1
|
Abd Rahman IZ, Adam SH, Hamid AA, Mokhtar MH, Mustafar R, Kashim MIAM, Febriza A, Mansor NI. Potential Neuroprotective Effects of Alpinia officinarum Hance (Galangal): A Review. Nutrients 2024; 16:3378. [PMID: 39408345 PMCID: PMC11478918 DOI: 10.3390/nu16193378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: This review aims to provide a detailed understanding of the current evidence on Alpinia officinarum Hance (A. officinarum) and its potential therapeutic role in central nervous system (CNS) disorders. CNS disorders encompass a wide range of disorders affecting the brain and spinal cord, leading to various neurological, cognitive and psychiatric impairments. In recent years, natural products have emerged as potential neuroprotective agents for the treatment of CNS disorders due to their outstanding bioactivity and favourable safety profile. One such plant is A. officinarum, also known as lesser galangal, a perennial herb from the Zingiberaceae family. Its phytochemical compounds such as flavonoids and phenols have been documented to have a powerful antioxidants effect, capable of scavenging free radicals and preventing oxidative damage. Methods: In this review, we critically evaluate the in vitro and in vivo studies and examine the mechanisms by which A. officinarum exerts its neuroprotective effect. Results: Several studies have confirmed that A. officinarum exerts its neuroprotective effects by reducing oxidative stress and cell apoptosis, promoting neurite outgrowth, and modulating neurotransmitter levels and signalling pathways. Conclusions: Although previous studies have shown promising results in various models of neurological disorders, the underlying mechanisms of A. officinarum in Alzheimer's (AD) and Parkinson's disease (PD) are still poorly understood. Further studies on brain tissue and cognitive and motor functions in animal models of AD and PD are needed to validate the results observed in in vitro studies. In addition, further clinical studies are needed to confirm the safety and efficacy of A. officinarum in CNS disorders.
Collapse
Affiliation(s)
- Izzat Zulhilmi Abd Rahman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Siti Hajar Adam
- Preclinical Department, Faculty of Medicine & Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia;
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Ruslinda Mustafar
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Mohd Izhar Ariff Mohd Kashim
- Centre of Shariah, Faculty of Islamic Studies, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
- Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Ami Febriza
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar 90221, South Sulawesi, Indonesia;
| | - Nur Izzati Mansor
- Department of Nursing, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
2
|
Żak K, Satora M, Skrabalak I, Tarkowski R, Ostrowska-Leśko M, Bobiński M. The Potential Influence of Residual or Recurrent Disease on Bevacizumab Treatment Efficacy in Ovarian Cancer: Current Evidence and Future Perspectives. Cancers (Basel) 2024; 16:1063. [PMID: 38473419 DOI: 10.3390/cancers16051063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
There were high hopes for the new antiangiogenic medicament, bevacizumab, which could inhibit the creation of new blood vessels through binding to isoform A of vascular endothelial growth factor (VEGF). However, it is not only blood vessels that are responsible for tumor cell spread. During the process of tumor growth, lymphangiogenesis is mediated by other members of the VEGF family, specifically VEGF-C and VEGF-D, which act independent to bevacizumab. Therefore, based on the mechanism of bevacizumab action and the processes of angio- and lymphangiogenesis, we formed three hypotheses: (1) if the lymph nodes in primary ovarian cancers are metastatic, the outcome of bevacizumab treatment is worsened; (2) concerning the second-line treatment, bevacizumab will act in a weakened manner if recurrence occurs in lymph nodes as opposed to a local recurrence; (3) patients treated by bevacizumab are more likely to have recurrences in lymph nodes. These hypotheses raise the issue of the existing knowledge gap, which concerns the effect of bevacizumab on metastatic lymph nodes.
