1
|
Dybing KM, Vetter CJ, Dempsey DA, Chaudhuri S, Saykin AJ, Risacher SL. Traumatic Brain Injury and Alzheimer's Disease Biomarkers: A Systematic Review of Findings from Amyloid and Tau Positron Emission Tomography. J Neurotrauma 2025; 42:333-348. [PMID: 39639808 PMCID: PMC11971548 DOI: 10.1089/neu.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Traumatic brain injury (TBI) has been discussed as a risk factor for Alzheimer's disease (AD) due to its association with AD risk and earlier cognitive symptom onset. However, the mechanisms behind this relationship are unclear. Some studies have suggested TBI may increase pathological protein deposition in an AD-like pattern; others have failed to find such associations. This review covers literature that uses positron emission tomography (PET) of β-amyloid (Aβ) and/or tau to examine individuals with a history of TBI who are at increased risk for AD due to age. A comprehensive literature search was conducted on January 9, 2023, and 26 resulting citations met inclusion criteria. Common methodological concerns included small samples, limited clinical detail about participants' TBI, recall bias due to reliance on self-reported TBI, and an inability to establish causation. For both Aβ and tau, results were widespread but inconsistent. The regions that showed the most compelling evidence for increased Aβ deposition were the cingulate gyrus and cuneus/precuneus. Evidence for elevated tau was strongest in the medial temporal lobe, entorhinal cortex, precuneus, and frontal, temporal, parietal, and occipital lobes. However, conflicting findings across most regions in both Aβ- and tau-PET studies indicate the critical need for future work in expanded samples and with greater clinical detail to offer a clearer picture of the relationship between TBI and protein deposition in older individuals at risk for AD.
Collapse
Affiliation(s)
- Kaitlyn M. Dybing
- Address correspondence to: Kaitlyn M. Dybing, BS, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202, USA,
| | - Cecelia J. Vetter
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, USA
| | | | | | - Andrew J. Saykin
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shannon L. Risacher
- Address correspondence to: Shannon L. Risacher, PhD, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202, USA,
| |
Collapse
|
2
|
Huang W, Yan J, Zheng Y, Wang J, Hu W, Zhang J. Microstructural Alterations of Gray and White Matter in Active Young Boxers with Sports-Related Concussions. J Neurotrauma 2025; 42:33-45. [PMID: 39535046 DOI: 10.1089/neu.2024.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The existing research on the microstructural alterations associated with sport-related concussions (SRCs) has primarily focused on deep white matter (DWM) fibers, while the impact of SRCs on the superficial white matter (SWM) and gray matter (GM) remains unknown. This study aimed to characterize the altered metrics obtained from neurite orientation dispersion and density imaging (NODDI) in boxers with SRCs, and thereby determine whether distinct regional patterns of microstructural alterations can offer valuable insights for accurate diagnosis and prognosis. Concussed boxers (n = 56) and healthy controls (HCs) with typically developing (n = 72) underwent comprehensive neuropsychological assessment and magnetic resonance imaging (MRI) examinations. The tract-based spatial statistics approach was used to investigate alterations in the DWM and SWM, while the gray matter-based spatial statistics approach was used to examine changes in the GM. The median time from the last SRC to MRI in the SRC group was 33.5 days (interquartile range, 45.25). In comparison with HCs, the SRC group exhibited lower fractional anisotropy (FA), neurite density index (NDI), and isotropic volume fraction (ISOVF), as well as higher mean diffusivity, axial diffusivity (AD), and radial diffusivity in both the DWM and SWM. Moreover, the SRC group exhibited lower FA, NDI, orientation dispersion index, and ISOVF in the GM, as well as higher AD. The altered microstructure of both gray and white matter was found to be associated with deficits in working memory and vocabulary memory among boxers. In addition to characterizing the DWM impairment, NODDI further elucidated the effects of SRCs on the microstructure of GM and SWM, offering a reliable imaging biomarker for SRC diagnosis and shedding light on the pathophysiological changes underlying SRCs.
Collapse
Affiliation(s)
- Wenjing Huang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jiahao Yan
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Yu Zheng
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jun Wang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Wanjun Hu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| |
Collapse
|
3
|
McGill MB, Schnyer DM. The Effects of Early Life History of TBI on the Progression of Normal Brain Aging with Implications for Increased Dementia Risk. ADVANCES IN NEUROBIOLOGY 2024; 42:119-143. [PMID: 39432040 DOI: 10.1007/978-3-031-69832-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
There is increasing interest in the risk conferred on neurological health by a traumatic brain injury (TBI) and how that influences the lifespan trajectory of brain aging. This chapter explores the importance of this issue, population, and methodological considerations, including injury documentation and outcome assessment. We then explore some of the findings in the neuroimaging and neuropsychological research literature examining the interaction between an earlier life history of TBI and the normal aging process. Finally, we consider the limitations of our current knowledge and where the field needs to go in the future.
