, Langmajerová M, Woodbury‐Smith M, Zarrei M, Trost B, Scherer SW, Bleyer AJ, Vevera J, Kmoch S. Increased burden of rare protein-truncating variants in constrained, brain-specific and synaptic genes in extremely impulsively violent males with antisocial personality disorder. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12882. [PMID: 38359179 PMCID: PMC10869132 DOI: 10.1111/gbb.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
The genetic correlates of extreme impulsive violence are poorly understood, and there have been few studies that have characterized a large group of affected individuals both clinically and genetically. We performed whole exome sequencing (WES) in 290 males with the life-course-persistent, extremely impulsively violent form of antisocial personality disorder (APD) and analyzed the spectrum of rare protein-truncating variants (rPTVs). Comparisons were made with 314 male controls and publicly available genotype data. Functional annotation tools were used for biological interpretation. Participants were significantly more likely to harbor rPTVs in genes that are intolerant to loss-of-function variants (odds ratio [OR] 2.06; p < 0.001), specifically expressed in brain (OR 2.80; p = 0.036) and enriched for those involved in neurotransmitter transport and synaptic processes. In 60 individuals (20%), we identified rPTVs that we classified as clinically relevant based on their clinical associations, biological function and gene expression patterns. Of these, 37 individuals harbored rPTVs in 23 genes that are associated with a monogenic neurological disorder, and 23 individuals harbored rPTVs in 20 genes reportedly intolerant to loss-of-function variants. The analysis presents evidence in support of a model where presence of either one or several private, functionally relevant mutations contribute significantly to individual risk of life-course-persistent APD and reveals multiple individuals who could be affected by clinically unrecognized neuropsychiatric Mendelian disease. Thus, Mendelian diseases and increased rPTV burden may represent important factors for the development of extremely impulsive violent life-course-persistent forms of APD irrespective of their clinical presentation.
Collapse
Affiliation(s)
- Dita Mušálková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Anna Přistoupilová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Ivana Jedličková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Hana Hartmannová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Helena Trešlová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Kateřina Hodaňová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Petra Bittmanová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Viktor Stránecký
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Václav Jiřička
- Department of PsychologyPrison Service of the Czech RepublicPragueCzech Republic
- Department of Psychiatry, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Michaela Langmajerová
- Department of Psychiatry, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Marc Woodbury‐Smith
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick ChildrenTorontoOntarioCanada
- Faculty of Medical Sciences, Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Mehdi Zarrei
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick ChildrenTorontoOntarioCanada
| | - Brett Trost
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick ChildrenTorontoOntarioCanada
| | - Stephen W. Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Molecular Genetics and McLaughlin CentreUniversity of TorontoTorontoOntarioCanada
| | - Anthony J. Bleyer
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
- Section on Nephrology, Wake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jan Vevera
- Department of Psychiatry, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
- Department of PsychiatryUniversity Hospital PilsenPilsenCzech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
- Department of Psychiatry, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| |
Collapse
|
5
|
Lee J, Lee H, Lee H, Shin M, Shin MG, Seo J, Lee EJ, Park SA, Park S. ANKS1A regulates LDL receptor-related protein 1 (LRP1)-mediated cerebrovascular clearance in brain endothelial cells. Nat Commun 2023; 14:8463. [PMID: 38123547 PMCID: PMC10733300 DOI: 10.1038/s41467-023-44319-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Brain endothelial LDL receptor-related protein 1 (LRP1) is involved in the clearance of Aβ peptides across the blood-brain barrier (BBB). Here we show that endothelial deficiency of ankyrin repeat and SAM domain containing 1 A (ANKS1A) reduces both the cell surface levels of LRP1 and the Aβ clearance across the BBB. Association of ANKS1A with the NPXY motifs of LRP1 facilitates the transport of LRP1 from the endoplasmic reticulum toward the cell surface. ANKS1A deficiency in an Alzheimer's disease mouse model results in exacerbated Aβ pathology followed by cognitive impairments. These deficits are reversible by gene therapy with brain endothelial-specific ANKS1A. In addition, human induced pluripotent stem cell-derived BBBs (iBBBs) were generated from endothelial cells lacking ANKS1A or carrying the rs6930932 variant. Those iBBBs exhibit both reduced cell surface LRP1 and impaired Aβ clearance. Thus, our findings demonstrate that ANKS1A regulates LRP1-mediated Aβ clearance across the BBB.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Hyein Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Korea
| | - Miram Shin
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Min-Gi Shin
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Jinsoo Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Korea
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Sun Ah Park
- Lab for Neurodegenerative Dementia, Department of Anatomy, and Department of Neurology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea.
