1
|
Parras GG, Delgado-García JM, López-Ramos JC, Gruart A, Leal-Campanario R. Cerebellar interpositus nucleus exhibits time-dependent errors and predictive responses. NPJ SCIENCE OF LEARNING 2024; 9:12. [PMID: 38409163 PMCID: PMC10897197 DOI: 10.1038/s41539-024-00224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
Learning is a functional state of the brain that should be understood as a continuous process, rather than being restricted to the very moment of its acquisition, storage, or retrieval. The cerebellum operates by comparing predicted states with actual states, learning from errors, and updating its internal representation to minimize errors. In this regard, we studied cerebellar interpositus nucleus (IPn) functional capabilities by recording its unitary activity in behaving rabbits during an associative learning task: the classical conditioning of eyelid responses. We recorded IPn neurons in rabbits during classical eyeblink conditioning using a delay paradigm. We found that IPn neurons reduce error signals across conditioning sessions, simultaneously increasing and transmitting spikes before the onset of the unconditioned stimulus. Thus, IPn neurons generate predictions that optimize in time and shape the conditioned eyeblink response. Our results are consistent with the idea that the cerebellum works under Bayesian rules updating the weights using the previous history.
Collapse
Grants
- DOC-00309 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- BIO-122 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- PID2021-122446NB-100 Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness)
Collapse
Affiliation(s)
- Gloria G Parras
- Division of Neurosciences, Universidad Pablo de Olavide, Seville, Spain.
| | | | | | - Agnès Gruart
- Division of Neurosciences, Universidad Pablo de Olavide, Seville, Spain
| | | |
Collapse
|
2
|
Todd NPM, Govender S, Keller PE, Colebatch JG. Electrophysiological activity from over the cerebellum and cerebrum during eye blink conditioning in human subjects. Physiol Rep 2023; 11:e15642. [PMID: 36971094 PMCID: PMC10041378 DOI: 10.14814/phy2.15642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
We report the results of an experiment in which electrophysiological activity was recorded from the human cerebellum and cerebrum in a sample of 14 healthy subjects before, during and after a classical eye blink conditioning procedure with an auditory tone as conditional stimulus and a maxillary nerve unconditional stimulus. The primary aim was to show changes in the cerebellum and cerebrum correlated with behavioral ocular responses. Electrodes recorded EMG and EOG at peri-ocular sites, EEG from over the frontal eye-fields and the electrocerebellogram (ECeG) from over the posterior fossa. Of the 14 subjects half strongly conditioned while the other half were resistant. We confirmed that conditionability was linked under our conditions to the personality dimension of extraversion-introversion. Inhibition of cerebellar activity was shown prior to the conditioned response, as predicted by Albus (1971). However, pausing in high frequency ECeG and the appearance of a contingent negative variation (CNV) in both central leads occurred in all subjects. These led us to conclude that while conditioned cerebellar pausing may be necessary, it is not sufficient alone to produce overt behavioral conditioning, implying the existence of another central mechanism. The outcomes of this experiment indicate the potential value of the noninvasive electrophysiology of the cerebellum.