Collapse
Affiliation(s)
- Makenna B McGill
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA.
| | - David M Schnyer
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Abou-El-Hassan H, Bernstock JD, Chalif JI, Yahya T, Rezende RM, Weiner HL, Izzy S. Elucidating the neuroimmunology of traumatic brain injury: methodological approaches to unravel intercellular communication and function. Front Cell Neurosci 2023; 17:1322325. [PMID: 38162004 PMCID: PMC10756680 DOI: 10.3389/fncel.2023.1322325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
The neuroimmunology of traumatic brain injury (TBI) has recently gained recognition as a crucial element in the secondary pathophysiological consequences that occur following neurotrauma. Both immune cells residing within the central nervous system (CNS) and those migrating from the periphery play significant roles in the development of secondary brain injury. However, the precise mechanisms governing communication between innate and adaptive immune cells remain incompletely understood, partly due to a limited utilization of relevant experimental models and techniques. Therefore, in this discussion, we outline current methodologies that can aid in the exploration of TBI neuroimmunology, with a particular emphasis on the interactions between resident neuroglial cells and recruited lymphocytes. These techniques encompass adoptive cell transfer, intra-CNS injection(s), selective cellular depletion, genetic manipulation, molecular neuroimaging, as well as in vitro co-culture systems and the utilization of organoid models. By incorporating key elements of both innate and adaptive immunity, these methods facilitate the examination of clinically relevant interactions. In addition to these preclinical approaches, we also detail an emerging avenue of research that seeks to leverage human biofluids. This approach enables the investigation of how resident and infiltrating immune cells modulate neuroglial responses after TBI. Considering the growing significance of neuroinflammation in TBI, the introduction and application of advanced methodologies will be pivotal in advancing translational research in this field.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Joshua I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Taha Yahya
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rafael M. Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Saef Izzy
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Dybing KM, Vetter CJ, Dempsey DA, Chaudhuri S, Saykin AJ, Risacher SL. Traumatic brain injury and Alzheimer's Disease biomarkers: A systematic review of findings from amyloid and tau positron emission tomography (PET). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.30.23298528. [PMID: 38077068 PMCID: PMC10705648 DOI: 10.1101/2023.11.30.23298528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Traumatic brain injury (TBI) has been discussed as a risk factor for Alzheimer's disease (AD) due to its association with dementia risk and earlier cognitive symptom onset. However, the mechanisms behind this relationship are unclear. Some studies have suggested TBI may increase pathological protein deposition in an AD-like pattern; others have failed to find such associations. This review covers literature that uses positron emission tomography (PET) of amyloid-β and/or tau to examine subjects with history of TBI who are at risk for AD due to advanced age. A comprehensive literature search was conducted on January 9, 2023, and 24 resulting citations met inclusion criteria. Common methodological concerns included small samples, limited clinical detail about subjects' TBI, recall bias due to reliance on self-reported TBI, and an inability to establish causation. For both amyloid and tau, results were widespread but inconsistent. The regions which showed the most compelling evidence for increased amyloid deposition were the cingulate gyrus, cuneus/precuneus, and parietal lobe. Evidence for increased tau was strongest in the medial temporal lobe, entorhinal cortex, precuneus, and frontal, temporal, parietal, and occipital lobes. However, conflicting findings across most regions of interest in both amyloid- and tau-PET studies indicate the critical need for future work in expanded samples and with greater clinical detail to offer a clearer picture of the relationship between TBI and protein deposition in older subjects at risk for AD.
Collapse
Affiliation(s)
- Kaitlyn M. Dybing
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Cecelia J. Vetter
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Desarae A. Dempsey
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Soumilee Chaudhuri
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shannon L. Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
6
|
Investigating the relationship between mild traumatic brain injury and Alzheimer's disease and related dementias: a systematic review. J Neurol 2022; 269:4635-4645. [PMID: 35648232 DOI: 10.1007/s00415-022-11186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
The objective of this systematic review is to synthesize the relevant literature published after 2016 to ascertain the current landscape of science that relates mild traumatic brain injury (mTBI) to the onset of Alzheimer's disease and related dementias (ADRD) and identify areas of need for future research. We conducted database searches and retrieved articles that were published after 2016 that utilized cognitive assessments to understand the relationship between mTBI and ADRD. We identified eight relevant articles in the review process, four of which presented a significant relationship between mTBI and disease or cognitive impairment outcomes. The studies included in this systematic review underscore the need for future research investigating a possible causal relationship between mTBI and ADRDs given the high prevalence of mTBI among brain injury patients and the lack of literature specifically addressing this issue. Future research should standardize the definitions of mTBI, AD, and ADRDs to create reliable and reproducible results that more comprehensively capture the nuances of this relationship.
