1
|
Fox EA, Serlin HK. Gaps in our understanding of how vagal afferents to the small intestinal mucosa detect luminal stimuli. Am J Physiol Regul Integr Comp Physiol 2024; 327:R173-R187. [PMID: 38860288 DOI: 10.1152/ajpregu.00252.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Vagal afferents to the gastrointestinal tract are crucial for the regulation of food intake, signaling negative feedback that contributes to satiation and positive feedback that produces appetition and reward. Vagal afferents to the small intestinal mucosa contribute to this regulation by sensing luminal stimuli and reporting this information to the brain. These afferents respond to mechanical, chemical, thermal, pH, and osmolar stimuli, as well as to bacterial products and immunogens. Surprisingly, little is known about how these stimuli are transduced by vagal mucosal afferents or how their transduction is organized among these afferents' terminals. Furthermore, the effects of stimulus concentration ranges or physiological stimuli on vagal activity have not been examined for some of these stimuli. Also, detection of luminal stimuli has rarely been examined in rodents, which are most frequently used for studying small intestinal innervation. Here we review what is known about stimulus detection by vagal mucosal afferents and illustrate the complexity of this detection using nutrients as an exemplar. The accepted model proposes that nutrients bind to taste receptors on enteroendocrine cells (EECs), which excite them, causing the release of hormones that stimulate vagal mucosal afferents. However, evidence reviewed here suggests that although this model accounts for many aspects of vagal signaling about nutrients, it cannot account for all aspects. A major goal of this review is therefore to evaluate what is known about nutrient absorption and detection and, based on this evaluation, identify candidate mucosal cells and structures that could cooperate with EECs and vagal mucosal afferents in stimulus detection.
Collapse
Affiliation(s)
- Edward A Fox
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, United States
| | - Hannah K Serlin
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, United States
| |
Collapse
|
2
|
Akcakavak G, Kazak F, Karatas O, Alakus H, Alakus I, Kirgiz O, Celik Z, Yilmaz Deveci MZ, Ozdemir O, Tuzcu M. Eucalyptol regulates Nrf2 and NF-kB signaling and alleviates gentamicin-induced kidney injury in rats by downregulating oxidative stress, oxidative DNA damage, inflammation, and apoptosis. Toxicol Mech Methods 2024; 34:413-422. [PMID: 38115227 DOI: 10.1080/15376516.2023.2297234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Gentamicin, an aminoglycoside antibiotic, is nowadays widely used in the treatment of gram-negative microorganisms. The antimicrobial, anti-inflammatory, and antioxidant activities of eucalyptol, a type of saturated monoterpene, have been reported in many studies. The aim of this study was to examine the possible effects of eucalyptol on gentamicin-induced renal toxicity. A total of 32 rats were divided into 4 groups; Control (C), Eucalyptol (EUC), Gentamicin (GEN), and Gentamicin + Eucalyptol (GEN + EUC). In order to induce renal toxicity, 100 mg/kg gentamicin was administered intraperitoneally (i.p.) for 10 consecutive days in the GEN and GEN + EUC groups. EUC and GEN + EUC groups were given 100 mg/kg orally of eucalyptol for 10 consecutive days. Afterwards, rats were euthanized and samples were taken and subjected to histopathological, biochemical, immunohistochemical, and real-time PCR examinations. The blood urea nitrogen (BUN) and creatinine (CRE) levels were significantly decreased in the GEN + EUC group (0.76 and 0.69-fold, respectively) compared to the GEN group. The glutathione peroxidase (GPx) and catalase (CAT) activities were significantly increased in the GEN + EUC group (1.35 and 2.67-fold, respectively) compared to the GEN group. In GEN group, Nuclear factor kappa B (NF-kB), Interleukin 1-beta (IL-1β), Inducible nitric oxide synthase (iNOS), Tumor necrosis factor-α (TNF-α), Caspase-3, 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and Nuclear factor erythroid 2-related factor (Nrf2) expression levels were found to be quite irregular. GEN + EUC group decreased the expressions of NF-kB, IL-1β, iNOS, TNF-α, Caspase-3, and 8-OHdG (0.55, 0.67, 0.54, 0.54, 0.63 and 0.67-fold, respectively), while it caused increased expression of Nrf2 (3.1 fold). In addition, eucalyptol treatment ameliorated the histopathological changes that occurred with gentamicin. The results of our study show that eucalyptol has anti-inflammatory, antioxidative, antiapoptotic, nephroprotective, and curative effects on gentamicin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Gokhan Akcakavak
