1
|
Zhang S, Wang C, Liu J, Liu L, Miao L, Wang H, Tian Y, Cheng H, Li J, Zeng X. The novel miR_146-Tfdp2 axis antagonizes METH induced neuron apoptosis and cell cycle abnormalities in tree shrew. Neuropharmacology 2025; 267:110300. [PMID: 39793695 DOI: 10.1016/j.neuropharm.2025.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Methamphetamine (METH) is a synthetic drug with potent addictive, relapse, and neurotoxic properties. METH abuse contributes to severe damage to the central nervous system, potentially causing cognitive impairments, behavioral changes, and neurodegenerative diseases. METH-induced neuronal damage is closely related to apoptosis and cell cycle abnormalities, while gene expression regulator microRNAs (miRNAs) may play extensive roles in this progress, but the specific mechanisms remain unclear. We found that the novel miRNA 146 (miR_146) was downregulated in METH-induced apoptosis and cell cycle arrest in tree shrew primary neurons, while the expression of its target gene Tfdp2 was increased after METH exposure. Overexpression of miR_146 or silencing of Tfdp2 significantly alleviated METH-induced cell cycle arrest and apoptosis in primary tree shrew neurons. These findings provide new insights into the role of the miR_146-Tfdp2 axis in METH-induced neurotoxic injury and offer a theoretical basis for miR_146 as potential therapeutic targets in drug abuse.
Collapse
Affiliation(s)
- Shuwei Zhang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China; The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chan Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Jianxing Liu
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Liu Liu
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Lin Miao
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Haowei Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yunqing Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Hao Cheng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China; Liaoning Province Key Laboratory of Forensic Bio-evidence Science, Collaborative Laboratory of Intelligentized Forensic Science, Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China.
| | - Juan Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China; Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China.
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Ding J, Wu J, Hou X, Yang L, Gao Y, Zheng J, Jia N, He Z, Zhang H, Wang C, Qi X, Huang J, Pei X, Wang J. α-synuclein-lack expression rescues methamphetamine-induced mossy fiber degeneration in dorsal hippocampal CA3. Neurotoxicology 2024; 101:36-45. [PMID: 38311184 DOI: 10.1016/j.neuro.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Methamphetamine (METH) - induced cognitive impairments may be related to synaptic degeneration at mossy fiber terminals, critical for spatial memory formation in hippocampal circuits. We have previously found METH-induced neurodegeneration in the striatum by increasing the α-synuclein (α-SYN) level. However, whether and how the METH-induced mossy fiber degeneration is also blamed for the abnormal accumulation of α-SYN remains to be elucidated. Chronic METH exposure decreased mossy fiber density but upregulatedα-SYN and phosphorylated TAU (TAU-pSer396) in hippocampal CA3, associated with glial cell overactivation, axonal neuropathies, and memory impairment. Notably, the knockout of the α-SYN gene significantly alleviated the METH-induced mossy fiber degeneration and memory impairment. Meanwhile, the TAU-pSer396 accumulation and glial activation were ameliorated by α-SYN knockout. Our findings suggest an essential role of α-SYN in mediating METH-induced mossy fiber degeneration, providing promising therapeutic and prophylactic targets for METH-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China; Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jun Wu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaotao Hou
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China; Guangdong Provincial Key Laboratory of Genetic Disease Diagnostic, Guangzhou, China
| | - Li Yang
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Yingdong Gao
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Juan Zheng
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Nannan Jia
- Neonatal Screening Center, Taian Maternity and Child Health Hospital, Taian, China
| | - Zheng He
- Neonatal Screening Center, Taian Maternity and Child Health Hospital, Taian, China
| | - Hui Zhang
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Chengfei Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jiang Huang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang China.