Collapse
|
7
|
Huang CX, Li YH, Lu W, Huang SH, Li MJ, Xiao LZ, Liu J. Positron emission tomography imaging for the assessment of mild traumatic brain injury and chronic traumatic encephalopathy: recent advances in radiotracers. Neural Regen Res 2022; 17:74-81. [PMID: 34100430 PMCID: PMC8451552 DOI: 10.4103/1673-5374.314285] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A chronic phase following repetitive mild traumatic brain injury can present as chronic traumatic encephalopathy in some cases, which requires a neuropathological examination to make a definitive diagnosis. Positron emission tomography (PET) is a molecular imaging modality that has high sensitivity for detecting even very small molecular changes, and can be used to quantitatively measure a range of molecular biological processes in the brain using different radioactive tracers. Functional changes have also been reported in patients with different forms of traumatic brain injury, especially mild traumatic brain injury and subsequent chronic traumatic encephalopathy. Thus, PET provides a novel approach for the further evaluation of mild traumatic brain injury at molecular levels. In this review, we discuss the recent advances in PET imaging with different radiotracers, including radioligands for PET imaging of glucose metabolism, tau, amyloid-beta, γ-aminobutyric acid type A receptors, and neuroinflammation, in the identification of altered neurological function. These novel radiolabeled ligands are likely to have widespread clinical application, and may be helpful for the treatment of mild traumatic brain injury. Moreover, PET functional imaging with different ligands can be used in the future to perform large-scale and sequential studies exploring the time-dependent changes that occur in mild traumatic brain injury.
Collapse
Affiliation(s)
- Chu-Xin Huang
- Department of Radiology; Department of Neurology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yan-Hui Li
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Wei Lu
- Department of Neurology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Si-Hong Huang
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Meng-Jun Li
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Li-Zhi Xiao
- PET-CT Center, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Jun Liu
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
8
|
Asken BM, Mantyh WG, La Joie R, Strom A, Casaletto KB, Staffaroni AM, Apple AC, Lindbergh CA, Iaccarino L, You M, Grant H, Fonseca C, Windon C, Younes K, Tanner J, Rabinovici GD, Kramer JH, Gardner RC. Association of remote mild traumatic brain injury with cortical amyloid burden in clinically normal older adults. Brain Imaging Behav 2021; 15:2417-2425. [PMID: 33432536 PMCID: PMC8272743 DOI: 10.1007/s11682-020-00440-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023]
Abstract
We investigated whether clinically normal older adults with remote, mild traumatic brain injury (mTBI) show evidence of higher cortical Aβ burden. Our study included 134 clinically normal older adults (age 74.1 ± 6.8 years, 59.7% female, 85.8% white) who underwent Aβ positron emission tomography (Aβ-PET) and who completed the Ohio State University Traumatic Brain Injury Identification questionnaire. We limited participants to those reporting injuries classified as mTBI. A subset (N = 30) underwent a second Aβ-PET scan (mean 2.7 years later). We examined the effect of remote mTBI on Aβ-PET burden, interactions between remote mTBI and age, sex, and APOE status, longitudinal Aβ accumulation, and the interaction between remote mTBI and Aβ burden on memory and executive functioning. Of 134 participants, 48 (36%) reported remote mTBI (0, N = 86; 1, N = 31, 2+, N = 17; mean 37 ± 23 years since last mTBI). Effect size estimates were small to negligible for the association of remote mTBI with Aβ burden (p = .94, η2 < 0.01), and for all interaction analyses. Longitudinally, we found a non-statistically significant association of those with remote mTBI (N = 11) having a faster rate of Aβ accumulation (B = 0.01, p = .08) than those without (N = 19). There was no significant interaction between remote mTBI and Aβ burden on cognition. In clinically normal older adults, history of mTBI is not associated with greater cortical Aβ burden and does not interact with Aβ burden to impact cognition. Longitudinal analyses suggest remote mTBI may be associated with more rapid cortical Aβ accumulation. This finding warrants further study in larger and more diverse samples with well-characterized lifelong head trauma exposure.
