1
|
Chu T, Si X, Xie H, Ma H, Shi Y, Yao W, Xing D, Zhao F, Dong F, Gai Q, Che K, Guo Y, Chen D, Ming D, Mao N. Regional Structural-Functional Connectivity Coupling in Major Depressive Disorder Is Associated With Neurotransmitter and Genetic Profiles. Biol Psychiatry 2025; 97:290-301. [PMID: 39218135 DOI: 10.1016/j.biopsych.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Abnormalities in structural-functional connectivity (SC-FC) coupling have been identified globally in patients with major depressive disorder (MDD). However, investigations have neglected the variability and hierarchical distribution of these abnormalities across different brain regions. Furthermore, the biological mechanisms that underlie regional SC-FC coupling patterns are not well understood. METHODS We enrolled 182 patients with MDD and 157 healthy control participants and quantified the intergroup differences in regional SC-FC coupling. Extreme gradient boosting (XGBoost), support vector machine, and random forest models were constructed to assess the potential of SC-FC coupling as biomarkers for MDD diagnosis and symptom prediction. Then, we examined the link between changes in regional SC-FC coupling in patients with MDD, neurotransmitter distributions, and gene expression. RESULTS We observed increased regional SC-FC coupling in the default mode network (t337 = 3.233) and decreased coupling in the frontoparietal network (t337 = -3.471) in patients with MDD compared with healthy control participants. XGBoost (area under the receiver operating characteristic curve = 0.853), support vector machine (area under the receiver operating characteristic curve = 0.832), and random forest (p < .05) models exhibited good prediction performance. The alterations in regional SC-FC coupling in patients with MDD were correlated with the distributions of 4 neurotransmitters (p < .05) and expression maps of specific genes. These enriched genes were implicated in excitatory neurons, inhibitory neurons, cellular metabolism, synapse function, and immune signaling. These findings were replicated on 2 brain atlases. CONCLUSIONS This work enhances our understanding of MDD and paves the way for the development of additional targeted therapeutic interventions.
Collapse
Affiliation(s)
- Tongpeng Chu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin University, Tianjin, China; Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Xiaopeng Si
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin University, Tianjin, China.
| | - Haizhu Xie
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Heng Ma
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Yinghong Shi
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Wei Yao
- Department of Neurology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong, China
| | - Dong Xing
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business, University, Yantai, Shandong, China
| | - Fanghui Dong
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Qun Gai
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Kaili Che
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Yuting Guo
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Danni Chen
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin University, Tianjin, China.
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China; Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China.
| |
Collapse
|
2
|
Szalisznyó K, Silverstein DN. Computational insights on asymmetrical D1 and D2 receptor-mediated chunking: implications for OCD and Schizophrenia. Cogn Neurodyn 2024; 18:217-232. [PMID: 38406202 PMCID: PMC10881457 DOI: 10.1007/s11571-022-09865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 01/15/2023] Open
Abstract
Repetitive thoughts and motor programs including perseveration are bridge symptoms characteristic of obsessive compulsive disorder (OCD), schizophrenia and in the co-morbid overlap of these conditions. The above pathologies are sensitive to altered activation and kinetics of dopamine D 1 and D 2 receptors that differently influence sequence learning and recall. Recognizing start and stop elements of motor and cognitive behaviors has crucial importance. During chunking, frequent components of temporal strings are concatenated into single units. We extended a published computational model (Asabuki et al. 2018), where two populations of neurons are connected and simulated in a reservoir computing framework. These neural pools were adopted to represent D1 and D2 striatal neuronal populations. We investigated how specific neural and striatal circuit parameters can influence start/stop signaling and found that asymmetric intra-network connection probabilities, synaptic weights and differential time constants may contribute to signaling of start/stop elements within learned sequences. Asymmetric coupling between the striatal D 1 and D 2 neural populations was also demonstrated to be beneficial. Our modeling results predict that dynamical differences between the two dopaminergic striatal populations and the interaction between them may play complementary roles in chunk boundary signaling. Start and stop dichotomies can arise from the larger circuit dynamics as well, since neural and intra-striatal connections only partially support a clear division of labor.