Collapse
Affiliation(s)
- Klaudia Żak
- Department of Medical Chemistry, Medical University of Lublin, 20-059 Lublin, Poland
| | - Małgorzata Satora
- I Chair and Department of Oncological Gynaecology and Gynaecology, Student Scientific Association, Medical University of Lublin, 20-059 Lublin, Poland
| | - Ilona Skrabalak
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Rafał Tarkowski
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Marta Ostrowska-Leśko
- Chair and Department of Toxicology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Marcin Bobiński
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
3
|
Qi B, Zheng Y, Gao W, Qi Z, Gong Y, Liu Y, Wang Y, Cheng X, Ning M, Lang Y, Feng J, Li T. Alpha-lipoic acid impedes myocardial ischemia-reperfusion injury, myocardial apoptosis, and oxidative stress by regulating HMGB1 expression. Eur J Pharmacol 2022; 933:175295. [PMID: 36152839 DOI: 10.1016/j.ejphar.2022.175295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Inflammation, oxidative stress, and apoptosis contribute to myocardial ischemia/reperfusion injury (I/RI). Alpha-lipoic acid (ALA) plays a critical role in I/RI by impeding apoptosis and inflammation. Here, we aimed to explore the underlying mechanisms of ALA after I/RI. METHODS The left anterior descending coronary artery (LAD) was ligated, and H9c2 cells were exposed to hypoxia/reoxygenation (H/R) to establish an I/RI model. Prior to this, H9c2 cells and rats were treated using an appropriate amount of ALA. The cardiac function, inflammatory factors, and myocardial pathology were assessed in vitro. We detected cell viability, apoptosis, and oxidative stress-related factors in vivo. Moreover, proteins of the HMGB1/TLR4/NF-κB signaling pathway were detected both in vivo and in vitro. RESULTS We observed that ALA increased cell viability in vitro and decreased apoptosis in vitro and in vivo. ALA inhibited reactive oxygen species production, decreased malondialdehyde, and increased superoxide dismutase activity to resist oxidative stress in vitro. ALA also reduced the expression of inflammatory cytokines (IL-6, IL-1β, and TNF-α) in vivo. ALA also suppressed the levels of the apoptotic protein, Bax, and increased the expression of the anti-apoptotic protein Bcl-2, in vitro and in vivo. Moreover, we observed that ALA significantly inhibited the cytoplasmic localization of HMGB1, which might attenuate MI/RI or H/R via HMGB1/TLR4/NF-κB pathway. CONCLUSION ALA regulates HMGB1 translocation and attenuates I/R via the HMGB1/TLR4/NF-κB signaling pathway, thus impeding apoptosis, oxidation, and inflammation, and might be a potential target for myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Bingcai Qi
- Department of Heart Center, The Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China; Department of Heart Center, Tianjin Third Central Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China.
| | - Yue Zheng
- Department of Heart Center, Tianjin Third Central Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China; School of Medicine, Nankai University, Tianjin, 300071, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Wenqing Gao
- Department of Heart Center, Tianjin Third Central Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China.
| | - Zhenchang Qi
- Department of Heart Center, The Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China; Department of Heart Center, Tianjin Third Central Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Yijie Gong
- Department of Heart Center, The Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China; Department of Heart Center, Tianjin Third Central Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Yanwu Liu
- Department of Heart Center, The Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China; Department of Heart Center, Tianjin Third Central Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Yuchao Wang
- Department of Heart Center, Tianjin Third Central Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China; School of Medicine, Nankai University, Tianjin, 300071, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Xian Cheng
- Department of Heart Center, The Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China; Department of Heart Center, Tianjin Third Central Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Meng Ning
- Department of Heart Center, Tianjin Third Central Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Yuheng Lang
- Department of Heart Center, The Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China; Department of Heart Center, Tianjin Third Central Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Jianyu Feng
- Department of Heart Center, The Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China; Department of Heart Center, Tianjin Third Central Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Tong Li
- Department of Heart Center, The Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China; Department of Heart Center, Tianjin Third Central Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China; School of Medicine, Nankai University, Tianjin, 300071, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China.