Collapse
Affiliation(s)
- Breton M Asken
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA.
| | - William G Mantyh
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Renaud La Joie
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Amelia Strom
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Kaitlin B Casaletto
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Adam M Staffaroni
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Alexandra C Apple
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Cutter A Lindbergh
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Leonardo Iaccarino
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Michelle You
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Harli Grant
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Corrina Fonseca
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Charles Windon
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Kyan Younes
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Jeremy Tanner
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Gil D Rabinovici
- Departments of Neurology, Radiology & Biomedical Imaging Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, CA, San Francisco, USA
| | - Joel H Kramer
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Raquel C Gardner
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
- San Francisco Veterans Affairs Health , San Francisco, CA, USA
| |
Collapse
|
9
|
Echlin HV, Rahimi A, Wojtowicz M. Systematic Review of the Long-Term Neuroimaging Correlates of Mild Traumatic Brain Injury and Repetitive Head Injuries. Front Neurol 2021; 12:726425. [PMID: 34659091 PMCID: PMC8514830 DOI: 10.3389/fneur.2021.726425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To systematically review the literature on the long-term neuroimaging findings (≥10 years from exposure) for exposure in adulthood to mild traumatic brain injury (mTBI) and repetitive head impacts (RHIs) using neuroimaging across all available populations. Data sources: Four electronic databases: MEDLINE, SPORTDiscus, PsycINFO, and EMBASE. Study selection: All articles were original research and published in English. Studies examined adults with remote exposure to mTBI and/or RHIs from ten or more years ago in addition to any associated neuroimaging findings. Data extraction: Parameters mainly included participants' population, age, years since head injury, race, sex, education level, and any neuroimaging findings. Scores for the level of evidence and risk of bias were calculated independently by two authors. Results: 5,521 studies were reviewed, of which 34 met inclusion criteria and were included in this study. The majority of adults in these studies showed positive neuroimaging findings one or more decades following mTBI/RHI exposure. This was consistent across study populations (i.e., veterans, athletes, and the general population). There was evidence for altered protein deposition patterns, micro- and macro-structural, functional, neurochemical, and blood flow-related differences in the brain for those with remote mTBI/RHI exposure. Conclusion: Findings from these studies suggest that past mTBI/RHI exposure may be associated with neuroimaging findings. However, given the methodological constraints related to relatively small sample sizes and the heterogeneity in injury types/exposure and imaging techniques used, conclusions drawn from this review are limited. Well-designed longitudinal studies with multimodal imaging and in-depth health and demographic information will be required to better understand the potential for having positive neuroimaging findings following remote mTBI/RHI.
Collapse
|
10
|
Risacher SL, West JD, Deardorff R, Gao S, Farlow MR, Brosch JR, Apostolova LG, McAllister TW, Wu Y, Jagust WJ, Landau SM, Weiner MW, Saykin AJ, for the Alzheimer's Disease Neuroimaging Initiative#. Head injury is associated with tau deposition on PET in MCI and AD patients. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12230. [PMID: 34466653 PMCID: PMC8383323 DOI: 10.1002/dad2.12230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Head injuries (HI) are a risk factor for dementia, but the underlying etiology is not fully known. Understanding whether tau might mediate this relationship is important. METHODS Cognition and tau deposition were compared between 752 individuals with (impaired, n = 302) or without cognitive impairment (CN, n = 450) with amyloid and [18F]flortaucipir positron emission tomography, HI history information, and cognitive testing from the Alzheimer's Disease Neuroimaging Initiative and the Indiana Memory and Aging Study. RESULTS Sixty-three (38 CN, 25 impaired) reported a history of HI. Higher neuropsychiatric scores and poorer memory were observed in those with a history of HI. Tau was higher in individuals with a history of HI, especially those who experienced a loss of consciousness (LOC). Results were driven by impaired individuals, especially amyloid beta-positive individuals with history of HI with LOC. DISCUSSION These findings suggest biological changes, such as greater tau, are associated with HI in individuals with cognitive impairment. Small effect sizes were observed; thus, further studies should replicate and extend these results.