Collapse
Affiliation(s)
- Krisztina Szalisznyó
- Department of Medical Sciences, Psychiatry, Uppsala University Hospital, Uppsala University, 751 85 Uppsala, Sweden
- Theoretical Neuroscience and Complex Systems Research Group, Wigner Research Centre for Physics, Budapest, Hungary
| | | |
Collapse
|
3
|
Marques KL, Moreira ML, Thiele MC, Cunha-Rodrigues MC, Barradas PC. Depressive-like behavior and impaired synaptic plasticity in the prefrontal cortex as later consequences of prenatal hypoxic-ischemic insult in rats. Behav Brain Res 2023; 452:114571. [PMID: 37421988 DOI: 10.1016/j.bbr.2023.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Perinatal hypoxia-ischemia (HI) is a leading cause of morbidity and mortality among newborns. Infants with HI encephalopathy may experience lasting consequences, such as depression, in adulthood. In this study, we examined depressive-like behavior, neuronal population, and markers of monoaminergic and synaptic plasticity in the prefrontal cortex (PFC) of adolescent rats subjected to a prenatal HI model. Pregnant rats underwent a surgery in which uterine and ovarian blood flow was blocked for 45 min at E18 (HI procedure). Sham-operated subjects were also generated (SH procedure). Behavioral tests were conducted on male and female pups from P41 to P43, and animals were histologically processed or dissected for western blotting at P45. We found that the HI groups consumed less sucrose in the sucrose preference test and remained immobile for longer periods in the forced swim test. Additionally, we observed a significant reduction in neuronal density and PSD95 levels in the HI group, as well as a smaller number of synaptophysin-positive cells. Our results underscore the importance of this model in investigating the effects of HI-induced injuries, as it reproduces an increase in depressive-like behavior and suggests that the HI insult affects circuits involved in mood modulation.
Collapse
Affiliation(s)
- Kethely L Marques
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Milena L Moreira
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Maria C Thiele
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marta C Cunha-Rodrigues
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Penha C Barradas
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Gao X, Yao L, Li F, Yang C, Zhu F, Gong Q, Lui S. The cortical hypogyrification pattern in antipsychotic-naive first-episode schizophrenia. Cereb Cortex 2023; 33:7619-7626. [PMID: 36916957 DOI: 10.1093/cercor/bhad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/15/2023] Open
Abstract
Schizophrenia is thought to be a neurodevelopmental disease with high genetic heritability, and evidence from neuroimaging studies has consistently shown widespread cortical local gyrification index (LGI) alterations; however, genes accounting for LGI alterations in schizophrenia remain unknown. The present study examined the LGI alterations in first-episode antipsychotic-naive schizophrenia compared with controls (235 patients and 214 controls); transcription-neuroimaging association analysis was used to evaluate the relationship between LGI deficits and specific risk genes. The expression profiles of 232 schizophrenia risk genes were extracted from six donated normal brains from the Allen Human Brain Atlas database. The correlation between LGI alterations and clinical symptoms was also tested. We found lower LGI values involved in frontotemporal regions and limbic systems. Nonparametric correlation analysis showed that 83 risk genes correlated with the hypogyrification pattern in schizophrenia. These identified risk genes were functionally enriched for the development of the central nervous system. The LGI in the left superior temporal gyrus was negatively associated with Positive and Negative Syndrome Scale negative symptoms. In summary, the present study provides a set of risk genes possibly related to the hypogyrification pattern in antipsychotic-naive first-episode schizophrenia, which could help to unveil the neurobiological underpinnings of cortical impairments in early-stage schizophrenia.