| |
Collapse
|
6
|
Vohra HZ, Saunders JM, Jaster AM, de la Fuente Revenga M, Jimenez J, Fernández-Teruel A, Wolstenholme JT, Beardsley PM, González-Maeso J. Sex-specific effects of psychedelics on prepulse inhibition of startle in 129S6/SvEv mice. Psychopharmacology (Berl) 2022; 239:1649-1664. [PMID: 34345931 PMCID: PMC10103008 DOI: 10.1007/s00213-021-05913-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/22/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Prepulse inhibition (PPI) of startle is a sensorimotor gating phenomenon perturbed in a variety of neuropsychiatric conditions. Psychedelics disrupt PPI in rats and humans, but their effects and involvement of the serotonin 5-HT2A receptor (5-HT2AR) in mice remain unexplored. METHODS We tested the effect of the psychedelic 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (0.5 mg/kg, i.p.) on startle amplitude and %PPI in response to acoustic stimuli under up to four different experimental conditions that included changes in background and stimulus intensity, prepulse and pulse duration, and interstimulus interval in male and female 129S6/SvEv mice. We also evaluated the effect of the 5-HT2AR antagonist M100,907 (1 mg/kg, i.p.) on DOI-induced startle amplitude and %PPI, as well as the effect of the psychedelic LSD (0.24 mg/kg, i.p.) and the dopamine agonists apomorphine (5 mg/kg, s.c.) and SKF-82,958 (0.5 mg/kg, i.p.) in male 129S6/SvEv mice. RESULTS DOI altered startle amplitude with either pulse alone or prepulse + pulse presentations in all PPI conditions, and increased %PPI in three out of four PPI conditions in male mice - an effect that was prevented by M100,907. In female mice, DOI increased %PPI without affecting startle amplitude. %PPI was positively correlated with startle amplitude in males while being negatively correlated in female mice. In male mice, LSD also increased %PPI, although it did not affect startle amplitude, whereas apomorphine and SKF-82,958 induced decreases in %PPI. CONCLUSION Our findings highlight a distinct effect of the psychedelic DOI on PPI in 129S6/SvEv mice, suggesting 5-HT2AR-dependent PPI improvement in a paradigm-dependent and sex-dependent manner.
