1
|
Wu L, Liu X, Jiang Q, Li M, Liang M, Wang S, Wang R, Su L, Ni T, Dong N, Zhu L, Guan F, Zhu J, Zhang W, Wu M, Chen Y, Chen T, Wang B. Methamphetamine-induced impairment of memory and fleeting neuroinflammation: Profiling mRNA changes in mouse hippocampus following short-term and long-term exposure. Neuropharmacology 2024; 261:110175. [PMID: 39357738 DOI: 10.1016/j.neuropharm.2024.110175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/20/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Methamphetamine (METH) has been implicated in inducing memory impairment, but the precise mechanisms underlying this effect remain unclear. Current research often limits itself to singular models or focuses on individual gene or protein functions, which hampers a comprehensive understanding of the underlying mechanisms. In this study, we established three METH mouse exposure models, extracted hippocampal nuclei, and utilized RNA sequencing to analyze changes in mRNA expression profiles. Our results indicate that METH significantly impairs the learning and memory capabilities of mice. Additionally, we observed that METH-induced inflammatory responses occur in the early phase and do not further exacerbate with repeated injections. However, RNA sequencing revealed the persistent enrichment of inflammatory pathway molecules, which correlated with worsened behaviors. This suggests that although METH-induced neuroinflammation plays a critical role in learning and memory impairment, the continued enrichment of inflammatory pathway molecules is associated with behavioral outcomes. These findings provide crucial evidence for the potential application of immune intervention in METH-related disorders.
Collapse
Affiliation(s)
- Laiqiang Wu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Xiaorui Liu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Qingchen Jiang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ming Li
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Min Liang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Shuai Wang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Rui Wang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Linlan Su
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Tong Ni
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Nan Dong
- School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Li Zhu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Fanglin Guan
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Jie Zhu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Wen Zhang
- Department of Pathology, Northwest Women's and Children's Hospital, Xi'an, China
| | - Min Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Teng Chen
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China.
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| |
Collapse
|
2
|
Yu R, Kong DL, Liao C, Yu YJ, He ZW, Wang Y. Natural products as the therapeutic strategies for addiction. Biomed Pharmacother 2024; 175:116687. [PMID: 38701568 DOI: 10.1016/j.biopha.2024.116687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
World Drug Report 2023 concluded that 296 million people abused drugs, 39.5 million became addiction and 494,000 died as a direct or indirect result of addiction. Addiction has become a growing problem that affects individuals, their families, societies, countries and even the world. However, treatment for addiction is only limited to some developed countries because of the high cost, difficult implementation, and time consuming. Therefore, there is an urgent need to develop a low-cost, effective drug for the development of addiction treatment in more countries, which is essential for the stability and sustainable development of the world. In this review, it provided an overview of the abuse of common addictive drugs, related disorders, and current therapeutic regimen worldwide, and summarized the mechanisms of drug addiction as reward circuits, neuroadaptation and plasticity, cognitive decision-making, genetics, and environment. According to their chemical structure, 43 natural products and 5 herbal combinations with potential to treat addiction were classified, and their sources, pharmacological effects and clinical trials were introduced. It was also found that mitragine, ibogine, L-tetrahydropalmatine and crocin had greater potential for anti-addiction.
Collapse
Affiliation(s)
- Rui Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - De-Lei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Cai Liao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Ya-Jie Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Zhen-Wei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Ge J, Tan R, Gao Q, Li R, Xu P, Song H, Wang S, Wan Y, Zhou L. A Multifunctional Nanocarrier System for Highly Efficient and Targeted Delivery of Ketamine to NMDAR Sites for Improved Treatment of Depression. Adv Healthc Mater 2023; 12:e2300154. [PMID: 37031162 DOI: 10.1002/adhm.202300154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/07/2023] [Indexed: 04/10/2023]
Abstract
Ketamine (KA), commonly used as an anesthetic, is now widely studied as an antidepressant for the treatment of depression. However, due to its side effects, such as addiction and cognitive impairment, the dosage and frequency of (S)-ketamine approved by the FDA for the treatment of refractory depression is very low, which limits its efficacy. Here, a new multifunctional nanocarrier system (AC-RM@HA-MS) with specific targeting capabilities is developed to improve the efficacy of KA treatment. KA-loaded NPs (AC-RM@HA-MS-KA) are constructed with a multilayer core-shell structure. KA-loaded mesoporous silica NPs are prepared, conjugated with hyaluronic acid (HA) as pore gatekeepers, and sheathed with an RBC-membrane (RM) for camouflage. Finally, the surface is tagged with bifunctional peptides (Ang-2-Con-G, AC) to achieve specific targeting. One peptide (Ang-2) is acted as a guide to facilitate the crossing of the blood-brain barrier (BBB), while the other (Con-G) is functioned as a ligand for the targeted delivery of KA to the N-methyl-D-aspartate receptor sites. Animal experiments reveal that AC-RM@HA-MS-KA NPs effectively cross the BBB and directionally accumulate in the curing areas, thereby alleviating the depressive symptoms and improving the cognitive functions of depressed mice. After treatment, the depressed mice almost completely return to normal without obvious symptoms of addiction.