Collapse
Affiliation(s)
- Xin Gao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Yao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengmin Yang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Fei Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Lopresti BJ, Royse SK, Mathis CA, Tollefson SA, Narendran R. Beyond monoamines: I. Novel targets and radiotracers for Positron emission tomography imaging in psychiatric disorders. J Neurochem 2023; 164:364-400. [PMID: 35536762 DOI: 10.1111/jnc.15615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
With the emergence of positron emission tomography (PET) in the late 1970s, psychiatry had access to a tool capable of non-invasive assessment of human brain function. Early applications in psychiatry focused on identifying characteristic brain blood flow and metabolic derangements using radiotracers such as [15 O]H2 O and [18 F]FDG. Despite the success of these techniques, it became apparent that more specific probes were needed to understand the neurochemical bases of psychiatric disorders. The first neurochemical PET imaging probes targeted sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. Based on the centrality of monoamine dysfunction in psychiatric disorders and the measured success of monoamine-enhancing drugs in treating them, the next 30 years witnessed the development of an armamentarium of PET radiopharmaceuticals and imaging methodologies for studying monoamines. Continued development of monoamine-enhancing drugs over this time however was less successful, realizing only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely paralleled drug development priorities resulting in the development of new PET imaging agents for non-monoamine targets. Part one of this review will briefly survey novel PET imaging targets with relevance to the field of psychiatry, which include the metabotropic glutamate receptor type 5 (mGluR5), purinergic P2 X7 receptor, type 1 cannabinoid receptor (CB1 ), phosphodiesterase 10A (PDE10A), and describe radiotracers developed for these and other targets that have matured to human subject investigations. Current limitations of the targets and techniques will also be discussed.
Collapse
Affiliation(s)
- Brian J Lopresti
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Royse
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah A Tollefson
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Hagihara H, Shoji H, Kuroiwa M, Graef IA, Crabtree GR, Nishi A, Miyakawa T. Forebrain-specific conditional calcineurin deficiency induces dentate gyrus immaturity and hyper-dopaminergic signaling in mice. Mol Brain 2022; 15:94. [PMID: 36414974 PMCID: PMC9682671 DOI: 10.1186/s13041-022-00981-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022] Open
Abstract
Calcineurin (Cn), a phosphatase important for synaptic plasticity and neuronal development, has been implicated in the etiology and pathophysiology of neuropsychiatric disorders, including schizophrenia, intellectual disability, autism spectrum disorders, epilepsy, and Alzheimer's disease. Forebrain-specific conditional Cn knockout mice have been known to exhibit multiple behavioral phenotypes related to these disorders. In this study, we investigated whether Cn mutant mice show pseudo-immaturity of the dentate gyrus (iDG) in the hippocampus, which we have proposed as an endophenotype shared by these disorders. Expression of calbindin and GluA1, typical markers for mature DG granule cells (GCs), was decreased and that of doublecortin, calretinin, phospho-CREB, and dopamine D1 receptor (Drd1), markers for immature GC, was increased in Cn mutants. Phosphorylation of cAMP-dependent protein kinase (PKA) substrates (GluA1, ERK2, DARPP-32, PDE4) was increased and showed higher sensitivity to SKF81297, a Drd1-like agonist, in Cn mutants than in controls. While cAMP/PKA signaling is increased in the iDG of Cn mutants, chronic treatment with rolipram, a selective PDE4 inhibitor that increases intracellular cAMP, ameliorated the iDG phenotype significantly and nesting behavior deficits with nominal significance. Chronic rolipram administration also decreased the phosphorylation of CREB, but not the other four PKA substrates examined, in Cn mutants. These results suggest that Cn deficiency induces pseudo-immaturity of GCs and that cAMP signaling increases to compensate for this maturation abnormality. This study further supports the idea that iDG is an endophenotype shared by certain neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Mahomi Kuroiwa
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Isabella A. Graef
- Department of Pathology, Stanford University of Medicine, Stanford, CA 94305 USA
| | - Gerald R. Crabtree
- Department of Pathology, Stanford University of Medicine, Stanford, CA 94305 USA
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| |
Collapse
|
7
|