Collapse
Affiliation(s)
- Neil P M Todd
- Department of Psychology, University of Exeter, Exeter, UK
- School of Clinical Medicine, Randwick Campus, UNSW, Sydney, New South Wales, Australia
| | - Sendhil Govender
- School of Clinical Medicine, Randwick Campus, UNSW, Sydney, New South Wales, Australia
- Neuroscience Research Australia, UNSW, Sydney, New South Wales, Australia
| | - Peter E Keller
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, New South Wales, Australia
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - James G Colebatch
- School of Clinical Medicine, Randwick Campus, UNSW, Sydney, New South Wales, Australia
- Neuroscience Research Australia, UNSW, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Sadnicka A, Rocchi L, Latorre A, Antelmi E, Teo J, Pareés I, Hoffland BS, Brock K, Kornysheva K, Edwards MJ, Bhatia KP, Rothwell JC. A Critical Investigation of Cerebellar Associative Learning in Isolated Dystonia. Mov Disord 2022; 37:1187-1192. [PMID: 35312111 PMCID: PMC9313805 DOI: 10.1002/mds.28967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/31/2022] Open
Abstract
Background Objective Methods Results Conclusions
Collapse
Affiliation(s)
- Anna Sadnicka
- Department of Clinical and Movement Neurosciences University College London London UK
- Movement Disorders and Neuromodulation Group St. George's University of London London UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences University College London London UK
- Department of Medical Sciences and Public Health University of Cagliari Cagliari Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences University College London London UK
| | - Elena Antelmi
- Department of Clinical and Movement Neurosciences University College London London UK
- Department of Neuroscience, Biomedicine and Movement University of Verona Verona Italy
| | - James Teo
- Department of Clinical and Movement Neurosciences University College London London UK
- Department of Neurosciences Kings College Hospital NHS Foundation Trust London UK
| | - Isabel Pareés
- Department of Clinical and Movement Neurosciences University College London London UK
- Movement Disorders Program, Neurology Department Hospital Ruber Internacional Madrid Spain
| | - Britt S. Hoffland
- Department of Clinical and Movement Neurosciences University College London London UK
- Department of Neurology Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen the Netherlands
| | - Kristian Brock
- Cancer Research UK Clinical Trials Unit University of Birmingham Birmingham UK
| | | | - Mark J. Edwards
- Department of Clinical and Movement Neurosciences University College London London UK
- Movement Disorders and Neuromodulation Group St. George's University of London London UK
| | - Kailash P. Bhatia
- Department of Clinical and Movement Neurosciences University College London London UK
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences University College London London UK
| |
Collapse
|
4
|
Kostadinov D, Häusser M. Reward signals in the cerebellum: origins, targets, and functional implications. Neuron 2022; 110:1290-1303. [PMID: 35325616 DOI: 10.1016/j.neuron.2022.02.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022]
Abstract
The cerebellum has long been proposed to play a role in cognitive function, although this has remained controversial. This idea has received renewed support with the recent discovery that signals associated with reward can be observed in the cerebellar circuitry, particularly in goal-directed learning tasks involving an interplay between the cerebellar cortex, basal ganglia, and cerebral cortex. Remarkably, a wide range of reward contingencies-including reward expectation, delivery, size, and omission-can be encoded by specific circuit elements in a manner that reflects the microzonal organization of the cerebellar cortex. The facts that reward signals have been observed in both the mossy fiber and climbing fiber input pathways to the cerebellar cortex and that their convergence may trigger plasticity in Purkinje cells suggest that these interactions may be crucial for the role of the cerebellar cortex in learned behavior. These findings strengthen the emerging consensus that the cerebellum plays a pivotal role in shaping cognitive processing and suggest that the cerebellum may combine both supervised learning and reinforcement learning to optimize goal-directed action. We make specific predictions about how cerebellar circuits can work in concert with the basal ganglia to guide different stages of learning.
Collapse
Affiliation(s)
- Dimitar Kostadinov
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Michael Häusser
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
5
|
Zhao Y, Zeng Y, Qiao G. Brain-inspired classical conditioning model. iScience 2021; 24:101980. [PMID: 33490893 PMCID: PMC7808924 DOI: 10.1016/j.isci.2020.101980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/24/2020] [Accepted: 12/16/2020] [Indexed: 11/20/2022] Open
Abstract
Classical conditioning plays a critical role in the learning process of biological brains, and many computational models have been built to reproduce the related classical experiments. However, these models can reproduce and explain only a limited range of typical phenomena in classical conditioning. Based on existing biological findings concerning classical conditioning, we build a brain-inspired classical conditioning (BICC) model. Compared with other computational models, our BICC model can reproduce as many as 15 classical experiments, explaining a broader set of findings than other models have, and offers better computational explainability for both the experimental phenomena and the biological mechanisms of classical conditioning. Finally, we validate our theoretical model on a humanoid robot in three classical conditioning experiments (acquisition, extinction, and reacquisition) and a speed generalization experiment, and the results show that our model is computationally feasible as a foundation for brain-inspired robot classical conditioning. Classical conditioning (CC) is crucial in biological and embodied robot learning A spiking neural network incorporates existing biological findings of CC in one model BICC can explain a broader set of findings than other existing computational models BICC ensures a robot gets similar biological behavior and speed generalization capability
Collapse
Affiliation(s)
- Yuxuan Zhao
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Zeng
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
- Corresponding author
| | - Guang Qiao
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Tsutsumi S, Chadney O, Yiu TL, Bäumler E, Faraggiana L, Beau M, Häusser M. Purkinje Cell Activity Determines the Timing of Sensory-Evoked Motor Initiation. Cell Rep 2020; 33:108537. [PMID: 33357441 PMCID: PMC7773552 DOI: 10.1016/j.celrep.2020.108537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/05/2020] [Accepted: 11/25/2020] [Indexed: 11/30/2022] Open
Abstract
Cerebellar neurons can signal sensory and motor events, but their role in active sensorimotor processing remains unclear. We record and manipulate Purkinje cell activity during a task that requires mice to rapidly discriminate between multisensory and unisensory stimuli before motor initiation. Neuropixels recordings show that both sensory stimuli and motor initiation are represented by short-latency simple spikes. Optogenetic manipulation of short-latency simple spikes abolishes or delays motor initiation in a rate-dependent manner, indicating a role in motor initiation and its timing. Two-photon calcium imaging reveals task-related coherence of complex spikes organized into conserved alternating parasagittal stripes. The coherence of sensory-evoked complex spikes increases with learning and correlates with enhanced temporal precision of motor initiation. These results suggest that both simple spikes and complex spikes govern sensory-driven motor initiation: simple spikes modulate its latency, and complex spikes refine its temporal precision, providing specific cellular substrates for cerebellar sensorimotor control.