Collapse
Affiliation(s)
- Jing Ge
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ronghua Tan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qian Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Rui Li
- School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China
| | - Pengxin Xu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hang Song
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shenqi Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ying Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lei Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
4
|
Zeng R, Pu HY, Zhang XY, Yao ML, Sun Q. Methamphetamine: Mechanism of Action and Chinese Herbal Medicine Treatment for Its Addiction. Chin J Integr Med 2023:10.1007/s11655-023-3635-y. [PMID: 37074617 DOI: 10.1007/s11655-023-3635-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 04/20/2023]
Abstract
With the proliferation of synthetic drugs, research on the mechanism of action of addictive drugs and treatment methods is of great significance. Among them, methamphetamine (METH) is the most representative amphetamine synthetic drug, and the treatment of METH addiction has become an urgent medical and social problem. In recent years, the therapeutic effects of Chinese herbal medicines on METH addiction have gained widespread attention because of their non-addictiveness, multiple targets, low side effects, low cost, and other characteristics. Previous studies have identified a variety of Chinese herbal medicines with effects on METH addiction. Based on the research on METH in recent years, this article summarizes the mechanism of action of METH as the starting point and briefly reviews the Chinese herbal medicine-based treatment of METH.
Collapse
Affiliation(s)
- Rui Zeng
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Hong-Yu Pu
- North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China
| | - Xin-Yue Zhang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Meng-Lin Yao
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Qin Sun
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
5
|
Ding J, Huang J, Tang X, Shen L, Hu S, He J, Liu T, Yu Z, Liu Y, Wang Q, Wang J, Zhao N, Qi X, Huang J. Low and high dose methamphetamine differentially regulate synaptic structural plasticity in cortex and hippocampus. Front Cell Neurosci 2022; 16:1003617. [PMID: 36406748 PMCID: PMC9666390 DOI: 10.3389/fncel.2022.1003617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/19/2022] [Indexed: 03/24/2024] Open
Abstract
Psychostimulants, such as methamphetamine (METH) can induce structural remodeling of synapses by remodeling presynaptic and postsynaptic morphology. Escalating or long-lasting high dose METH accounts for neurodegeneration by targeting multiple neurotransmitters. However, the effects of low dose METH on synaptic structure and the modulation mechanism remain elusive. This study aims to assess the effects of low dose (2 mg/kg) and high dose (10 mg/kg) of METH on synaptic structure alternation in hippocampus and prefrontal cortex (PFC) and to reveal the underlying mechanism involved in the process. Low dose METH promoted spine formation, synaptic number increase, post-synaptic density length elongation, and memory function. High dose of METH induced synaptic degeneration, neuronal number loss and memory impairment. Moreover, high dose, but not low dose, of METH caused gliosis in PFC and hippocampus. Mechanism-wise, low dose METH inactivated ras-related C3 botulinum toxin substrate 1 (Rac1) and activated cell division control protein 42 homolog (Cdc42); whereas high dose METH inactivated Cdc42 and activated Rac1. We provided evidence that low and high doses of METH differentially regulate synaptic plasticity in cortex and hippocampus.