Zhao F, Cheng Z, Piao J, Cui R, Li B. Dopamine Receptors: Is It Possible to Become a Therapeutic Target for Depression? Front Pharmacol 2022; 13:947785. [PMID: 36059987 PMCID: PMC9428607 DOI: 10.3389/fphar.2022.947785] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Dopamine and its receptors are currently recognized targets for the treatment of several neuropsychiatric disorders, including Parkinson’s disease, schizophrenia, some drug use addictions, as well as depression. Dopamine receptors are widely distributed in various regions of the brain, but their role and exact contribution to neuropsychiatric diseases has not yet been thoroughly studied. Based on the types of dopamine receptors and their distribution in different brain regions, this paper reviews the current research status of the molecular, cellular and circuit mechanisms of dopamine and its receptors involved in depression. Multiple lines of investigation of these mechanisms provide a new future direction for understanding the etiology and treatment of depression and potential new targets for antidepressant treatments.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
- *Correspondence: Bingjin Li,
| |
Collapse
|
8
|
Papenberg G, Karalija N, Salami A, Rieckmann A, Andersson M, Axelsson J, Riklund K, Lindenberger U, Lövdén M, Nyberg L, Bäckman L. Balance between Transmitter Availability and Dopamine D2 Receptors in Prefrontal Cortex Influences Memory Functioning. Cereb Cortex 2021; 30:989-1000. [PMID: 31504282 DOI: 10.1093/cercor/bhz142] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Insufficient or excessive dopaminergic tone impairs cognitive performance. We examine whether the balance between transmitter availability and dopamine (DA) D2 receptors (D2DRs) is important for successful memory performance in a large sample of adults (n = 175, 64-68 years). The Catechol-O-Methyltransferase polymorphism served as genetic proxy for endogenous prefrontal DA availability, and D2DRs in dorsolateral prefrontal cortex (dlPFC) were measured with [11C]raclopride-PET. Individuals for whom D2DR status matched DA availability showed higher levels of episodic and working-memory performance than individuals with insufficient or excessive DA availability relative to the number of receptors. A similar pattern restricted to episodic memory was observed for D2DRs in caudate. Functional magnetic resonance imaging data acquired during working-memory performance confirmed the importance of a balanced DA system for load-dependent brain activity in dlPFC. Our data suggest that the inverted-U-shaped function relating DA signaling to cognition is modulated by a dynamic association between DA availability and receptor status.
Collapse
Affiliation(s)
- Goran Papenberg
- Aging Research Center, Karolinska Institute and Stockholm University, S-17177 Stockholm, Sweden
| | - Nina Karalija
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden
| | - Alireza Salami
- Aging Research Center, Karolinska Institute and Stockholm University, S-17177 Stockholm, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, S-90187 Umeå, Sweden
| | - Anna Rieckmann
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden
| | - Micael Andersson
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden
| | - Jan Axelsson
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden
| | - Katrine Riklund
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, D-14195 Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, D-14195 Berlin, Germany and UK-WC1B 5EH London, UK
| | - Martin Lövdén
- Aging Research Center, Karolinska Institute and Stockholm University, S-17177 Stockholm, Sweden
| | - Lars Nyberg
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute and Stockholm University, S-17177 Stockholm, Sweden
| |
Collapse
|
9
|
Cheslow L, Snook AE, Waldman SA. Emerging targets for the diagnosis of Parkinson's disease: examination of systemic biomarkers. Biomark Med 2021; 15:597-608. [PMID: 33988462 DOI: 10.2217/bmm-2020-0654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease (PD) is a highly prevalent and irreversible neurodegenerative disorder that is typically diagnosed in an advanced stage. Currently, there are no approved biomarkers that reliably identify PD patients before they have undergone extensive neuronal damage, eliminating the opportunity for future disease-modifying therapies to intervene in disease progression. This unmet need for diagnostic and therapeutic biomarkers has fueled PD research for decades, but these efforts have not yet yielded actionable results. Recently, studies exploring mechanisms underlying PD progression have offered insights into multisystemic contributions to pathology, challenging the classic perspective of PD as a disease isolated to the brain. This shift in understanding has opened the door to potential new biomarkers from multiple sites in the body. This review focuses on emerging candidates for PD biomarkers in the context of current diagnostic approaches and multiple organ systems that contribute to disease.