| | - Jiawen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
3
|
Yang G, Li J, Peng Y, Shen B, Li Y, Liu L, Wang C, Xu Y, Lin S, Zhang S, Tan Y, Zhang H, Zeng X, Li Q, Lu G. Ginsenoside Rb1 attenuates methamphetamine (METH)-induced neurotoxicity through the NR2B/ERK/CREB/BDNF signalings in vitro and in vivo models. J Ginseng Res 2022; 46:426-434. [PMID: 35600772 PMCID: PMC9120644 DOI: 10.1016/j.jgr.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 01/21/2023] Open
Abstract
Aim This study investigates the effects of ginsenoside Rb1 (GsRb1) on methamphetamine (METH)-induced toxicity in SH-SY5Y neuroblastoma cells and METH-induced conditioned place preference (CPP) in adult Sprague-Dawley rats. It also examines whether GsRb1 can regulate these effects through the NR2B/ERK/CREB/BDNF signaling pathways. Methods SH-SY5Y cells were pretreated with GsRb1 (20 μM and 40 μM) for 1 h, followed by METH treatment (2 mM) for 24 h. Rats were treated with METH (2 mg/kg) or saline on alternating days for 10 days to allow CPP to be examined. GsRb1 (5, 10, and 20 mg/kg) was injected intraperitoneally 1 h before METH or saline. Western blot was used to examine the protein expression of NR2B, ERK, P-ERK, CREB, P-CREB, and BDNF in the SH-SY5Y cells and the rats' hippocampus, nucleus accumbens (NAc), and prefrontal cortex (PFC). Results METH dose-dependently reduced the viability of SH-SY5Y cells. Pretreatment of cells with 40 μM of GsRb1 increased cell viability and reduced the expression of METH-induced NR2B, p-ERK, p-CREB and BDNF. GsRb1 also attenuated the expression of METH CPP in a dose-dependent manner in rats. Further, GsRb1 dose-dependently reduced the expression of METH-induced NR2B, p-ERK, p-CREB, and BDNF in the PFC, hippocampus, and NAc of rats. Conclusion GsRb1 regulated METH-induced neurotoxicity in vitro and METH-induced CPP through the NR2B/ERK/CREB/BDNF regulatory pathway. GsRb1 could be a therapeutic target for treating METH-induced neurotoxicity or METH addiction.
Collapse
Affiliation(s)
- Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Juan Li
- School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yanxia Peng
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Baoyu Shen
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yuanyuan Li
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Liu Liu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Chan Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yue Xu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Shucheng Lin
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Shuwei Zhang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yi Tan
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Huijie Zhang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.,School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Qi Li
- SDIVF R&D Centre, Hong Kong, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Microinjection of the BDNF receptor antagonist ANA-12 into the nucleus accumbens and medial-prefrontal cortex attenuates morphine-induced reward memory, and alterations of BDNF levels and apoptotic cells in rats. Pharmacol Biochem Behav 2021; 201:173111. [PMID: 33444602 DOI: 10.1016/j.pbb.2021.173111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 01/10/2023]
Abstract
This study was designed to examine the effects of intra- nucleus accumbens (NAc) of BDNF receptor antagonist ANA-12 on the acquisition and expression and intra- medial-prefrontal cortex (mPFC) of ANA-12 on the extinction and reinstatement of morphine-induced conditioned place preference (CPP) and also BDNF levels and apoptotic neurons in the NAc and mPFC of rats. In this study, adult male Wistar rats (200-250 g) were used. Two separate cannulas were inserted bilaterally into the NAc and/or mPFC. ANA-12 (3 μg/0.5 μl/side) was injected into the NAc and/or mPFC to evaluate the rewarding effects of morphine using a CPP paradigm. Then, the levels of BDNF and apoptotic in the NAc and mPFC were assessed at the end of each treatment phase using ELISA and TUNEL methods, respectively. All of vehicle-treated rats following morphine CPP showed the increase of BDNF levels and apoptotic neurons in the NAc and mPFC. ANA-12 significantly attenuated the acquisition and expression of morphine-induced CPP, BDNF levels and apoptotic neurons in the NAc during the acquisition, but not the expression phase. Also, ANA-12 significantly facilitated the extinction, but no effect on reinstatement of morphine CPP, and decreased BDNF levels and apoptotic neurons in the mPFC during the extinction, but not the reinstatement. We conclude that blocking TrkB with ANA-12 showed therapeutic effects on morphine-associated reward memory and neuronal death in the NAc and mPFC induced by morphine CPP. Thus, the BDNF-TrkB signaling may be important in the acquisition, expression, extinction, but not the reinstatement of morphine CPP.
Collapse
|
5
|
Veschsanit N, Yang JL, Ngampramuan S, Viwatpinyo K, Pinyomahakul J, Lwin T, Chancharoen P, Rungruang S, Govitrapong P, Mukda S. Melatonin reverts methamphetamine-induced learning and memory impairments and hippocampal alterations in mice. Life Sci 2020; 265:118844. [PMID: 33278389 DOI: 10.1016/j.lfs.2020.118844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
AIMS Methamphetamine (METH) has become a major public health problem because of its abuse and profound neurotoxic effects, causing alterations in brain structure and function, and impairing cognitive functions, including attention, decision making, emotional memory, and working memory. This study aimed to determine whether melatonin (MEL), the circadian-control hormone, which has roles beyond circadian rhythm regulation, could restore METH-induced cognitive and neuronal impairment. MAIN METHODS Mice were treated with either METH (1 mg/kg) or saline for 7 days, followed by MEL (10 mg/kg) or saline for another 14 days. The Morris water maze (MWM) test was performed one day after the last saline or MEL injection. The hippocampal neuronal density, synaptic density, and receptors involved in learning and memory, along with downstream signaling molecules (NMDA receptor subunits GluN2A, GluN2B, and CaMKII) were investigated by immunoblotting. KEY FINDINGS METH administration significantly extended escape latency in learning phase and reduced the number of target crossings in memory test-phase as well as decreased the expression of BDNF, NMDA receptors, TrkB receptors, CaMKII, βIII tubulin, and synaptophysin. MEL treatment significantly ameliorated METH-induced increased escape latency, decreased the number of target crossings and decreased expression of BDNF, NMDA receptors, TrkB receptors, CaMKII, βIII tubulin and synaptophysin. SIGNIFICANCE METH administration impairs learning and memory in mice, and MEL administration restores METH-induced neuronal impairments which is probably through the changes in BDNF, NMDA receptors, TrkB receptors, CaMKII, βIII tubulin and synaptophysin. Therefore, MEL is potentially an innovative and promising treatment for learning and memory impairment of humans.