Collapse
Affiliation(s)
- Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jian Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiang Tang
- Department of Children Rehabilitation, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lingyi Shen
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaojiao He
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Zhixing Yu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yubo Liu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiyan Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jiawen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Na Zhao
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jiang Huang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Corydalis decumbens Can Exert Analgesic Effects in a Mouse Neuropathic Pain Model by Modulating MAPK Signaling. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7722951. [PMID: 35669365 PMCID: PMC9166945 DOI: 10.1155/2022/7722951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/02/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022]
Abstract
Objectives This study is aimed at investigating the analgesic effect of the administration of Corydalis decumbens (CD) in a mouse model of postherpetic neuralgia (PHN) and at elucidating its mechanism of analgesic action. Methods Adult Kunming (KM) mice were randomly divided into control, CD, and vehicle-treated groups. Neuropathic pain was induced with a single intraperitoneal injection of resiniferatoxin (RTX). Thermal hyperalgesia was assessed with a hot/cold plate test, and mechanical allodynia was evaluated using von Frey filaments. The activation states of astrocytes, microglia, and the mitogen-activated protein kinase (MAPK) pathway in the spinal cord were determined by immunofluorescence staining and Western blot analysis of Iba-1, GFAP, phospho-p38, and phospho-Jun N-terminal kinase (JNK). Results RTX diminished thermal sensitivity and gradually increased sensitivity to tactile stimulation. The expression of Iba-1, GFAP, phospho-p38 MAPK, and phospho-JNK was upregulated in the RTX-induced postherpetic neuralgia mouse model. Systemic treatment with CD significantly ameliorated thermal sensitivity and mechanical hyperalgesia and was accompanied by a reduction in the expression of Iba-1 and GFAP and reduced phosphorylation of p38 and JNK. Conclusions This study suggests that CD is effective at ameliorating mechanical hyperalgesia in PHN mice and that its mechanism of action may involve modulation of MAPK phosphorylation and glial cell activation. Thus, CD may be a promising alternative therapy for PHN.
Collapse
|
7
|
Liang M, Zhu L, Wang R, Su H, Ma D, Wang H, Chen T. Methamphetamine Exposure in Adolescent Impairs Memory of Mice in Adulthood Accompanied by Changes in Neuroplasticity in the Dorsal Hippocampus. Front Cell Neurosci 2022; 16:892757. [PMID: 35656409 PMCID: PMC9152172 DOI: 10.3389/fncel.2022.892757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/13/2022] [Indexed: 01/14/2023] Open
Abstract
Methamphetamine (METH) has been shown to alter learning and memory by affecting the neuroplasticity of the dorsal hippocampus, a key structure that undergoes extensive remodeling during adolescence. In this study, we investigated whether mid-to-late adolescent exposure to METH leads to long-lasting memory impairment. To do this, adolescents (35–48 postnatal days) were exposed to different doses of METH for 14 days and then evaluated by the Morris water maze (MWM), new object recognition test (NORT), and the Y-maze, to investigate the learning and memory abilities of mice in their adolescence and adulthood, respectively. We also detected the mRNA levels of genes associated with neuroplasticity in the dorsal hippocampus. The synaptic ultrastructure and the number of neurons and astrocytes in the dorsal hippocampus were also determined by transmission electron microscopy (TEM) and immunofluorescence (IF). Exposure to METH in mid-to-late adolescence impaired spatial memory retrieval ability and the long-term recognition memory of mice in their adulthood, but not in their adolescence. Of note, the impairment of memory capacity in adulthood was accompanied by molecular and structural changes in synapses in the dorsal hippocampus. Our results indicate that mice exposed to METH in mid-to-late adolescence have impaired memory ability in their adulthood; this may be the result of abnormal changes in the structural plasticity of the dorsal hippocampus; the causal relationship between changes in synaptic structural plasticity and memory impairment needs to be further confirmed. In summary, our study provides evidence for the detrimental consequences of adolescent addiction and the prevention of adolescent drug abuse.