| |
Collapse
|
4
|
Mesenchymal Stem Cell-Derived Neuron-Like Cell Transplantation Combined with Electroacupuncture Improves Synaptic Plasticity in Rats with Intracerebral Hemorrhage via mTOR/p70S6K Signaling. Stem Cells Int 2022; 2022:6450527. [PMID: 35211177 PMCID: PMC8863490 DOI: 10.1155/2022/6450527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 01/01/2023] Open
Abstract
Previous studies have shown that the combination of mesenchymal stem cell (MSC) transplantation and electroacupuncture (EA) stimulation is a neuroprotective strategy for treating intracerebral hemorrhage (ICH). However, the underlying mechanisms by which the combined treatment promotes neuroprotection remain unclear. This study was designed to investigate the effects of the combined treatment on synaptic plasticity and elucidate their underlying mechanisms. Therefore, rat ICH models were established by injecting collagenase and heparin, and the animals were randomly divided into model control (MC), EA stimulation (EA), MSC-derived neuron-like cell transplantation (MSC-dNLCs), and MSC-dNLC transplantation combined with EA stimulation (MSC-dNLCs+EA) groups. We observed the ultrastructure of the brain and measured the brain water content (BWC) and the levels of the microtubule-associated protein 2 (MAP2), galactocerebrosidase (GALC), and glial fibrillary acidic protein (GFAP) proteins. We also measured the levels of the phosphorylated mammalian target of rapamycin (mTOR) and 70 kDa ribosomal protein S6 kinase (p70S6K) proteins, as well as the expression of synapse-related proteins. The BWC increased in rats after ICH and decreased significantly in ICH rats treated with MSC-dNLC transplantation, EA stimulation, or combined therapy. Meanwhile, after ICH, the number of blood vessels increased more evidently, but only the combined treatment reduced the number of blood vessels among rats receiving the three treatments. Moreover, the levels of MAP2, GALC, postsynaptic density 95 (PSD95), and synaptophysin (SYP) proteins, as well as the levels of the phosphorylated mTOR and p70S6k proteins, increased in the MSC-dNLCs+EA group compared with those in the MSC-dNLCs and EA groups. Compared with the MC group, GFAP expression was significantly reduced in the MSC-dNLCs, EA, and MSC-dNLCs+EA groups, but the differences among the three treatment groups were not significant. In addition, the number of synapses increased only in the MSC-dNLCs+EA group compared to the MC group. Based on these data, the combination of MSC-dNLC transplantation and EA stimulation exerts a synergistic effect on improving the consequences of ICH by relieving cerebral edema and glial scarring, promoting the survival of neurons and oligodendrocytes, and activating mTOR/p70S6K signaling to enhance synaptic plasticity.
Collapse
|
5
|
Szklener K, Szklener S, Michalski A, Żak K, Kuryło W, Rejdak K, Mańdziuk S. Dietary Supplements in Chemotherapy-Induced Peripheral Neuropathy: A New Hope? Nutrients 2022; 14:625. [PMID: 35276984 PMCID: PMC8838672 DOI: 10.3390/nu14030625] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the main and most prevalent side effects of chemotherapy, significantly affecting the quality of life of patients and the course of chemotherapeutic treatment. Nevertheless, despite its prevalence, the management of the CIPN is considered particularly challenging, with this condition often being perceived as very difficult or even impossible to prevent with currently available agents. Therefore, it is imperative to find better options for patients diagnosed with this condition. While the search for the new agents must continue, another opportunity should be taken into consideration-repurposing of the already known medications. As proposed, acetyl-L-carnitine, vitamins (group B and E), extracts of medical plants, including goshajinkigan, curcumin and others, unsaturated fatty acids, as well as the diet composed of so-called "sirtuin-activating foods", could change the typical way of treatment of CIPN, improve the quality of life of patients and maintain the continuity of chemotherapy. This review summarizes currently available data regarding mentioned above agents and evaluates the rationale behind future research focused on their efficacy in CIPN.
Collapse
Affiliation(s)
- Katarzyna Szklener
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland;
| | - Sebastian Szklener
- Department of Neurology, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland; (S.S.); (K.R.)
| | - Adam Michalski
- Student Scientific Association, Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland; (A.M.); (K.Ż.); (W.K.)
| | - Klaudia Żak
- Student Scientific Association, Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland; (A.M.); (K.Ż.); (W.K.)
| | - Weronika Kuryło
- Student Scientific Association, Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland; (A.M.); (K.Ż.); (W.K.)
| | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland; (S.S.); (K.R.)