Collapse
Affiliation(s)
- Shinichiro Tsutsumi
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Oscar Chadney
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Tin-Long Yiu
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Edgar Bäumler
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Lavinia Faraggiana
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Maxime Beau
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
7
|
De Zeeuw CI. Bidirectional learning in upbound and downbound microzones of the cerebellum. Nat Rev Neurosci 2020; 22:92-110. [PMID: 33203932 DOI: 10.1038/s41583-020-00392-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 12/30/2022]
Abstract
Over the past several decades, theories about cerebellar learning have evolved. A relatively simple view that highlighted the contribution of one major form of heterosynaptic plasticity to cerebellar motor learning has given way to a plethora of perspectives that suggest that many different forms of synaptic and non-synaptic plasticity, acting at various sites, can control multiple types of learning behaviour. However, there still seem to be contradictions between the various hypotheses with regard to the mechanisms underlying cerebellar learning. The challenge is therefore to reconcile these different views and unite them into a single overall concept. Here I review our current understanding of the changes in the activity of cerebellar Purkinje cells in different 'microzones' during various forms of learning. I describe an emerging model that indicates that the activity of each microzone is bound to either increase or decrease during the initial stages of learning, depending on the directional and temporal demands of its downstream circuitry and the behaviour involved.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands. .,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands.
| |
Collapse
|
8
|
Rasmussen A. Graded error signals in eyeblink conditioning. Neurobiol Learn Mem 2020; 170:107023. [DOI: 10.1016/j.nlm.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 01/06/2023]
|
9
|
Hull C. Prediction signals in the cerebellum: beyond supervised motor learning. eLife 2020; 9:54073. [PMID: 32223891 PMCID: PMC7105376 DOI: 10.7554/elife.54073] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
While classical views of cerebellar learning have suggested that this structure predominantly operates according to an error-based supervised learning rule to refine movements, emerging evidence suggests that the cerebellum may also harness a wider range of learning rules to contribute to a variety of behaviors, including cognitive processes. Together, such evidence points to a broad role for cerebellar circuits in generating and testing predictions about movement, reward, and other non-motor operations. However, this expanded view of cerebellar processing also raises many new questions about how such apparent diversity of function arises from a structure with striking homogeneity. Hence, this review will highlight both current evidence for predictive cerebellar circuit function that extends beyond the classical view of error-driven supervised learning, as well as open questions that must be addressed to unify our understanding cerebellar circuit function.