Collapse
Affiliation(s)
- Hiba Z Vohra
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Justin M Saunders
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Alaina M Jaster
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.,Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Mario de la Fuente Revenga
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.,Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jennifer Jimenez
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universidad Autónoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.,VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Patrick M Beardsley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.,Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
7
|
Lindner L, Cayrou P, Rosahl TW, Zhou HH, Birling MC, Herault Y, Pavlovic G. Droplet digital PCR or quantitative PCR for in-depth genomic and functional validation of genetically altered rodents. Methods 2021; 191:107-119. [PMID: 33838271 DOI: 10.1016/j.ymeth.2021.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Gene targeting and additive (random) transgenesis have proven to be powerful technologies with which to decipher the mammalian genome. With the advent of CRISPR/Cas9 genome editing, the ability to inactivate or modify the function of a gene has become even more accessible. However, the impact of each generated modification may be different from what was initially desired. Minimal validation of mutant alleles from genetically altered (GA) rodents remains essential to guarantee the interpretation of experimental results. The protocol described here combines design strategies for genomic and functional validation of genetically modified alleles with droplet digital PCR (ddPCR) or quantitative PCR (qPCR) for target DNA or mRNA quantification. In-depth analysis of the results obtained with GA models through the analysis of target DNA and mRNA quantification is also provided, to evaluate which pitfalls can be detected using these two methods, and we propose recommendations for the characterization of different type of mutant allele (knock-out, knock-in, conditional knock-out, FLEx, IKMC model or transgenic). Our results also highlight the possibility that mRNA expression of any mutated allele can be different from what might be expected in theory or according to common assumptions. For example, mRNA analyses on knock-out lines showed that nonsense-mediated mRNA decay is generally not achieved with a critical-exon approach. Likewise, comparison of multiple conditional lines crossed with the same CreERT2 deleter showed that the inactivation outcome was very different for each conditional model. DNA quantification by ddPCR of G0 to G2 generations of transgenic rodents generated by pronuclear injection showed an unexpected variability, demonstrating that G1 generation rodents cannot be considered as established lines.
Collapse
Affiliation(s)
- Loic Lindner
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France
| | - Pauline Cayrou
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France
| | - Thomas W Rosahl
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Heather H Zhou
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Marie-Christine Birling
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France
| | - Yann Herault
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France
| | - Guillaume Pavlovic
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France.
| |
Collapse
|
8
|
Sun Y, Chang S, Liu Z, Zhang L, Wang F, Yue W, Sun H, Ni Z, Chang X, Zhang Y, Chen Y, Liu J, Lu L, Shi J. Identification of novel risk loci with shared effects on alcoholism, heroin, and methamphetamine dependence. Mol Psychiatry 2021; 26:1152-1161. [PMID: 31462767 DOI: 10.1038/s41380-019-0497-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/04/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022]
Abstract
Different substance dependences have common effects on reward pathway and molecular adaptations, however little is known regarding their shared genetic factors. We aimed to identify the risk genetic variants that are shared for substance dependence (SD). First, promising genome-wide significant loci were identified from 3296 patients (521 alcoholic/1026 heroin/1749 methamphetamine) vs 2859 healthy controls and independently replicated using 1954 patients vs 1904 controls. Second, the functional effects of promising variants on gene expression, addiction characteristics, brain structure (gray and white matter), and addiction behaviors in addiction animal models (chronic administration and self-administration) were assessed. In addition, we assessed the genetic correlation among the three SDs using LD score regression. We identified and replicated three novel loci that were associated with the common risk of heroin, methamphetamine addiction, and alcoholism: ANKS1B rs2133896 (Pmeta = 3.60 × 10-9), AGBL4 rs147247472 (Pmeta = 3.40 × 10-12), and CTNNA2 rs10196867 (Pmeta = 4.73 × 10-9). Rs2133896 in ANKS1B was associated with ANKS1B gene expression and had effects on gray matter of the left calcarine and white matter of the right superior longitudinal fasciculus in heroin dependence. Overexpression of anks1b gene in the ventral tegmental area decreased addiction vulnerability for heroin and methamphetamine in self-administration rat models. Our findings could shed light on the root cause for substance dependence and will be helpful for the development of cost-effective prevention strategies for general addiction disorders.
Collapse
Affiliation(s)
- Yan Sun
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Zhen Liu
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China
| | - Libo Zhang
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China
| | - Fan Wang
- The Second Affiliated Hospital, Xinjiang Medical University, 830063, Urumqi, China
- Beijing Hui Long Guan Hospital, 100096, Beijing, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Zhaojun Ni
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Xiangwen Chang
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China
| | - Yibing Zhang
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China
| | - Yang Chen
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China
| | - Jiqiang Liu
- Beijing Compass Biotechnology Company, 102206, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China.
- Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China.
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China.