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland;
| |
Collapse
|
6
|
Effects of Lipoic Acid on Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5093216. [PMID: 34650663 PMCID: PMC8510805 DOI: 10.1155/2021/5093216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion (I/R) injury often occurred in some pathologies and surgeries. I/R injury not only harmed to physiological functions of corresponding organ and tissue but also induced multiple tissue or organ dysfunctions (even these in distant locations). Although the reperfusion of blood attenuated I/R injury to a certain degree, the risk of secondary damages was difficult to be controlled and it even caused failures of these tissues and organs. Lipoic acid (LA), as an endogenous active substance and a functional agent in food, owns better safety and effects in our body (e.g., enhancing antioxidant activity, improving cognition and dementia, controlling weight, and preventing multiple sclerosis, diabetes complication, and cancer). The literature searching was conducted in PubMed, Embase, Cochrane Library, Web of Science, and SCOPUS from inception to 20 May 2021. It had showed that endogenous LA was exhausted in the process of I/R, which further aggravated I/R injury. Thus, supplements with LA timely (especially pretreatments) may be the prospective way to prevent I/R injury. Recently, studies had demonstrated that LA supplements significantly attenuated I/R injuries of many organs, though clinic investigations were short at present. Hence, it was urgent to summarize these progresses about the effects of LA on different I/R organs as well as the potential mechanisms, which would enlighten further investigations and prepare for clinic applications in the future.
Collapse
|
7
|
Raeisi Estabragh MA, Pardakhty A, Ahmadzadeh S, Dabiri S, Malekpour Afshar R, Farajli Abbasi M. Successful Application of Alpha Lipoic Acid Niosomal Formulation in Cerebral Ischemic Reperfusion Injury in Rat Model. Adv Pharm Bull 2021; 12:541-549. [PMID: 35935040 PMCID: PMC9348526 DOI: 10.34172/apb.2022.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/31/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose: Free radicals such as hydroxyl and peroxide are contributing factors to neuronal destruction in cerebral ischemia. Alpha-lipoic acid (ALA) is one of the potent known antioxidants. Preparation of ALA niosomes allows IV injection and can increase bioavailability and penetration into the central nervous system (CNS).
Methods: Film hydration method was used to prepare different niosomes composed of Span®, Tween®, and cholesterol at different molar ratio. ALA and niosome-forming compounds were dissolved in chloroform, before removing the organic solvent by rotary evaporator. Animals were randomly divided into four groups: Sham, control group, intravenous (IV) injection of empty niosomes plus intraperitoneal (IP) injection of ALA solution, and finally, IV injection of ALA niosomes. Rats were subjected to deep anesthesia before inducing cerebral ischemia, then, their internal common carotid arteries were clamped for 15 min and reperfusion was done for 30 min. Niosomal ALA was injected intravenously just before declamping.
Results: Mean volume diameter of the prepared niosomes was between 4.36 ± 0.82 and 19.95 ± 1.21 μm in different formulations. Encapsulation efficiency percent (EE%) of ALA in the selected formulation, Span60/Tween60/cholesterol (35:35:30 molar ratio), was 94.5 ± 0.2, and 59.27 ± 5.61% of ALA was released after 4h. In the niosomal group, the rate of reduction in complications of cerebral ischemia such as histopathologic changes and acute damage (from score 3 to 1) in CNS was higher than other groups.
Conclusion: The obtained results show that niosomes can be used as effective drug delivery systems for ALA in cerebral ischemia.