- Department of Pathology, Yozgat Bozok University, Yozgat, Turkey
| | - Filiz Kazak
- Department of Biochemistry, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Ozhan Karatas
- Department of Pathology, Cumhuriyet University, Sivas, Turkey
| | - Halil Alakus
- Department of Surgery Hatay Mustafa Kemal University, Hatay, Turkey
| | - Ibrahim Alakus
- Department of Surgery Hatay Mustafa Kemal University, Hatay, Turkey
| | - Omer Kirgiz
- Department of Surgery Hatay Mustafa Kemal University, Hatay, Turkey
| | - Zeynep Celik
- Department of Pathology, Selcuk University, Konya, Turkey
| | | | - Ozgur Ozdemir
- Department of Pathology, Selcuk University, Konya, Turkey
| | - Mehmet Tuzcu
- Department of Pathology, Selcuk University, Konya, Turkey
| |
Collapse
|
3
|
Kazak F, Deveci MZY, Akçakavak G. Eucalyptol alleviates cisplatin-induced kidney damage in rats. Drug Chem Toxicol 2024; 47:172-179. [PMID: 36514998 DOI: 10.1080/01480545.2022.2156530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/15/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
This study was aimed to explore the therapeutic effect of eucalyptol on cisplatin induced kidney damage in Wistar albino rats. The animals were divided into four groups: sham (S), eucalyptol (E), cisplatin (C), and cisplatin + eucalyptol (CE) randomly, six animals in each group. Groups C and CE were received cisplatin (12 mg/kg, a single dose, intraperitoneally (i.p.)). Groups E and CE were treated with eucalyptol (100 mg/kg, for seven days, orally). The blood samples and kidney tissues were collected following sacrification and analyzed histopathologically and biochemically. Histopathological results revealed tubular degeneration and necrosis, inflammatory cell infiltration, tubular lumen dilatation, enlargement of bowman's space and hyaline cast were significantly irregular in the group C than group S. However, eucalyptol treatment (CE) modulated the alterations in the group C. Serum levels of blood urea nitrogen (BUN) and creatinine (CRE) were considerably higher in the group C compared to the other groups. There was no significant difference among the other groups statistically (except group C) in terms of BUN and CRE values. Eucalyptol treatment (at 100 mg/kg, for seven days) decreased the cisplatin induced increase in serum BUN and CRE levels and restored the reduced Vit C level and CAT activity of kidneys caused by cisplatin. Thus, eucalyptol's antioxidative, nephroprotective, and curative effects indicated the potential for future drug development.
Collapse
Affiliation(s)
- Filiz Kazak
- Department of Biochemistry, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Antakya, Turkey
| | - Mehmet Zeki Yılmaz Deveci
- Department of Surgery, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Antakya, Turkey
- Laboratory Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Gökhan Akçakavak
- Department of Pathology, Faculty of Veterinary Medicine, Bozok University, Yozgat, Turkey
| |
Collapse
|
4
|
Mori N, Urata T. Intragastric administration of cinnamaldehyde induces changes in body temperature via TRPA1. Biosci Biotechnol Biochem 2024; 88:196-202. [PMID: 37994656 DOI: 10.1093/bbb/zbad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
The transient receptor potential (TRP) channel family, including TRPA1, is known to be involved in temperature sensing and response. Previous studies have shown that intragastric administration of cinnamaldehyde (a typical TRPA1 agonist) can change body temperature, but the role of TRPA1 in this response is not clear. In this study, we found that intragastric administration of cinnamaldehyde increased in the intrascapular brown adipose tissue (IBAT) and rectal temperatures. However, this effect was not observed in TRPA1 knockout mice, suggesting that TRPA1 is involved in these temperature changes. Intravenous cinnamaldehyde also increased IBAT and rectal temperatures, only in the presence of TRPA1. We also explored the contribution of the vagus nerve to these temperature changes and found that it played a limited role. These results suggest that cinnamaldehyde can affect body temperature through TRPA1 activation, with the vagus nerve having a minor influence.