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, 100191, Beijing, China.
| |
Collapse
|
9
|
Tubbs JD, Ding J, Baum L, Sham PC. Systemic neuro-dysregulation in depression: Evidence from genome-wide association. Eur Neuropsychopharmacol 2020; 39:1-18. [PMID: 32896454 DOI: 10.1016/j.euroneuro.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
Depression is the world's leading cause of disability. Greater understanding of the neurobiological basis of depression is necessary for developing novel treatments with improved efficacy and acceptance. Recently, major advances have been made in the search for genetic variants associated with depression which may help to elucidate etiological mechanisms. The present review has two major objectives. First, we offer a brief review of two major biological systems with strong evidence for involvement in depression pathology: neurotransmitter systems and the stress response. Secondly, we provide a synthesis of the functions of the 269 genes implicated by the most recent genome-wide meta-analysis, supporting the importance of these systems in depression and providing insights into other possible mechanisms involving neurodevelopment, neurogenesis, and neurodegeneration. Our goal is to undertake a broad, preliminary stock-taking of the most recent hypothesis-free findings and examine the weight of the evidence supporting these existing theories and highlighting novel directions. This qualitative review and accompanying gene function table provides a valuable resource and guide for basic and translational researchers, with suggestions for future mechanistic research, leveraging genetics to prioritize studies on the neurobiological processes involved in depression etiology and treatment.
Collapse
Affiliation(s)
- Justin D Tubbs
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Jiahong Ding
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Larry Baum
- Department of Psychiatry, The University of Hong Kong, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Centre of PanorOmic Sciences, The University of Hong Kong, Hong Kong.
| |
Collapse
|
10
|
Carbonell AU, Cho CH, Tindi JO, Counts PA, Bates JC, Erdjument-Bromage H, Cvejic S, Iaboni A, Kvint I, Rosensaft J, Banne E, Anagnostou E, Neubert TA, Scherer SW, Molholm S, Jordan BA. Haploinsufficiency in the ANKS1B gene encoding AIDA-1 leads to a neurodevelopmental syndrome. Nat Commun 2019; 10:3529. [PMID: 31388001 PMCID: PMC6684583 DOI: 10.1038/s41467-019-11437-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/13/2019] [Indexed: 12/23/2022] Open
Abstract
Neurodevelopmental disorders, including autism spectrum disorder, have complex polygenic etiologies. Single-gene mutations in patients can help define genetic factors and molecular mechanisms underlying neurodevelopmental disorders. Here we describe individuals with monogenic heterozygous microdeletions in ANKS1B, a predicted risk gene for autism and neuropsychiatric diseases. Affected individuals present with a spectrum of neurodevelopmental phenotypes, including autism, attention-deficit hyperactivity disorder, and speech and motor deficits. Neurons generated from patient-derived induced pluripotent stem cells demonstrate loss of the ANKS1B-encoded protein AIDA-1, a brain-specific protein highly enriched at neuronal synapses. A transgenic mouse model of Anks1b haploinsufficiency recapitulates a range of patient phenotypes, including social deficits, hyperactivity, and sensorimotor dysfunction. Identification of the AIDA-1 interactome using quantitative proteomics reveals protein networks involved in synaptic function and the etiology of neurodevelopmental disorders. Our findings formalize a link between the synaptic protein AIDA-1 and a rare, previously undefined genetic disease we term ANKS1B haploinsufficiency syndrome.
Collapse
Affiliation(s)
- Abigail U Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Chang Hoon Cho
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Jaafar O Tindi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Pamela A Counts
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Juliana C Bates
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, 10016, NY, USA
| | - Svetlana Cvejic
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Alana Iaboni
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, M46 1R8, ON, Canada
| | - Ifat Kvint
- Pediatric Neurology Clinic, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Jenny Rosensaft
- Genetics Institute, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Ehud Banne
- Genetics Institute, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, M46 1R8, ON, Canada
| | - Thomas A Neubert
- Department of Cell Biology and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, 10016, NY, USA
- Department of Pharmacology, New York University School of Medicine, New York, 10016, NY, USA
| | - Stephen W Scherer
- Centre for Applied Genomics and McLaughlin Centre, Hospital for Sick Children and University of Toronto, Toronto, M56 0A4, ON, Canada
| | - Sophie Molholm
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, 10461, NY, USA.