Collapse
Affiliation(s)
- Nisarath Veschsanit
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Sukonthar Ngampramuan
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Kittikun Viwatpinyo
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Jitrapa Pinyomahakul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Thit Lwin
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand; Department of Anatomy, Defence Services Medical Academy, Mingalardon, Yangon 11021, Myanmar
| | - Pongrung Chancharoen
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand; Faculty of Allied Health Sciences, Burapha University, Seansuk, Chonburi 20131, Thailand
| | - Saowalak Rungruang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand.
| |
Collapse
|
6
|
Neuroprotective effect of chronic administration of cannabidiol during the abstinence period on methamphetamine-induced impairment of recognition memory in the rats. Behav Pharmacol 2020; 31:385-396. [DOI: 10.1097/fbp.0000000000000544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Sabrini S, Russell B, Wang G, Lin J, Kirk I, Curley L. Methamphetamine induces neuronal death: Evidence from rodent studies. Neurotoxicology 2019; 77:20-28. [PMID: 31812708 DOI: 10.1016/j.neuro.2019.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 10/23/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
Animal studies have consistently observed neuronal death following methamphetamine (MA) administration, however, these have not been systematically reviewed. This systematic review aims to present the evidence for MA-induced neuronal death in animals (rodents) and identify the regions affected. Locating the brain regions in which neuronal death occurs in animal studies will provide valuable insight into the linkage between MA consumption and the structural alterations observed in the human brain. The data were collected from three databases: Scopus, Ovid, and the Web of Science. Thirty-seven studies met the inclusion criteria and were divided into two sub-groups, i.e. acute and repeated administration. Twenty-six (of 27) acute and ten (of 11) repeated administration studies observed neuronal death. A meta-analysis was not possible due to different variables between studies, i.e. species, treatment regimens, withdrawal periods, methods of quantification, and regions studied. Acute MA treatment induced neuronal death in the frontal cortex, striatum, and substantia nigra, but not in the hippocampus, whereas repeated MA administration led to neuronal loss in the hippocampus, frontal cortex, and striatum. In addition, when animals self-administered the drug, neuronal death was observed at much lower doses than the doses administered by experimenters. There is some overlap in the regions where neuronal death occurred in animals and the identified regions from human studies. For instance, gray matter deficits have been observed in the prefrontal cortex and hippocampus of MA users. The findings presented in this review implicate that not only does MA induce neuronal death in animals, but it also damages the same regions affected in human users. Despite the inter-species differences, animal studies have contributed significantly to addiction research, and are still of great assistance for future research with a more relevant model of compulsive drug use in humans.
Collapse
Affiliation(s)
- Sabrini Sabrini
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142 New Zealand.
| | - Bruce Russell
- School of Pharmacy, University of Otago, New Zealand.
| | - Grace Wang
- Department of Psychology, Faculty of Health and Environmental Sciences, Auckland University of Technology, New Zealand.
| | - Joanne Lin
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand.
| | - Ian Kirk
- School of Psychology, Faculty of Science, The University of Auckland, New Zealand.
| | - Louise Curley
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142 New Zealand.