Collapse
Affiliation(s)
- Lara Cheslow
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
Cao G, Meng G, Zhu L, Zhu J, Dong N, Zhou X, Zhang S, Zhang Y. Susceptibility to chronic immobilization stress-induced depressive-like behaviour in middle-aged female mice and accompanying changes in dopamine D1 and GABA A receptors in related brain regions. Behav Brain Funct 2021; 17:2. [PMID: 33863350 PMCID: PMC8052654 DOI: 10.1186/s12993-021-00175-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/12/2021] [Indexed: 03/12/2023] Open
Abstract
Background Middle-aged females, especially perimenopausal females, are vulnerable to depression, but the potential mechanism remains unclear. Dopaminergic and GABAergic system dysfunction is involved in the pathophysiology of depression. In the current study, we used 2-month-old and 11-month-old C57BL/6 mice as young and middle-aged mice, respectively. Chronic immobilization stress (CIS) was used to induce depressive-like behaviour, and the sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST) were used to assess these behaviours. We then measured the mRNA levels of dopamine receptor D1 (DRD1) and the GABAA receptors GABRA1, GABRB2 and GABRG2 in the nucleus accumbens (NAc) and prefrontal cortex (PFC). Results We found that immobility time in the FST was significantly increased in the middle-aged mice compared with the middle-aged control mice and the young mice. In addition, the preference for sucrose water was reduced in the middle-aged mice compared with the middle-aged control mice. However, CIS did not induce obvious changes in the performance of the young mice in our behavioural tests. Moreover, the middle-aged mice exhibited equal immobility times as the young mice in the absence of stress. Decreases in the mRNA levels of DRD1, GABRA1, and GABRB2 but not GABRG2 were found in the NAc and PFC in the middle-aged mice in the absence of stress. Further decreases in the mRNA levels of DRD1 in the NAc and GABRG2 in the NAc and PFC were found in the middle-aged mice subjected to CIS. Conclusions Our results suggested that ageing could not directly induce depression in the absence of stress. However, ageing could induce susceptibility to depression in middle-aged mice in the presence of stress. CIS-induced decreases in DRD1 and GABRG2 levels might be involved in the increase in susceptibility to depression in this context.
Collapse
Affiliation(s)
- Guofen Cao
- Xi'an Medical University School of Nursing, Xi'an, Shaanxi, PR China
| | - Gaili Meng
- Northwest Women and Children Hospital, Xi'an, Shaanxi, PR China
| | - Li Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Jie Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Nan Dong
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Xiaolan Zhou
- Xi'an Medical University School of Nursing, Xi'an, Shaanxi, PR China
| | - Sumei Zhang
- Xi'an Medical University School of Nursing, Xi'an, Shaanxi, PR China
| | - Yongai Zhang
- Xi'an Medical University School of Nursing, Xi'an, Shaanxi, PR China.
| |
Collapse
|
11
|
Kilbourn MR. 11C- and 18F-Radiotracers for In Vivo Imaging of the Dopamine System: Past, Present and Future. Biomedicines 2021; 9:108. [PMID: 33499179 PMCID: PMC7912183 DOI: 10.3390/biomedicines9020108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
The applications of positron emission tomography (PET) imaging to study brain biochemistry, and in particular the aspects of dopamine neurotransmission, have grown significantly over the 40 years since the first successful in vivo imaging studies in humans. In vivo PET imaging of dopaminergic functions of the central nervous system (CNS) including dopamine synthesis, vesicular storage, synaptic release and receptor binding, and reuptake processes, are now routinely used for studies in neurology, psychiatry, drug abuse and addiction, and drug development. Underlying these advances in PET imaging has been the development of the unique radiotracers labeled with positron-emitting radionuclides such as carbon-11 and fluorine-18. This review focuses on a selection of the more accepted and utilized PET radiotracers currently available, with a look at their past, present and future.