Collapse
Affiliation(s)
- Min Liang
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Li Zhu
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Rui Wang
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Hang Su
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Dongliang Ma
- Programme in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Hongyan Wang
- Programme in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Teng Chen
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Teng Chen,
| |
Collapse
|
8
|
Du Q, Meng X, Wang S. A Comprehensive Review on the Chemical Properties, Plant Sources, Pharmacological Activities, Pharmacokinetic and Toxicological Characteristics of Tetrahydropalmatine. Front Pharmacol 2022; 13:890078. [PMID: 35559252 PMCID: PMC9086320 DOI: 10.3389/fphar.2022.890078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Tetrahydropalmatine (THP), a tetrahydroproberine isoquinoline alkaloid, is widely present in some botanical drugs, such as Stephania epigaea H.S. Lo (Menispermaceae; Radix stephaniae epigaeae), Corydalis yanhusuo (Y.H.Chou & Chun C.Hsu) W.T. Wang ex Z.Y. Su and C.Y. Wu (Papaveraceae; Corydalis rhizoma), and Phellodendron chinense C.K.Schneid (Berberidaceae; Phellodendri chinensis cortex). THP has attracted considerable attention because of its diverse pharmacological activities. In this review, the chemical properties, plant sources, pharmacological activities, pharmacokinetic and toxicological characteristics of THP were systematically summarized for the first time. The results indicated that THP mainly existed in Papaveraceae and Menispermaceae families. Its pharmacological activities include anti-addiction, anti-inflammatory, analgesic, neuroprotective, and antitumor effects. Pharmacokinetic studies showed that THP was inadequately absorbed in the intestine and had rapid clearance and low bioavailability in vivo, as well as self-microemulsifying drug delivery systems, which could increase the absorption level and absorption rate of THP and improve its bioavailability. In addition, THP may have potential cardiac and neurological toxicity, but toxicity studies of THP are limited, especially its long-duration and acute toxicity tests. In summary, THP, as a natural alkaloid, has application prospects and potential development value, which is promising to be a novel drug for the treatment of pain, inflammation, and other related diseases. Further research on its potential target, molecular mechanism, toxicity, and oral utilization should need to be strengthened in the future.
Collapse
Affiliation(s)
- Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Liu L, Liu M, Zhao W, Zhao YL, Wang Y. Tetrahydropalmatine Regulates BDNF through TrkB/CAM Interaction to Alleviate the Neurotoxicity Induced by Methamphetamine. ACS Chem Neurosci 2021; 12:3373-3386. [PMID: 34448569 DOI: 10.1021/acschemneuro.1c00373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tetrahydropalmatine (THP) has analgesic, hypnotic, sedative, and other pharmacological effects. Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal plasticity, growth, and development. However, their mechanism of action in methamphetamine (MA)-induced neurotoxicity remains unclear. This study aims to explore the important role of BDNF in MA neurotoxicity and whether THP can regulate BDNF through the interaction between tyrosine kinase receptor B (TrkB)/calmodulin (CAM) to alleviate the neurotoxicity induced by MA. SD rats were randomly divided into control, MA, and MA + THP groups. Stereotyped behavior test, captive rejection test, open field test (OFT), and Morris water maze (MWM) were used to evaluate the anxiety, aggression, cognition, learning, and memory. Extracted hippocampus and mesencephalon tissue were detected by Western blot, HE staining, and immunohistochemistry. TUNEL staining was used to detect apoptosis. MOE was used for bioinformatics prediction, and coimmunoprecipitation was used to confirm protein interactions. Long-term abuse of MA resulted in lower weight gain ratio and nerve cell damage and caused various neurotoxicity-related behavioral abnormalities: anxiety, aggression, cognitive motor disorders, and learning and memory disorders. MA-induced neurotoxicity is related to the down-regulation of BDNF and apoptosis. THP attenuated the MA-induced neurotoxicity by decreasing CAM, increasing TrkB, phosphorylating Akt, up-regulating NF-κB and BDNF, and inhibiting cell apoptosis. MA can induce neurotoxicity in rats. BDNF may play a vital role in MA-induced neurotoxicity. THP regulates BDNF through TrkB/CAM interaction to alleviate the neurotoxicity induced by MA. THP may be a potential therapeutic drug for the neurotoxic and neurodegenerative diseases related to MA.
Collapse
Affiliation(s)
- Lian Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Ming Liu
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, Liaoning 110854, P. R. China
| | - Wei Zhao
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, Liaoning 110854, P. R. China
| | - Yuan-Ling Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
| |
Collapse
|
10
|
Liu L, Liu M, Zhao W, Zhao YL, Wang Y. Levo-tetrahydropalmatine: A new potential medication for methamphetamine addiction and neurotoxicity. Exp Neurol 2021; 344:113809. [PMID: 34256045 DOI: 10.1016/j.expneurol.2021.113809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Levo-tetrahydropalmatine (l-THP) is mainly derived from the dried tuber of the Papaveraceae plant Corydalis, also called Corydalis B, which is a drug with analgesic, hypnotic, sedative and other effects. Methamphetamine (METH) belongs to the central nervous stimulant and is a highly addictive drug. It is an urgent problem to study the mechanism of methamphetamine neurotoxicity and to search for the therapeutic targets of the METH addiction. This review is aimed to discuss the pharmacological mechanism and the protective effects of l-THP on METH-induced neurotoxicity, and to explore the therapeutic prospects of l-THP for METH addiction to provide an innovative application of l-THP in clinic. It was found that exposure to METH leads to the compulsive drug-seeking and drug-taking behavior, which is ultimately resulted in METH addiction and neurotoxicity. L-THP has the inhibitory effects on the incidence, maintenance and relapse of METH addiction. L-THP can effectively enhance the plasticity of nerve cells and improve the function of nerve cells where brain-derived neurotrophic factor (BDNF) and its pathways play a protective role. Therefore, l-THP has the potential to become an important therapeutic drug for METH addiction and neurotoxicity.