Collapse
Affiliation(s)
- Mohammad Amin Raeisi Estabragh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeid Ahmadzadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Malekpour Afshar
- Pathology and Stem Cell Research Center, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Farajli Abbasi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Xie P, Ren ZK, Lv J, Hu YM, Guan ZZ, Yu WF. Berberine Ameliorates Oxygen-glucose Deprivation/Reperfusion-induced Apoptosis by Inhibiting Endoplasmic Reticulum Stress and Autophagy in PC12 Cells. Curr Med Sci 2021; 40:1047-1056. [PMID: 33428132 DOI: 10.1007/s11596-020-2286-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
This study aimed to elucidate the molecular mechanisms by which berberine protects against cerebral ischemia/reperfusion (I/R) injury. The oxygen-glucose deprivation/reperfusion (OGD/R) PC12 model was established. Cell counting kit-8 (CCK-8) was used to detect the toxicity of berberine and the viability of PC12 cells. Hoechst 33258 staining and flow cytometry were used to observe the nuclear morphology, and changes of apoptosis and reactive oxygen species (ROS), respectively. Western blotting and immunofluorescence assay were employed to detect autophagy-related proteins [microtubule-associated protein 1A/1B-light chain 3 (LC3), P62/SQSTM-1, Beclin-1] and endoplasmic reticulum (ER) stress-related markers [glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), Bcl-2-associated X (Bax) and cleaved caspase-3]. The GFP-RFP-LC3 adenovirus was used to assay the change of autophagic flux. Our results showed that berberine could increase the viability of PC12 cells, decrease the concentrations of ROS after OGD/R treatment, and suppress OGD/R-induced ER stress and autophagy. Moreover, the results revealed the involvement of the mammalian target of rapamycin (mTOR) pathway in the induction of autophagy, and berberine could activate the phosphorylation of mTOR and thus mitigate autophagy. In conclusion, our study suggested that berberine may protect against OGD/R-induced apoptosis by regulating ER stress and autophagy, and it holds promises in the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Peng Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guiyang, 550004, China
| | - Zhen-Kui Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guiyang, 550004, China.,Department of Laboratory Medicine, the Second People's Hospital of Guizhou Province, Guiyang, 550002, China
| | - Ju Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guiyang, 550004, China
| | - Yu-Mei Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guiyang, 550004, China
| | - Zhi-Zhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guiyang, 550004, China.,Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Wen-Feng Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China. .,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guiyang, 550004, China.
| |
Collapse
|
9
|
Hypoxia-Induced Glioma-Derived Exosomal miRNA-199a-3p Promotes Ischemic Injury of Peritumoral Neurons by Inhibiting the mTOR Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5609637. [PMID: 33110474 PMCID: PMC7578720 DOI: 10.1155/2020/5609637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/04/2020] [Indexed: 11/18/2022]
Abstract
The underlying molecular mechanisms that the hypoxic microenvironment could aggravate neuronal injury are still not clear. In this study, we hypothesized that the exosomes, exosomal miRNAs, and the mTOR signaling pathway might be involved in hypoxic peritumoral neuronal injury in glioma. Multimodal radiological images, HE, and HIF-1α staining of high-grade glioma (HGG) samples revealed that the peritumoral hypoxic area overlapped with the cytotoxic edema region and directly contacted with normal neurons. In either direct or indirect coculture system, hypoxia could promote normal mouse hippocampal neuronal cell (HT22) injury, and the growth of HT22 cells was suppressed by C6 glioma cells under hypoxic condition. For administrating hypoxia-induced glioma-derived exosomes (HIGDE) that could aggravate oxygen-glucose deprivation (OGD)/reperfusion neuronal injury, we identified that exosomes may be the communication medium between glioma cells and peritumoral neurons, and we furtherly found that exosomal miR-199a-3p mediated the OGD/reperfusion neuronal injury process by suppressing the mTOR signaling pathway. Moreover, the upregulation of miRNA-199a-3p in exosomes from glioma cells was induced by hypoxia-related HIF-1α activation. To sum up, hypoxia-induced glioma-derived exosomal miRNA-199a-3p can be upregulated by the activation of HIF-1α and is able to increase the ischemic injury of peritumoral neurons by inhibiting the mTOR pathway.
Collapse
|
10
|
Aescin Protects Neuron from Ischemia-Reperfusion Injury via Regulating the PRAS40/mTOR Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7815325. [PMID: 33062146 PMCID: PMC7547341 DOI: 10.1155/2020/7815325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 01/18/2023]
Abstract
Ischemic stroke is one of the major causes of disability; widely use of endovascular thrombectomy or intravenous thrombolysis leads to more attention on ischemia-reperfusion injury (I/R injury). Aescin, a natural compound isolated from the seed of the horse chestnut, has been demonstrated anti-inflammatory and antiedematous effects previously. This study was aimed at determining whether aescin could induce protective effects against ischemia-reperfusion injury and exploring the underlying mechanisms in vitro. Primary cultured neurons were subjected to 2 hours of oxygen-glucose deprivation (OGD) followed by 24 hours of simulated reperfusion. Aescin, which worked in a dose-dependent manner, could significantly attenuate neuronal death and reduce lactate dehydrogenase (LDH) release after OGD and simulated reperfusion. Aescin treatment at a concentration of 50 μg/ml provided protection with fewer side effects. Results showed that aescin upregulated the phosphorylation level of PRAS40 and proteins in the mTOR signaling pathway, including S6K and 4E-BP1. However, PRAS40 knockdown or rapamycin treatment was able to undermine and even abolish the protective effects of aescin; meanwhile, the levels of phosphorylation PRAS40 and proteins in the mTOR signaling pathway were obviously decreased. Hence, our study demonstrated that aescin provided neuronal protective effects against I/R injury through the PRAS40/mTOR signaling pathway in vitro. These results might contribute to the potential clinical application of aescin and provide a therapeutic target on subsequent cerebral I/R injury.