Collapse
Affiliation(s)
- Michael R Kilbourn
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
12
|
Tjerkaski J, Cervenka S, Farde L, Matheson GJ. Kinfitr - an open-source tool for reproducible PET modelling: validation and evaluation of test-retest reliability. EJNMMI Res 2020; 10:77. [PMID: 32642865 PMCID: PMC7343683 DOI: 10.1186/s13550-020-00664-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/25/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND In positron emission tomography (PET) imaging, binding is typically estimated by fitting pharmacokinetic models to the series of measurements of radioactivity in the target tissue following intravenous injection of a radioligand. However, there are multiple different models to choose from and numerous analytical decisions that must be made when modelling PET data. Therefore, it is important that analysis tools be adapted to the specific circumstances, and that analyses be documented in a transparent manner. Kinfitr, written in the open-source programming language R, is a tool developed for flexible and reproducible kinetic modelling of PET data, i.e. performing all steps using code which can be publicly shared in analysis notebooks. In this study, we compared outcomes obtained using kinfitr with those obtained using PMOD: a widely used commercial tool. RESULTS Using previously collected test-retest data obtained with four different radioligands, a total of six different kinetic models were fitted to time-activity curves derived from different brain regions. We observed good correspondence between the two kinetic modelling tools both for binding estimates and for microparameters. Likewise, no substantial differences were observed in the test-retest reliability estimates between the two tools. CONCLUSIONS In summary, we showed excellent agreement between the open-source R package kinfitr, and the widely used commercial application PMOD. We, therefore, conclude that kinfitr is a valid and reliable tool for kinetic modelling of PET data.
Collapse
Affiliation(s)
- Jonathan Tjerkaski
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.
| | - Simon Cervenka
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Granville James Matheson
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| |
Collapse
|
13
|
Schneider ML, Moore CF, Ahlers EO, Barnhart TE, Christian BT, DeJesus OT, Engle JW, Holden JE, Larson JA, Moirano JM, Murali D, Nickles RJ, Resch LM, Converse AK. PET Measures of D1, D2, and DAT Binding Are Associated With Heightened Tactile Responsivity in Rhesus Macaques: Implications for Sensory Processing Disorder. Front Integr Neurosci 2019; 13:29. [PMID: 31379528 PMCID: PMC6652150 DOI: 10.3389/fnint.2019.00029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 01/11/2023] Open
Abstract
Sensory processing disorder (SPD), a developmental regulatory condition characterized by marked under- or over-responsivity to non-noxious sensory stimulation, is a common but poorly understood disorder that can profoundly affect mood, cognition, social behavior and adaptive life skills. Little is known about the etiology and neural underpinnings. Clinical research indicates that children with SPD show greater prevalence of difficulties in complex cognitive behavior including working memory, behavioral flexibility, and regulation of sensory and affective functions, which are related to prefrontal cortex (PFC), striatal, and midbrain regions. Neuroimaging may provide insight into mechanisms underlying SPD, and animal experiments provide important evidence that is not available in human studies. Rhesus monkeys (N = 73) were followed over a 20-year period from birth into old age. We focused on a single sensory modality, the tactile system, measured at 5-7 years, because of its critical importance for nourishment, attachment, and social reward in development. Positron emission tomography imaging was conducted at ages 12-18 years to quantify the availability of the D1 and D2 subtypes of the DA receptor (D1R and D2R), and the DA transporter (DAT). Heightened tactile responsivity was related to (a) elevated D1R in PFC overall, including lateral, ventrolateral, medial, anterior cingulate (aCg), frontopolar, and orbitofrontal (OFC) subregions, as well as nucleus accumbens (Acb), (b) reduced D2R in aCg, OFC, and substantia nigra/ventral tegmental area, and (c) elevated DAT in putamen. These findings suggest a mechanism by which DA pathways may be altered in SPD. These pathways are associated with reward processing and pain regulation, providing top-down regulation of sensory and affective processes. The balance between top-down cognitive control in the PFC-Acb pathway and bottom-up motivational function of the VTA-Acb-PFC pathway is critical for successful adaptive function. An imbalance in these two systems might explain DA-related symptoms in children with SPD, including reduced top-down regulatory function and exaggerated responsivity to stimuli. These results provide more direct evidence that SPD may involve altered DA receptor and transporter function in PFC, striatal, and midbrain regions. More work is needed to extend these results to humans.