Collapse
Affiliation(s)
- Lian Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Ming Liu
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, Liaoning 110854, PR China
| | - Wei Zhao
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, Liaoning 110854, PR China
| | - Yuan-Ling Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
11
|
Chen L, Ru Q, Xiong Q, Zhou M, Yue K, Wu Y. The Role of Chinese Herbal Therapy in Methamphetamine Abuse and its Induced Psychiatric Symptoms. Front Pharmacol 2021; 12:679905. [PMID: 34040537 PMCID: PMC8143530 DOI: 10.3389/fphar.2021.679905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023] Open
Abstract
Repeated intake of methamphetamine (METH) leads to drug addiction, the inability to control intake, and strong drug cravings. It is also likely to cause psychiatric impairments, such as cognitive impairment, depression, and anxiety. Because the specific neurobiological mechanisms involved are complex and have not been fully and systematically elucidated, there is no established pharmacotherapy for METH abuse. Studies have found that a variety of Chinese herbal medicines have significant therapeutic effects on neuropsychiatric symptoms and have the advantage of multitarget comprehensive treatment. We conducted a systematic review, from neurobiological mechanisms to candidate Chinese herbal medicines, hoping to provide new perspectives and ideas for the prevention and treatment of METH abuse.
Collapse
Affiliation(s)
- Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Qin Ru
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Qi Xiong
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Mei Zhou
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Kai Yue
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
12
|
Tian B, Tian M, Huang SM. Advances in phytochemical and modern pharmacological research of Rhizoma Corydalis. PHARMACEUTICAL BIOLOGY 2020; 58:265-275. [PMID: 32223481 PMCID: PMC7170387 DOI: 10.1080/13880209.2020.1741651] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/17/2020] [Accepted: 03/08/2020] [Indexed: 05/22/2023]
Abstract
ABSRACTContext: Rhizoma Corydalis (RC) is the dried tubers of Corydalis yanhusuo (Y. H. Chou and Chun C. Hsu) W. T. Wang ex Z. Y. Su and C. Y. Wu (Papaveraceae). Traditionally, RC is used to alleviate pain such as headache, abdominal pain, and epigastric pain. Modern medicine shows that it has analgesic, anti-arrhythmia, and other effects.Objective: We provided an overview of the phytochemical and pharmacological properties of RC as a foundation for its clinical application and further research and development of new drugs.Methods: We collected data of various phytochemical and pharmacological effects of RC from 1982 to 2019. To correlate with existing scientific evidence, we used Google Scholar and the journal databases Scopus, PubMed, and CNKI. 'Rhizoma Corydalis', 'phytochemistry', and 'pharmacological effects' were used as key words.Results: Currently, more than 100 chemical components have been isolated and identified from RC, among which alkaloid is the pimary active component of RC. Based on prior research, RC has antinociceptive, sedative, anti-epileptic, antidepressive and anti-anxiety, acetylcholinesterase inhibitory effect, drug abstinence, anti-arrhythmic, antimyocardial infarction, dilated coronary artery, cerebral ischaemia reperfusion (I/R) injury protection, antihypertensive, antithrombotic, antigastrointestinal ulcer, liver protection, antimicrobial, anti-inflammation, antiviral, and anticancer effects.Conclusions: RC is reported to be effective in treating a variety of diseases. Current pharmacological studies on RC mainly focus on the nervous, circulatory, digestive, and endocrine systems, as well as drug withdrawal. Although experimental data support the beneficial effects of this drug, its physiological activity remains a concern. Nonetheless, this review provides a foundation for future research.