Collapse
Affiliation(s)
- Shannon L. Risacher
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - John D. West
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rachael Deardorff
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Sujuan Gao
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of BiostatisticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Martin R. Farlow
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jared R. Brosch
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Liana G. Apostolova
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Thomas W. McAllister
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Yu‐Chien Wu
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - William J. Jagust
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyCaliforniaUSA
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Susan M. Landau
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyCaliforniaUSA
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Michael W. Weiner
- Departments of RadiologyMedicine and PsychiatryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterSan FranciscoCaliforniaUSA
| | - Andrew J. Saykin
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | | |
Collapse
|
11
|
Mohamed AZ, Nestor PJ, Cumming P, Nasrallah FA. Traumatic brain injury fast-forwards Alzheimer's pathology: evidence from amyloid positron emission tomorgraphy imaging. J Neurol 2021; 269:873-884. [PMID: 34191080 DOI: 10.1007/s00415-021-10669-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Traumatic brain injury (TBI) has been proposed as a risk factor for Alzheimer's disease (AD), although the mechanisms underlying the putative association are poorly understood. We investigated elderly individuals with a remote history of TBI, aiming to understand how this may have influenced amyloidosis, neurodegeneration, and clinical expression along the AD continuum. METHODS Total of 241 individual datasets including amyloid beta (Aβ) positron emission tomography ([18F]-AV45), structural MRI, and neuropsychological measures, were obtained from the Alzheimer's Disease Neuroimaging Initiative. The data were stratified into groups with (TBI +) or without (TBI -) history of head injury, and by clinical dementia rating (CDR) scores, into subgroups with normal cognition (CDR = 0) and those with symptomatic cognitive decline (CDR ≥ 0.5). We contrasted the TBI + and TBI - subgroups with respect to the onset age and extent of cognitive decline, cortical thickness changes, and Aβ standard uptake value (SUVr). RESULTS Compared to the TBI -/CDR ≥ 0.5 subgroup, the TBI + /CDR ≥ 0.5 subgroup showed a 3-4 year earlier age of cognitive impairment onset (ACIO, p = 0.005). Among those participants on the AD continuum (Aβ + , as defined by a cortical SUVr ≥ 1.23), irrespective of current CDR, a TBI + history was associated with greater Aβ deposition and more pronounced cortical thinning. When matched for severity of cognitive status, the TBI + /CDR ≥ 0.5 group showed greater Aβ burden, but earlier ACIO as compared to the TBI -/CDR ≥ 0.5, suggesting a more indolent clinical AD progression in those with TBI history. CONCLUSION Remote TBI history may alter the AD onset trajectory, with approximately 4 years earlier ACIO, greater amyloid deposition, and cortical thinning.
Collapse
Affiliation(s)
- Abdalla Z Mohamed
- The Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD, 4072, Australia.,Thompson Institute, University of The Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Peter J Nestor
- The Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD, 4072, Australia.,Mater Hospital, South Brisbane, QLD, 4101, Australia
| | - Paul Cumming
- Department of Nuclear Medicine, Inselspital, Bern University, Bern, Switzerland.,School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD, 4072, Australia.
| | | |
Collapse
|
12
|
Asken BM, Rabinovici GD. Identifying degenerative effects of repetitive head trauma with neuroimaging: a clinically-oriented review. Acta Neuropathol Commun 2021; 9:96. [PMID: 34022959 PMCID: PMC8141132 DOI: 10.1186/s40478-021-01197-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND SCOPE OF REVIEW Varying severities and frequencies of head trauma may result in dynamic acute and chronic pathophysiologic responses in the brain. Heightened attention to long-term effects of head trauma, particularly repetitive head trauma, has sparked recent efforts to identify neuroimaging biomarkers of underlying disease processes. Imaging modalities like structural magnetic resonance imaging (MRI) and positron emission tomography (PET) are the most clinically applicable given their use in neurodegenerative disease diagnosis and differentiation. In recent years, researchers have targeted repetitive head trauma cohorts in hopes of identifying in vivo biomarkers for underlying biologic changes that might ultimately improve diagnosis of chronic traumatic encephalopathy (CTE) in living persons. These populations most often include collision sport athletes (e.g., American football, boxing) and military veterans with repetitive low-level blast exposure. We provide a clinically-oriented review of neuroimaging data from repetitive head trauma cohorts based on structural MRI, FDG-PET, Aβ-PET, and tau-PET. We supplement the review with two patient reports of neuropathology-confirmed, clinically impaired adults with prior repetitive head trauma who underwent structural MRI, FDG-PET, Aβ-PET, and tau-PET in addition to comprehensive clinical examinations before death. REVIEW CONCLUSIONS Group-level comparisons to controls without known head trauma have revealed inconsistent regional volume differences, with possible propensity for medial temporal, limbic, and subcortical (thalamus, corpus callosum) structures. Greater frequency and severity (i.e., length) of cavum septum pellucidum (CSP) is observed in repetitive head trauma cohorts compared to unexposed controls. It remains unclear whether CSP predicts a particular neurodegenerative process, but CSP presence should increase suspicion that clinical impairment is at least partly attributable to the individual's head trauma exposure (regardless of underlying disease). PET imaging similarly has not revealed a prototypical metabolic or molecular pattern associated with repetitive head trauma or predictive of CTE based on the most widely studied radiotracers. Given the range of clinical syndromes and neurodegenerative pathologies observed in a subset of adults with prior repetitive head trauma, structural MRI and PET imaging may still be useful for differential diagnosis (e.g., assessing suspected Alzheimer's disease).