Collapse
Affiliation(s)
- Mary L Schneider
- Occupational Therapy Program, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.,Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | - Colleen F Moore
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Psychology, Montana State University, Bozeman, MT, United States
| | - Elizabeth O Ahlers
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Bradley T Christian
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Onofre T DeJesus
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - James E Holden
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Julie A Larson
- Occupational Therapy Program, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.,Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jeffrey M Moirano
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Dhanabalan Murali
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert J Nickles
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Leslie M Resch
- Occupational Therapy Program, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.,Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | | |
Collapse
|
14
|
Stenkrona P, Matheson GJ, Halldin C, Cervenka S, Farde L. D1-Dopamine Receptor Availability in First-Episode Neuroleptic Naive Psychosis Patients. Int J Neuropsychopharmacol 2019; 22:415-425. [PMID: 30958880 PMCID: PMC6600463 DOI: 10.1093/ijnp/pyz017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/12/2019] [Accepted: 04/05/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Positron emission tomography studies examining differences in D1-dopamine receptor binding between control subjects and patients with schizophrenia have been inconsistent, reporting higher, lower, and no difference in the frontal cortex. Exposure to antipsychotic medication has been suggested to be a likely source of this heterogeneity, and thus there is a need for studies of patients at early stages of the disorder who have not been exposed to such drugs. METHODS Here, we compared 17 healthy control subjects and 18 first-episode neuroleptic naive patients with schizophrenia or schizophreniform psychosis using positron emission tomography and the D1-dopamine receptor radioligand [11C]SCH23390. RESULTS We observed a statistically significant difference in the dorsolateral prefrontal cortex. Contrary to our expectations, patients had less D1-dopamine receptor availability with a moderate effect size. In a Bayesian analysis, we show that the data are over 50 times more likely to have occurred under the decrease as opposed to the increase hypothesis. This effect was not global, as our analysis showed that the null hypothesis was preferred over either hypothesis in the striatum. CONCLUSIONS This investigation represents the largest single sample of neuroleptic-naive patients examined for D1-dopamine receptor availability using PET and suggests a reduction of prefrontal D1-dopamine receptor density in the pathophysiology of schizophrenia. However, further work will be required to reach a consensus.
Collapse
Affiliation(s)
- Per Stenkrona
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden,Correspondence: Per Stenkrona, MD, Karolinska Institutet, Department of Clinical Neuroscience Karolinska University Hospital, R5:02 SE-171 76 Stockholm, Sweden ()
| | - Granville J Matheson
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Simon Cervenka
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden,PET Science Centre, Precision Medicine, R&D Oncology, AstraZeneca, Karolinska Institutet, Sweden
| |
Collapse
|
15
|
Dopaminergic Mechanisms Underlying Normal Variation in Trait Anxiety. J Neurosci 2019; 39:2735-2744. [PMID: 30737306 DOI: 10.1523/jneurosci.2382-18.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/03/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
Trait anxiety has been associated with altered activity within corticolimbic pathways connecting the amygdala and rostral anterior cingulate cortex (rACC), which receive rich dopaminergic input. Though the popular culture uses the term "chemical imbalance" to describe the pathophysiology of psychiatric conditions such as anxiety disorders, we know little about how individual differences in human dopamine neurochemistry are related to variation in anxiety and activity within corticolimbic circuits. We addressed this issue by examining interindividual variability in dopamine release at rest using [11C]raclopride positron emission tomography (PET), functional connectivity between amygdala and rACC using resting-state functional magnetic resonance imaging (fMRI), and trait anxiety measures in healthy adult male and female humans. To measure endogenous dopamine release, we collected two [11C]raclopride PET scans per participant. We contrasted baseline [11C]raclopride D2/3 receptor binding and D2/3 receptor binding following oral methylphenidate