Collapse
Affiliation(s)
- Bing Tian
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ming Tian
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
- Ming Tian Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin150040, China
| | - Shu-Ming Huang
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- CONTACT Shu-Ming Huang Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin150040, China
| |
Collapse
|
13
|
Nesbit MO, Phillips AG. Tetrahydroprotoberberines: A Novel Source of Pharmacotherapies for Substance Use Disorders? Trends Pharmacol Sci 2020; 41:147-161. [PMID: 31987662 DOI: 10.1016/j.tips.2019.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022]
Abstract
Tetrahydroprotoberberines (THPBs) are a class of compounds that target both dopamine D1 and D2 families of receptors, making them attractive candidates for treating substance use disorder (SUD). The binding of some THPBs to serotonin and adrenergic receptors, in addition to dopamine receptors, gives rise to complex pharmacological profiles. Significant progress has been made over the last decade in examining these compounds for their therapeutic potential. Here, we evaluate recent discoveries relating to the neural mechanism and therapeutic effects of THPBs, focusing on compounds that have shown promise in animal models of SUD and preliminary clinical studies. Advancements in structure-activity relationship studies and in silico modeling of THPB binding to dopamine receptors have facilitated the synthesis of novel THPBs with enhanced therapeutic properties and provide insights regarding use of the THPB scaffold to serve as a template for innovative drug designs.
Collapse
Affiliation(s)
- Maya O Nesbit
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 3402-2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Anthony G Phillips
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 3402-2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
14
|
Fan X, Yang J, Dong Y, Hou Y, Liu S, Wu C. Oxytocin inhibits methamphetamine-associated learning and memory alterations by regulating DNA methylation at the Synaptophysin promoter. Addict Biol 2020; 25:e12697. [PMID: 30585381 DOI: 10.1111/adb.12697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/26/2018] [Accepted: 10/17/2018] [Indexed: 01/02/2023]
Abstract
Methamphetamine (METH) causes memory changes, but the underlying mechanisms are poorly understood. Epigenetic mechanisms, including DNA methylation, can potentially cause synaptic changes in the brain. Oxytocin (OT) plays a central role in learning and memory, but little is known of the impact of OT on METH-associated memory changes. Here, we explored the role of OT in METH-induced epigenetic alterations that underlie spatial and cognitive memory changes. METH (2.0 mg/kg, i.p.) was administered to male C57BL/6 mice once every other day for 8 days. OT (2.5 μg, i.c.v.) or aCSF was given prior to METH. Spatial and cognitive memory were assessed. In Hip and PFC, synaptic structures and proteins were examined, levels of DNA methyltransferases (DNMTs) and methyl CpG binding protein 2 (MECP2) were determined, and the DNA methylation status at the Synaptophysin (Syn) promoter was assessed. METH enhanced spatial memory, decreased synapse length, downregulated DNMT1, DNMT3A, DNMT3B, and MECP2, and induced DNA hypomethylation at the Syn promoter in Hip. In contrast, METH reduced cognitive memory, increased synapse thickness, upregulated DNMT1, DNMT3A, and MECP2, and induced DNA hypermethylation at the Syn promoter in PFC. OT pretreatment specifically ameliorated METH-induced learning and memory alterations, normalized synapse structures, and regulated DNMTs and MECP2 to reverse the DNA methylation status changes at the Syn promoter in Hip and PFC. DNA methylation is an important gene regulatory mechanism underlying METH-induced learning and memory alterations. OT can potentially be used to specifically manipulate METH-related memory changes.