Collapse
|
11
|
Zhang H, Song Y, Feng C. Improvement of cerebral ischemia/reperfusion injury by daucosterol palmitate-induced neuronal apoptosis inhibition via PI3K/Akt/mTOR signaling pathway. Metab Brain Dis 2020; 35:1035-1044. [PMID: 32363473 DOI: 10.1007/s11011-020-00575-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine has growing importance in the treatment of ischemia stroke due to its abundance and low drug resistance. In this study, we aim to investigate the therapeutic potential of daucosterol palmitate against ischemia stroke, as well as its neuro-protective mechanism. The dose-response effects of daucosterol palmitate in the protection from brain damage were evaluated in a cerebral ischemia/reperfusion (I/R) rat model. The correlation of neuro-protective effects of daucosterol palmitate with apoptosis inhibition was examined and the possible signaling targets were identified. Our findings revealed that daucosterol palmitate treatment after 2 h' ischemia significantly lowered brain damage, and neuronal cell apoptosis caused by I/R injury in a dose-response mode (20, 40 and 80 mg/kg). Western blot analysis indicated that daucosterol palmitate could reverse the effects of I/R injury on protein expression of PI3K and mTOR, and phosphorylation of Akt. Contrarily, inactivation of PI3K using wortmannin dramatically antagonized the effect of daucosterol palmitate for I/R injury. With these findings, it supports the application potential of daucosterol palmitate in the treatment of ischemia stroke. Besides, the PI3K/Akt/mTOR pathway might be potential cellular targets for daucosterol palmitate.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Department of Neurology, Liaocheng People's Hospital, Huashan road, NO 45, Liaocheng city, 252000, Shandong Province, China
| | - Yamin Song
- Department of Neurology, Liaocheng People's Hospital, Huashan road, NO 45, Liaocheng city, 252000, Shandong Province, China.
| | - Cong Feng
- Department of Surgery, Tumour Hospital of Liaocheng, Liaocheng city, 252000, Shandong, China
| |
Collapse
|
12
|
Yu B, Ruan M, Liang T, Yu Y. Synergy Between Borneol and Extract of Ligusticum chuanxiong Hort Against Cortex and Striatum Ischemia. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.104.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Takenouchi Y, Tsuboi K, Ohsuka K, Nobe K, Ohtake K, Okamoto Y, Kasono K. Chronic Treatment with α-Lipoic Acid Improves Endothelium-Dependent Vasorelaxation of Aortas in High-Fat Diet-Fed Mice. Biol Pharm Bull 2019; 42:1456-1463. [DOI: 10.1248/bpb.b18-00800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yasuhiro Takenouchi
- Department of Pharmacology, Kawasaki Medical School
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University
| | | | - Kenji Ohsuka
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University
| | - Koji Nobe
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University
| | - Kazuo Ohtake
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University
| | | | - Keizo Kasono
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University
| |
Collapse
|
14
|
Osorio C, Kanukuntla T, Diaz E, Jafri N, Cummings M, Sfera A. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Front Aging Neurosci 2019; 11:143. [PMID: 31297054 PMCID: PMC6608545 DOI: 10.3389/fnagi.2019.00143] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
The amyloid hypothesis, the assumption that beta-amyloid toxicity is the primary cause of neuronal and synaptic loss, has been the mainstream research concept in Alzheimer's disease for the past two decades. Currently, this model is quietly being replaced by a more holistic, “systemic disease” paradigm which, like the aging process, affects multiple body tissues and organs, including the gut microbiota. It is well-established that inflammation is a hallmark of cellular senescence; however, the infection-senescence link has been less explored. Microbiota-induced senescence is a gradually emerging concept promoted by the discovery of pathogens and their products in Alzheimer's disease brains associated with senescent neurons, glia, and endothelial cells. Infectious agents have previously been associated with Alzheimer's disease, but the cause vs. effect issue could not be resolved. A recent study may have settled this debate as it shows that gingipain, a Porphyromonas gingivalis toxin, can be detected not only in Alzheimer's disease but also in the brains of older individuals deceased prior to developing the illness. In this review, we take the position that gut and other microbes from the body periphery reach the brain by triggering intestinal and blood-brain barrier senescence and disruption. We also surmise that novel Alzheimer's disease findings, including neuronal somatic mosaicism, iron dyshomeostasis, aggressive glial phenotypes, and loss of aerobic glycolysis, can be explained by the infection-senescence model. In addition, we discuss potential cellular senescence targets and therapeutic strategies, including iron chelators, inflammasome inhibitors, senolytic antibiotics, mitophagy inducers, and epigenetic metabolic reprograming.