Collapse
Affiliation(s)
- Breton M. Asken
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94143 USA
| | - Gil D. Rabinovici
- Departments of Neurology, Radiology & Biomedical Imaging, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94143 USA
| |
Collapse
|
13
|
Clark AL, Weigand AJ, Bangen KJ, Merritt VC, Bondi MW, Delano-Wood L. Repetitive mTBI is associated with age-related reductions in cerebral blood flow but not cortical thickness. J Cereb Blood Flow Metab 2021; 41:431-444. [PMID: 32248731 PMCID: PMC8369996 DOI: 10.1177/0271678x19897443] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mild traumatic brain injury (mTBI) is a risk factor for Alzheimer's disease (AD), and evidence suggests cerebrovascular dysregulation initiates deleterious neurodegenerative cascades. We examined whether mTBI history alters cerebral blood flow (CBF) and cortical thickness in regions vulnerable to early AD-related changes. Seventy-four young to middle-aged Veterans (mean age = 34, range = 23-48) underwent brain scans. Participants were divided into: (1) Veteran Controls (n = 27), (2) 1-2 mTBIs (n = 26), and (2) 3+ mTBIs (n = 21) groups. Resting CBF was measured using MP-PCASL. T1 structural scans were processed with FreeSurfer. CBF and cortical thickness estimates were extracted from nine AD-vulnerable regions. Regression analyses examined whether mTBI moderated the association between age, CBF, and cortical thickness. Regressions adjusting for sex and posttraumatic stress revealed mTBI moderated the association between age and CBF of the precuneus as well as superior and inferior parietal cortices (p's < .05); increasing age was associated with lower CBF in the 3+ mTBIs group, but not in the VCs or 1-2 mTBIs groups. mTBI did not moderate associations between age and cortical thickness (p's >.05). Repetitive mTBI is associated with cerebrovascular dysfunction in AD-vulnerable regions and may accelerate pathological aging trajectories.
Collapse
Affiliation(s)
- Alexandra L Clark
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Alexandra J Weigand
- San Diego State University/University of California, San Diego (SDSU/UCSD) Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Katherine J Bangen
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Victoria C Merritt
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Mark W Bondi
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Lisa Delano-Wood
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, San Diego, CA, USA.,Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA, USA
| |
Collapse
|
14
|
A critical review of radiotracers in the positron emission tomography imaging of traumatic brain injury: FDG, tau, and amyloid imaging in mild traumatic brain injury and chronic traumatic encephalopathy. Eur J Nucl Med Mol Imaging 2020; 48:623-641. [DOI: 10.1007/s00259-020-04926-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
|
15
|
Gozes I. Specific protein biomarker patterns for Alzheimer's disease: improved diagnostics in progress. EPMA J 2017; 8:255-259. [PMID: 29021836 DOI: 10.1007/s13167-017-0110-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022]
Abstract
This short review looks at Alzheimer's disease (AD) diagnosis through my own point of view, going from imaging through cerebrospinal fluid to blood proteins. Over the last couple of years, we have published two papers targeted at Alzheimer's diagnosis. In one paper, we took an approach of selecting a specific target, namely, activity-dependent neuroprotective protein (ADNP), and our results tightened the association of ADNP blood expression with intelligence. In another paper, we took an unbiased approach of analysis of all genes expressed in lymphoblastoid cells lines and discovered changes in expression of the regulator of G-protein signaling 2 (RGS2) as a potential AD predictor. This review will assess our data in comparison to selected independent studies focusing on blood protein biomarkers as well as assessing saliva and urine samples with potential predictive value for AD. Furthermore, the review will provide directions for a combination of innovative markers, stratifying the population toward disease prevention and personalized medicine.
Collapse
Affiliation(s)
- Illana Gozes
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|