administration. Methylphenidate blocks the dopamine transporter, which increases extracellular dopamine and leads to reduced [11C]raclopride D2/3 receptor binding via competitive displacement. We found that individuals with higher dopamine release in the amygdala and rACC self-reported lower trait anxiety. Lower trait anxiety was also associated with reduced rACC-amygdala functional connectivity at baseline. Further, functional connectivity showed a modest negative relationship with dopamine release such that reduced rACC-amygdala functional connectivity was accompanied by higher levels of dopamine release in these regions. Together, these findings contribute to hypodopaminergic models of anxiety and support the utility of combining fMRI and PET measures of neurochemical function to advance our understanding of basic affective processes in humans.SIGNIFICANCE STATEMENT It is common wisdom that individuals vary in their baseline levels of anxiety. We all have a friend or colleague we know to be more "tightly wound" than others, or, perhaps, we are the ones marveling at others' ability to "just go with the flow." Although such observations about individual differences within nonclinical populations are commonplace, the neural mechanisms underlying normal variation in trait anxiety have not been established. Using multimodal brain imaging in humans, this study takes initial steps in linking intrinsic measures of neuromodulator release and functional connectivity within regions implicated in anxiety disorders. Our findings suggest that in healthy adults, higher levels of trait anxiety may arise, at least in part, from reduced dopamine neurotransmission.
Collapse
|
16
|
Stenkrona P, Matheson GJ, Cervenka S, Sigray PP, Halldin C, Farde L. [ 11C]SCH23390 binding to the D 1-dopamine receptor in the human brain-a comparison of manual and automated methods for image analysis. EJNMMI Res 2018; 8:74. [PMID: 30069645 PMCID: PMC6070454 DOI: 10.1186/s13550-018-0416-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/27/2018] [Indexed: 11/22/2022] Open
Abstract
Background The D1-dopamine receptor radioligand [11C]SCH23390 has been frequently used in PET studies. In drug-naïve patients with schizophrenia, the findings have been inconsistent, with decreases, increases, and no change in the frontal cortex D1-dopamine receptors. While these discrepancies are likely primarily due to a lack of statistical power in these studies, we speculated that an additional explanation may be the differences due to methods of image analysis between studies, affecting reliability as well as bias between groups. Methods Fifteen healthy subjects underwent two PET measurements with [11C]SCH23390 on the same day. The binding potential (BPND) was compared using a 95% confidence interval following manual and automated delineation of a region of interest (ROI) as well as with and without frame-by-frame realignment. Results Automated target region delineation produced lower BPND values, while automated delineation of the reference region yielded higher BPND values. However, no significant differences were observed for repeatability using automated and manual delineation methods. Frame-by-frame realignment generated higher BPND values and improved repeatability. Conclusions The results suggest that the choice of ROI delineation method is not an important factor for reliability, whereas the improved results following movement correction confirm its importance in PET image analysis. Realignment is therefore especially important for measurements in patient populations such as schizophrenia or Parkinson’s disease, where motion artifacts may be more prevalent. Electronic supplementary material The online version of this article (10.1186/s13550-018-0416-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Per Stenkrona
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska University Hospital, Karolinska Institutet, R5:02, S-171 76, Stockholm, Sweden. .,Stockholm County Council, Stockholm, Sweden.
| | - Granville J Matheson
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska University Hospital, Karolinska Institutet, R5:02, S-171 76, Stockholm, Sweden.,Stockholm County Council, Stockholm, Sweden
| | - Simon Cervenka
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska University Hospital, Karolinska Institutet, R5:02, S-171 76, Stockholm, Sweden.,Stockholm County Council, Stockholm, Sweden
| | - Pontus Plavén Sigray
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska University Hospital, Karolinska Institutet, R5:02, S-171 76, Stockholm, Sweden.,Stockholm County Council, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska University Hospital, Karolinska Institutet, R5:02, S-171 76, Stockholm, Sweden.,Stockholm County Council, Stockholm, Sweden
| | - Lars Farde
- PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|