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, 10461, NY, USA.
| |
Collapse
|
11
|
Parra-Damas A, Saura CA. Synapse-to-Nucleus Signaling in Neurodegenerative and Neuropsychiatric Disorders. Biol Psychiatry 2019; 86:87-96. [PMID: 30846302 DOI: 10.1016/j.biopsych.2019.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/18/2018] [Accepted: 01/04/2019] [Indexed: 01/07/2023]
Abstract
Synapse-to-nucleus signaling is critical for converting signals received at synapses into transcriptional programs essential for cognition, memory, and emotion. This neuronal mechanism usually involves activity-dependent translocation of synaptonuclear factors from synapses to the nucleus resulting in regulation of transcriptional programs underlying synaptic plasticity. Acting as synapse-to-nucleus messengers, amyloid precursor protein intracellular domain associated-1 protein, cAMP response element binding protein (CREB)-regulated transcription coactivator-1, Jacob, nuclear factor kappa-light-chain-enhancer of activated B cells, RING finger protein 10, and SH3 and multiple ankyrin repeat domains 3 play essential roles in synapse remodeling and plasticity, which are considered the cellular basis of memory. Other synaptic proteins, such as extracellular signal-regulated kinase, calcium/calmodulin-dependent protein kinase II gamma, and CREB2, translocate from dendrites or cytosol to the nucleus upon synaptic activity, suggesting that they could contribute to synapse-to-nucleus signaling. Notably, some synaptonuclear factors converge on the transcription factor CREB, indicating that CREB signaling is a key hub mediating integration of synaptic signals into transcriptional programs required for neuronal function and plasticity. Although major efforts have been focused on identification and regulatory mechanisms of synaptonuclear factors, the relevance of synapse-to-nucleus communication in brain physiology and pathology is still unclear. Recent evidence, however, indicates that synaptonuclear factors are implicated in neuropsychiatric, neurodevelopmental, and neurodegenerative disorders, suggesting that uncoupling synaptic activity from nuclear signaling may prompt synapse pathology, contributing to a broad spectrum of brain disorders. This review summarizes current knowledge of synapse-to-nucleus signaling in neuron survival, synaptic function and plasticity, and memory. Finally, we discuss how altered synapse-to-nucleus signaling may lead to memory and emotional disturbances, which is relevant for clinical and therapeutic strategies in neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Arnaldo Parra-Damas
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos A Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
12
|
Younis RM, Taylor RM, Beardsley PM, McClay JL. The ANKS1B gene and its associated phenotypes: focus on CNS drug response. Pharmacogenomics 2019; 20:669-684. [PMID: 31250731 PMCID: PMC6912848 DOI: 10.2217/pgs-2019-0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
The ANKS1B gene was a top finding in genome-wide association studies (GWAS) of antipsychotic drug response. Subsequent GWAS findings for ANKS1B include cognitive ability, educational attainment, body mass index, response to corticosteroids and drug dependence. We review current human association evidence for ANKS1B, in addition to functional studies that include two published mouse knockouts. The several GWAS findings in humans indicate that phenotypically relevant variation is segregating at the ANKS1B locus. ANKS1B shows strong plausibility for involvement in CNS drug response because it encodes a postsynaptic effector protein that mediates long-term changes to neuronal biology. Forthcoming data from large biobanks should further delineate the role of ANKS1B in CNS drug response.
Collapse
Affiliation(s)
- Rabha M Younis
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, VA 23298, USA
| | - Rachel M Taylor
- Center for Military Psychiatry & Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MA 20910, USA
| | - Patrick M Beardsley
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Center for Biomarker Research & Personalized Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Joseph L McClay
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, VA 23298, USA
| |
Collapse
|