| |
Collapse
|
8
|
Shahidi S, Komaki A, Sadeghian R, Asl SS. Different doses of methamphetamine alter long-term potentiation, level of BDNF and neuronal apoptosis in the hippocampus of reinstated rats. J Physiol Sci 2019; 69:409-419. [PMID: 30680641 PMCID: PMC10717877 DOI: 10.1007/s12576-019-00660-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/05/2019] [Indexed: 12/28/2022]
Abstract
Methamphetamine (METH) is a psychostimulant. The precise mechanisms of its effects remain unknown and current relapse treatments have low efficacy. However, brain-derived neurotrophic factor (BDNF) and neuronal plasticity are essential contributors, despite paradoxical reports and a lack of comprehensive studies. Therefore, we investigated the effects of different doses of METH on long-term potentiation (LTP), BDNF expression and neuronal apoptosis in the hippocampus of reinstated rats. Rats were injected intraperitoneally with METH (1, 5, or 10 mg/kg) or saline, and trained in a conditioned place preference paradigm. Following implementation of the reinstatement model, electrophysiology, western blotting and TUNEL assay were performed to assess behavior, LTP components, BDNF expression, and neuronal apoptosis, respectively. The results demonstrated that the preference scores, population spike amplitude and BDNF expression markedly decreased in the METH (10 mg/kg) group compared with the other groups. In contrast, METH (5 mg/kg) significantly increased these factors more than the control group. There was no change in variables between METH (1 mg/kg) and the control group. Also, apoptosis of the hippocampus was increased in the METH (10 mg/kg) group compared with the METH (5 mg/kg) group. These results suggest that alterations in synaptic plasticity, expression of BDNF and neuronal apoptosis in the hippocampus has a vital role in the context-induced reinstatement of METH seeking.
Collapse
Affiliation(s)
- Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reihaneh Sadeghian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Sara Soleimani Asl
- Anatomy Departments, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Concomitant abuse of methadone and methamphetamine could impair spatial learning and memory in male rats. LEARNING AND MOTIVATION 2019. [DOI: 10.1016/j.lmot.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Alizadeh M, Zahedi-Khorasani M, Bandegi AR, Yousefi B, Rashidy-Pour A, Sameni HR, Miladi-Gorji H. Effects of treadmill exercise on methadone withdrawal-induced locomotor sensitization and the ventral pallidum and ventral tegmental area BDNF levels in morphine withdrawn rats receiving methadone maintenance treatment. Neurosci Lett 2018; 683:33-37. [DOI: 10.1016/j.neulet.2018.06.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
|
11
|
The impact of acute and short-term methamphetamine abstinence on brain metabolites: A proton magnetic resonance spectroscopy chemical shift imaging study. Drug Alcohol Depend 2018; 185:226-237. [PMID: 29471227 DOI: 10.1016/j.drugalcdep.2017.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Abuse of methamphetamine (MA) is a global health concern. Previous 1H-MRS studies have found that, with methamphetamine abstinence (MAA), there are changes in n-acetyl-aspartate (NAA/Cr), myo-inositol (mI/Cr), choline (Cho/Cr and Cho/NAA), and glutamate with glutamine (Glx) metabolites. Limited studies have investigated the effect of acute MAA, and acute-to-short-term MAA on brain metabolites. METHODS Adults with chronic MA dependence (n = 31) and healthy controls (n = 22) were recruited. Two-dimensional chemical shift 1H-MRS imaging (TR2000 ms, TE30 ms) slice was performed and included voxels in bilateral anterior-cingulate (ACC), frontal-white-matter (FWM), and dorsolateral-prefrontal-cortices (DLPFC). Control participants were scanned once. The MA group was scanned twice, with acute (1.5 ± 0.6 weeks, n = 31) and short-term MAA (5.1 ± 0.8 weeks, n = 22). The change in 1H-MRS metabolites over time (n = 19) was also investigated. Standard 1H-MRS metabolites are reported relative to Cr + PCr. RESULTS Acute MAA showed lower n-acetyl-aspartate (NAA) and n-acetyl-aspartate with n-acetyl-aspartyl-glutamate (NAA + NAAG) in left DLPFC, and glycerophosphocholine with phosphocholine (GPC + PCh) in left FWM. Short-term MAA showed lower NAA + NAAG and higher myo-inositol (mI) in right ACC, lower NAA and NAA + NAAG in the left DLPFC, and lower GPC + PCh in left FWM. Over time, MAA showed decreased NAA and NAA + NAAG and increased mI in right ACC, decreased NAA and NAA + NAAG in right FWM, and decreased in mI in left FWM. CONCLUSION In acute MAA, there was damage to the integrity of neuronal tissue, which was enhanced with short-term MAA. From acute to short-term MAA, activation of neuroinflammatory processes are suggested. This is the first 1H-MRS study to report the development of neuroinflammation with loss of neuronal integrity in MAA.
Collapse
|
12
|
Khalil-Khalili M, Rashidy-Pour A, Bandegi AR, Yousefi B, Jorjani H, Miladi-Gorji H. Effects of BDNF receptor antagonist on the severity of physical and psychological dependence, morphine-induced locomotor sensitization and the ventral tegmental area-nucleus accumbens BDNF levels in morphine- dependent and withdrawn rats. Neurosci Lett 2018; 668:7-12. [DOI: 10.1016/j.neulet.2017.12.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 11/25/2022]
|