Collapse
Affiliation(s)
- Noriyuki Mori
- Department of Food Science and Nutrition, Faculty of Human Life, Doshisha Women's College of Liberal Arts, Kamigyo-ku, Kyoto, Japan
- Division of Nutrition Sciences, School of Human Culture, University of Shiga Prefecture, Hikone, Shiga, Japan
| | - Tomomi Urata
- Division of Nutrition Sciences, School of Human Culture, University of Shiga Prefecture, Hikone, Shiga, Japan
| |
Collapse
|
5
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
6
|
Liskiewicz D, Zhang Q, Barthem C, Jastroch M, Liskiewicz A, Khajavi N, Grandl G, Coupland C, Kleinert M, Garcia-Caceres C, Novikoff A, Maity G, Boehm U, Tschöp M, Müller T. Neuronal loss of TRPM8 leads to obesity and glucose intolerance in male mice. Mol Metab 2023; 72:101714. [PMID: 36966947 PMCID: PMC10106965 DOI: 10.1016/j.molmet.2023.101714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
OBJECTIVE Mice with global deletion of the transient receptor potential channel melastatin family member 8 (TRPM8) are obese, and treatment of diet-induced obese (DIO) mice with TRPM8 agonists decrease body weight. Whether TRPM8 signaling regulates energy metabolism via central or peripheral effects is unknow. Here we assessed the metabolic phenotype of mice with either Nestin Cre-mediated neuronal loss of TRPM8, or with deletion of TRPM8 in Advillin Cre positive sensory neurons of the peripheral nervous system (PNS). METHODS Nestin Cre- and Advillin Cre-Trpm8 knock-out (KO) mice were metabolically phenotyped under chronic exposure to either chow or high-fat diet (HFD), followed by assessment of energy and glucose metabolism. RESULTS At room temperature, chow-fed neuronal Trpm8 KO are obese and show decreased energy expenditure when acutely treated with the TRPM8 selective agonist icilin. But body weight of neuronal Trpm8 KO mice is indistinguishable from wildtype controls at thermoneutrality, or when mice are chronically exposed to HFD-feeding. In contrast to previous studies, we show that the TRPM8 agonist icilin has no direct effect on brown adipocytes, but that icilin stimulates energy expenditure, at least in part, via neuronal TRPM8 signaling. We further show that lack of TRPM8 in sensory neurons of the PNS does not lead to a metabolically relevant phenotype. CONCLUSIONS Our data indicate that obesity in TRPM8-deficient mice is centrally mediated and likely originates from alterations in energy expenditure and/or thermal conductance, but does not depend on TRPM8 signaling in brown adipocytes or sensory neurons of the PVN.