Collapse
Affiliation(s)
- Xin‐Yu Fan
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Jing‐Yu Yang
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Ying‐Xu Dong
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Ying Hou
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Shuai Liu
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Chun‐Fu Wu
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| |
Collapse
|
15
|
Neuroprotective effect of ghrelin in methamphetamine-treated male rats. Neurosci Lett 2019; 707:134304. [DOI: 10.1016/j.neulet.2019.134304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 11/23/2022]
|
16
|
Zhou ZY, Zhao WR, Shi WT, Xiao Y, Ma ZL, Xue JG, Zhang LQ, Ye Q, Chen XL, Tang JY. Endothelial-Dependent and Independent Vascular Relaxation Effect of Tetrahydropalmatine on Rat Aorta. Front Pharmacol 2019; 10:336. [PMID: 31057398 PMCID: PMC6477965 DOI: 10.3389/fphar.2019.00336] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Tetrahydropalmatine (THP) is an active natural alkaloid isolated from Corydalis yanhusuo W.T. Wang which has been widely used for treating pain and cardiovascular disease in traditional Chinese medicine. Previous studies suggested THP have various pharmacological effects in neural and cardio tissue while the vascular reactivity of THP was not fully established. The present study found that THP relaxed rat aorta which contracted by phenylephrine (Phe), KCl, and U46619. The vascular relaxation effect of THP was partially attenuated by PI3K inhibitor wortmannin, Akt inhibitor IV, endothelial nitric oxide synthetase (eNOS) inhibitor L-NAME, guanylate cyclase inhibitors and the mechanical removal of endothelium. Also, the eNOS substrate L-arginine reversed the inhibition effect of L-NAME on THP-induced vascular relaxation. THP also induced intracellular NO production in human umbilical vein endothelial cells. However, Pre-incubation with β-adrenergic receptor blocker propranolol, angiotensin II receptor 1 (AT1) inhibitor losartan, angiotensin II receptor 2 (AT1) inhibitor PD123319 or angiotensin converting enzyme inhibitor enalapril enhanced the vascular relaxation effect of THP. THP did not affect the angiotensin II induced vascular contraction. Cyclooxygenase-2 (COX2) inhibitor indomethacin did not affect the vascular relaxation effect of THP. Furthermore, pre-treatment THP attenuated KCl and Phe induced rat aorta contraction in standard Krebs solution. In Ca2+ free Krebs solution, THP inhibited the Ca2+ induced vascular contraction under KCl or Phe stress and reduced KCl stressed Ca2+ influx in rat vascular smooth muscle cells. THP also inhibited intracellular Ca2+ release induced vascular contraction by blocking Ryr or IP3 receptors. In addition, the voltage-dependent K+ channel (Kv) blocker 4-aminopyridine, ATP-sensitive K+ channel (KATP) blocker glibenclamide and inward rectifying K+ channel blocker BaCl2 attenuated THP induced vascular relaxation regardless of the Ca2+-activated K+ channel (KCa) blocker tetraethylammonium. Thus, we could conclude that THP relaxed rat aorta in an endothelium-dependent and independent manner. The underlying mechanism of THP relaxing rat aorta involved PI3K/Akt/eNOS/NO/cGMP signaling path-way, Ca2+ channels and K+ channels rather than COX2, β-adrenergic receptor and renin-angiotensin system (RAS). These findings indicated that THP might be a potent treatment of diseases with vascular dysfunction like hypertension.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Wai-Rong Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Ting Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xiao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Lin Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin-Gui Xue
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lun-Qing Zhang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Qing Ye
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin-Lin Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiac Rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Sun C, Chen Z, Wang H, Ding K. Tetrahydropalmatine Prevents High-Fat Diet-Induced Hyperlipidemia in Golden Hamsters (Mesocricetus Auratus). Med Sci Monit 2018; 24:6564-6572. [PMID: 30226834 PMCID: PMC6157085 DOI: 10.12659/msm.910578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Hyperlipidemia is a major cause of atherosclerotic cardiovascular disease. Tetrahydropalmatine (THP) can exhibit hepatoprotective, anti-arrhythmic, and anti-inflammatory activities. The mechanism of THP on the hyperlipidemia remains unknown; therefore, the present study explored the role of THP in hyperlipidemia. Material/Methods We established an animal model of hyperlipidemia by high-fat diet (HFD) feeding. Blood samples were obtained for determination of serum cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), pro-inflammatory cytokines, and CYP7A1 expression. Histology was performed and inflammation was detected in the liver using hematoxylin-eosin (HE) staining and enzyme-linked immunosorbent assay (ELISA), respectively. The mRNA and protein levels of TLR4 and TRAF-6 were determined by quantitative real-time PCR (qPCR) and Western blot, respectively. Results THP suppressed hepatic lipid accumulation and reduced serum levels of TC, TG, LDL-c, and HDL-c in HFD-fed golden hamsters. THP increased cholesterol 7 α-hydroxylase (CYP7A1) expression and prevented inflammation by the limited reduction in interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expressions in serum and liver. THP slightly increased the ratio of the body/liver weight. THP inhibited the mRNA and protein levels of Toll-like receptor 4 (TLR4) and TNF-receptor associated factor-6 (TRAF-6). Conclusions These results suggest that THP attenuates hyperlipidemia by multiple effects, including hepatoprotective and anti-inflammatory effects. Moreover, THP also suppressed the expressions of TLR4 and TRAF-6 in golden hamsters.
Collapse
Affiliation(s)
- Caihua Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Zhiyun Chen
- The Second Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Hui Wang
- College of Pharmaceutical Science, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Ke Ding
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|