Collapse
Affiliation(s)
- Carolina Osorio
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Tulasi Kanukuntla
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Eddie Diaz
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Nyla Jafri
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Michael Cummings
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| |
Collapse
|
15
|
Shi Q, Zhang Q, Peng Y, Zhang X, Wang Y, Shi L. A natural diarylheptanoid protects cortical neurons against oxygen–glucose deprivation-induced autophagy and apoptosis. J Pharm Pharmacol 2019; 71:1110-1118. [DOI: 10.1111/jphp.13096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/16/2019] [Indexed: 12/31/2022]
Abstract
Abstract
Objectives
This study aims to investigate the neuroprotective effects of curcumin analogues, 7-(4-Hydroxy-3-methoxyphenyl)-1-phenyl-4E-hepten-3-one (AO-2) on oxygen–glucose deprivation and re-oxygenation (OGD/R) induced injury in cortical neurons, which is a widely accepted in-vitro model for ischaemic reperfusion.
Methods
In this study, AO-2 was added to cortical neurons for 2 h as pretreatment, and then cortical neurons were subjected to OGD/R in the presence of AO-2 for 4 h. Cell viability was tested by 2′, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay and apoptosis by flow cytometry and Live & Dead cell assay. Western blot analysis detected the change in AKT/mTOR (mammalian target of rapamycin) signalling pathway.
Key findings
Treatment of AO-2 increased cell survival of OGD/R-treated cortical neurons. Transient AKT/mTOR inhibition, induction of the autophagy marker LC3-II (microtubule-associated protein 1A/1B-light chain 3 phosphatidylethanolamine conjugate), and cleavage of the apoptosis marker Caspase-3 were observed at different stages of OGD/R, and AO-2 reversed all three events. Importantly, treatment of the mTOR inhibitor rapamycin blocked the neuroprotective effects of AO-2 on reducing LC3-II and cleaved Caspase-3 expression and cancelled AO-2-mediated neuronal survival.
Conclusions
These results demonstrate that AO-2 increases resistance of cortical neurons to OGD/R by decreasing autophagy and cell apoptosis, which involves an mTOR-dependent mechanism.