Collapse
Affiliation(s)
- Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
| |
Collapse
|
10
|
Grasselli G, Boele HJ, Titley HK, Bradford N, van Beers L, Jay L, Beekhof GC, Busch SE, De Zeeuw CI, Schonewille M, Hansel C. SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor-learning-specific memory traces. PLoS Biol 2020; 18:e3000596. [PMID: 31905212 PMCID: PMC6964916 DOI: 10.1371/journal.pbio.3000596] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/16/2020] [Accepted: 12/19/2019] [Indexed: 01/05/2023] Open
Abstract
Neurons store information by changing synaptic input weights. In addition, they can adjust their membrane excitability to alter spike output. Here, we demonstrate a role of such "intrinsic plasticity" in behavioral learning in a mouse model that allows us to detect specific consequences of absent excitability modulation. Mice with a Purkinje-cell-specific knockout (KO) of the calcium-activated K+ channel SK2 (L7-SK2) show intact vestibulo-ocular reflex (VOR) gain adaptation but impaired eyeblink conditioning (EBC), which relies on the ability to establish associations between stimuli, with the eyelid closure itself depending on a transient suppression of spike firing. In these mice, the intrinsic plasticity of Purkinje cells is prevented without affecting long-term depression or potentiation at their parallel fiber (PF) input. In contrast to the typical spike pattern of EBC-supporting zebrin-negative Purkinje cells, L7-SK2 neurons show reduced background spiking but enhanced excitability. Thus, SK2 plasticity and excitability modulation are essential for specific forms of motor learning.
Collapse
Affiliation(s)
- Giorgio Grasselli
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Henk-Jan Boele
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Heather K. Titley
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Nora Bradford
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Lisa van Beers
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Lindsey Jay
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Gerco C. Beekhof
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Silas E. Busch
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Sciences, Amsterdam, The Netherlands
| | | | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
11
|
Yarden-Rabinowitz Y, Yarom Y. Delayed Complex Spike Response Evoked by Conditioned Stimulus Encodes Movement Onset Time and Is Determined by Intrinsic Inferior Olive Properties. Front Syst Neurosci 2019; 13:50. [PMID: 31649513 PMCID: PMC6794365 DOI: 10.3389/fnsys.2019.00050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Recent studies demonstrate that after classical conditioning the conditioned stimulus (CS) triggers a delayed complex spike. This new finding revolutionizes our view on the role of complex spike activity. The classical view of the complex spike as an error signal has been replaced by a signal that encodes for expectation, prediction and reward. In this brief perspective, we review some of these works, focusing on the characteristic delay of the response (~80 ms), its independence on the time interval between CS and the unconditioned stimulus (US) and its relationship to movement onset. In view of these points, we suggest that the generation of complex spike activity following learning, encodes for timing of movements onset. We then provide original data recorded from Purkinje and cerebellar nuclei neurons, demonstrating that delayed complex spike activity is an intrinsic property of the cerebellar circuit. We, therefore, suggest that learning of classical conditioning involves modulation of cerebellar circuitry where timing is provided by the inferior olive and the movement kinematic is delivered by the cerebellar nuclei projection neurons.
Collapse
Affiliation(s)
- Yasmin Yarden-Rabinowitz
- Department of Neurobiology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.,Edmond & Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yosef Yarom
- Department of Neurobiology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.,Edmond & Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
12
|
Titley HK, Kislin M, Simmons DH, Wang SSH, Hansel C. Complex spike clusters and false-positive rejection in a cerebellar supervised learning rule. J Physiol 2019; 597:4387-4406. [PMID: 31297821 PMCID: PMC6697200 DOI: 10.1113/jp278502] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/11/2019] [Indexed: 01/21/2023] Open
Abstract
KEY POINTS Spike doublets comprise ∼10% of in vivo complex spike events under spontaneous conditions and ∼20% (up to 50%) under evoked conditions. Under near-physiological slice conditions, single complex spikes do not induce parallel fibre long-term depression. Doublet stimulation is required to induce long-term depression with an optimal parallel-fibre to first-complex-spike timing interval of 150 ms. ABSTRACT The classic example of biological supervised learning occurs at cerebellar parallel fibre (PF) to Purkinje cell synapses, comprising the most abundant synapse in the mammalian brain. Long-term depression (LTD) at these synapses is driven by climbing fibres (CFs), which fire continuously about once per second and therefore generate potential false-positive events. We show that pairs of complex spikes are required to induce LTD. In vivo, sensory stimuli evoked complex-spike doublets with intervals ≤150 ms in up to 50% of events. Using realistic [Ca2+ ]o and [Mg2+ ]o concentrations in slices, we determined that complex-spike doublets delivered 100-150 ms after PF stimulus onset were required to trigger PF-LTD, which is consistent with the requirements for eyeblink conditioning. Inter-complex spike intervals of 50-150 ms provided optimal decoding. This stimulus pattern prolonged evoked spine calcium signals and promoted CaMKII activation. Doublet activity may provide a means for CF instructive signals to stand out from background firing.