Collapse
|
7
|
Fakih D, Baudouin C, Réaux-Le Goazigo A, Mélik Parsadaniantz S. TRPM8: A Therapeutic Target for Neuroinflammatory Symptoms Induced by Severe Dry Eye Disease. Int J Mol Sci 2020; 21:E8756. [PMID: 33228217 PMCID: PMC7699525 DOI: 10.3390/ijms21228756] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
Dry eye disease (DED) is commonly associated with ocular surface inflammation and pain. In this study, we evaluated the effectiveness of repeated instillations of transient receptor potential melastatin 8 (TRPM8) ion channel antagonist M8-B on a mouse model of severe DED induced by the excision of extra-orbital lacrimal and Harderian glands. M8-B was topically administered twice a day from day 7 until day 21 after surgery. Cold and mechanical corneal sensitivities and spontaneous ocular pain were monitored at day 21. Ongoing and cold-evoked ciliary nerve activities were next evaluated by electrophysiological multi-unit extracellular recording. Corneal inflammation and expression of genes related to neuropathic pain and inflammation were assessed in the trigeminal ganglion. We found that DED mice developed a cold allodynia consistent with higher TRPM8 mRNA expression in the trigeminal ganglion (TG). Chronic M8-B instillations markedly reversed both the corneal mechanical allodynia and spontaneous ocular pain commonly associated with persistent DED. M8-B instillations also diminished the sustained spontaneous and cold-evoked ciliary nerve activities observed in DED mice as well as inflammation in the cornea and TG. Overall, our study provides new insight into the effectiveness of TRPM8 blockade for alleviating corneal pain syndrome associated with severe DED, opening a new avenue for ocular pain management.
Collapse
Affiliation(s)
- Darine Fakih
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
- R&D Department, Laboratoires Théa, 12 rue Louis Biérot, F-63000 Clermont-Ferrand, France
| | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 17 rue Moreau, F-75012 Paris, France
- Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, University of Versailles Saint-Quentin-en-Yvelines, 9 avenue Charles de Gaulle, F-92100 Boulogne-Billancourt, France
| | - Annabelle Réaux-Le Goazigo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
| | - Stéphane Mélik Parsadaniantz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
| |
Collapse
|
8
|
González-Muñiz R, Bonache MA, Martín-Escura C, Gómez-Monterrey I. Recent Progress in TRPM8 Modulation: An Update. Int J Mol Sci 2019; 20:ijms20112618. [PMID: 31141957 PMCID: PMC6600640 DOI: 10.3390/ijms20112618] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/30/2022] Open
Abstract
The transient receptor potential melastatin subtype 8 (TRPM8) is a nonselective, multimodal ion channel, activated by low temperatures (<28 °C), pressure, and cooling compounds (menthol, icilin). Experimental evidences indicated a role of TRPM8 in cold thermal transduction, different life-threatening tumors, and other pathologies, including migraine, urinary tract dysfunction, dry eye disease, and obesity. Hence, the modulation of the TRPM8 channel could be essential in order to understand its implications in these pathologies and for therapeutic intervention. This short review will cover recent progress on the TRPM8 agonists and antagonists, describing newly reported chemotypes, and their application in the pharmacological characterization of TRPM8 in health and disease. The recently described structures of the TRPM8 channel alone or complexed with known agonists and PIP2 are also discussed.
Collapse
Affiliation(s)
| | - M Angeles Bonache
- Instituto de Química Médica, IQM-CSIC. Juan de la Cierva 3, 28006 Madrid, Spain.
| | | | - Isabel Gómez-Monterrey
- Dipartimento di Farmacia, Università "Federico II" de Napoli, Via D. Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
9
|
Chang RB. Body thermal responses and the vagus nerve. Neurosci Lett 2019; 698:209-216. [PMID: 30634012 PMCID: PMC7061531 DOI: 10.1016/j.neulet.2019.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/17/2022]
Abstract
While thermosensation from external environment has been extensively studied, physiological responses to temperature changes inside the body and the underlying regulatory mechanisms are less understood. As a critical link between body and brain that relays visceral organ information and regulates numerous physiological functions, the vagus nerve has been proposed to mediate diverse visceral thermal reflexes and indirectly regulate body temperature. However, the precise role of the vagus nerve in body thermal responses or visceral organ-related thermoregulation is still under debate due to extensive contradictory results. This data discrepancy is likely due to the high cell heterogeneity in the vagus nerve, as diverse vagal neuron types mediate numerous and sometimes opposite physiological functions. Here, we will review evidences that support and against the role of the vagus nerve in body thermosensation and thermoregulation and discuss potential future approaches for better understanding of this critical issue.
Collapse
Affiliation(s)
- Rui B Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520, United States.
| |
Collapse
|