Collapse
Affiliation(s)
- Qiaoyun Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Qinghua Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Yinghui Peng
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoqi Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Ying Wang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Faggi L, Porrini V, Lanzillotta A, Benarese M, Mota M, Tsoukalas D, Parrella E, Pizzi M. A Polyphenol-Enriched Supplement Exerts Potent Epigenetic-Protective Activity in a Cell-Based Model of Brain Ischemia. Nutrients 2019; 11:nu11020345. [PMID: 30736313 PMCID: PMC6412333 DOI: 10.3390/nu11020345] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/27/2019] [Accepted: 02/03/2019] [Indexed: 12/12/2022] Open
Abstract
Bioactive components, due in part to their epigenetic properties, are beneficial for preventing several human diseases including cerebrovascular pathologies. However, no clear demonstration supports the idea that these molecules still conserve their epigenetic effects when acting at very low concentrations reproducing the brain levels achieved after oral administration of a micronutrient supplement. In the present study, we used a cellular model of brain ischemia to investigate the neuroprotective and epigenetic activities of a commercially available micronutrient mixture (polyphenol-enriched micronutrient mixture, PMM) enriched in polyphenols ((-)-epigallocatechin-3-gallate, quercetin, resveratrol), α-lipoic acid, vitamins, amino acids and other micronutrients. Mimicking the suggested dietary supplementation, primary cultures of mouse cortical neurons were pre-treated with PMM and then subjected to oxygen glucose deprivation (OGD). Pre-treatment with PMM amounts to provide bioactive components in the medium in the nanomolar range potently prevented neuronal cell death. The protection was associated with the deacetylation of the lysin 310 (K310) on NF-κB/RelA as well as the deacetylation of H3 histones at the promoter of Bim, a pro-apoptotic target of ac-RelA(K310) in brain ischemia. Epigenetic regulators known to shape the acetylation state of ac-RelA(K310) moiety are the histone acetyl transferase CBP/p300 and the class III histone deacetylase sirtuin-1. In view of that evidence, the protection we here report unveils the efficacy of bioactive components endowed with either inhibitory activity on CBP/p300 or stimulating activity on the AMP-activated protein kinase–sirtuin 1 pathway. Our results support a potential synergistic effect of micronutrients in the PMM, suggesting that the intake of a polyphenol-based micronutrient mixture can reduce neuronal vulnerability to stressful conditions at concentrations compatible with the predicted brain levels reached by a single constituent after an oral dose of PMM.
Collapse
Affiliation(s)
- Lara Faggi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Vanessa Porrini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Annamaria Lanzillotta
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Benarese
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Mariana Mota
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Dimitris Tsoukalas
- European Institute of Nutritional Medicine, E.I.Nu.M., Viale Liegi 44, 00198 Rome, Italy.
| | - Edoardo Parrella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
17
|
Sun J, Li X, Liu J, Pan X, Zhao Q. Stigmasterol Exerts Neuro-Protective Effect Against Ischemic/Reperfusion Injury Through Reduction Of Oxidative Stress And Inactivation Of Autophagy. Neuropsychiatr Dis Treat 2019; 15:2991-3001. [PMID: 31695390 PMCID: PMC6805119 DOI: 10.2147/ndt.s220224] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/09/2019] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Stroke remains the primary cause of pain, suffering, and death in patients. One of the major thrusts in stroke therapy is to find an effective prevention strategy. Objectives of this study are to testify the neuro-protection effect of stigmasterol in ischemic/reperfusion injury model. METHODS The dosage-dependent effects (20, 40, and 80 mg/kg) of stigmasterol on physiological behaviors and oxidative stress biomarkers were investigated. Expression and phosphorylation of beclin1, microtubule-associated protein 1 light chain 3 (LC3), adenosine monophosphate-activated protein kinase (AMPK), mTOR, and N-terminal kinase (JNK) were detected. RESULTS The results showed that stigmasterol was able to effectively reduce neurological deficits and infarct damage induced by the ischemic/reperfusion injury, improve histopathology changes, and restore the levels of the endogenous antioxidant defense system in a dose-response mode. Stigmasterol effectively depressed the expression level of beclin1, and the conversion of LC3 I to LC3 II, while promoted the phosphorylation of mTOR, and remarkably inhibited the phosphorylation of AMPK and JNK, as well as the expression of JNK induced by 24 hrs of reperfusion. CONCLUSION These findings reveal that stigmasterol has neuro-protective effect against the ischemic/reperfusion injury, possibly associated with reduction of oxidative stress and inactivation of autophagy via AMPK/mTOR and JNK pathways.
Collapse
Affiliation(s)
- Jiadong Sun
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang City, Shandong Province 262100, People's Republic of China
| | - Xuemei Li
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang City, Shandong Province 262100, People's Republic of China
| | - Junling Liu
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang City, Shandong Province 262100, People's Republic of China
| | - Xin Pan
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang City, Shandong Province 262100, People's Republic of China
| | - Qianqian Zhao
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang City, Shandong Province 262100, People's Republic of China
| |
Collapse
|