Collapse
Affiliation(s)
- Heather K Titley
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Mikhail Kislin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Dana H Simmons
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Samuel S-H Wang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Ju C, Bosman LW, Hoogland TM, Velauthapillai A, Murugesan P, Warnaar P, van Genderen RM, Negrello M, De Zeeuw CI. Neurons of the inferior olive respond to broad classes of sensory input while subject to homeostatic control. J Physiol 2019; 597:2483-2514. [PMID: 30908629 PMCID: PMC6487939 DOI: 10.1113/jp277413] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Purkinje cells in the cerebellum integrate input from sensory organs with that from premotor centres. Purkinje cells use a variety of sensory inputs relaying information from the environment to modify motor control. Here we investigated to what extent the climbing fibre inputs to Purkinje cells signal mono- or multi-sensory information, and to what extent this signalling is subject to recent history of activity. We show that individual climbing fibres convey multiple types of sensory information, together providing a rich mosaic projection pattern of sensory signals across the cerebellar cortex. Moreover, firing probability of climbing fibres following sensory stimulation depends strongly on the recent history of activity, showing a tendency to homeostatic dampening. ABSTRACT Cerebellar Purkinje cells integrate sensory information with motor efference copies to adapt movements to behavioural and environmental requirements. They produce complex spikes that are triggered by the activity of climbing fibres originating in neurons of the inferior olive. These complex spikes can shape the onset, amplitude and direction of movements and the adaptation of such movements to sensory feedback. Clusters of nearby inferior olive neurons project to parasagittally aligned stripes of Purkinje cells, referred to as 'microzones'. It is currently unclear to what extent individual Purkinje cells within a single microzone integrate climbing fibre inputs from multiple sources of different sensory origins, and to what extent sensory-evoked climbing fibre responses depend on the strength and recent history of activation. Here we imaged complex spike responses in cerebellar lobule crus 1 to various types of sensory stimulation in awake mice. We find that different sensory modalities and receptive fields have a mild, but consistent, tendency to converge on individual Purkinje cells, with climbing fibres showing some degree of input-specificity. Purkinje cells encoding the same stimulus show increased events with coherent complex spike firing and tend to lie close together. Moreover, whereas complex spike firing is only mildly affected by variations in stimulus strength, it depends strongly on the recent history of climbing fibre activity. Our data point towards a mechanism in the olivo-cerebellar system that regulates complex spike firing during mono- or multi-sensory stimulation around a relatively low set-point, highlighting an integrative coding scheme of complex spike firing under homeostatic control.
Collapse
Affiliation(s)
- Chiheng Ju
- Department of NeuroscienceErasmus MC3015 GDRotterdamThe Netherlands
| | | | - Tycho M. Hoogland
- Department of NeuroscienceErasmus MC3015 GDRotterdamThe Netherlands
- Netherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences1105 BEAmsterdamThe Netherlands
| | | | | | - Pascal Warnaar
- Department of NeuroscienceErasmus MC3015 GDRotterdamThe Netherlands
| | | | - Mario Negrello
- Department of NeuroscienceErasmus MC3015 GDRotterdamThe Netherlands
| | - Chris I. De Zeeuw
- Department of NeuroscienceErasmus MC3015 GDRotterdamThe Netherlands
- Netherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences1105 BEAmsterdamThe Netherlands
| |
Collapse
|
14
|
Kostadinov D, Beau M, Blanco-Pozo M, Häusser M. Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nat Neurosci 2019; 22:950-962. [DOI: 10.1038/s41593-019-0381-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/11/2019] [Indexed: 01/17/2023]
|
15
|
Vrieler N, Loyola S, Yarden-Rabinowitz Y, Hoogendorp J, Medvedev N, Hoogland TM, De Zeeuw CI, De Schutter E, Yarom Y, Negrello M, Torben-Nielsen B, Uusisaari MY. Variability and directionality of inferior olive neuron dendrites revealed by detailed 3D characterization of an extensive morphological library. Brain Struct Funct 2019; 224:1677-1695. [PMID: 30929054 PMCID: PMC6509097 DOI: 10.1007/s00429-019-01859-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/09/2019] [Indexed: 12/14/2022]
Abstract
The inferior olive (IO) is an evolutionarily conserved brain stem structure and its output activity plays a major role in the cerebellar computation necessary for controlling the temporal accuracy of motor behavior. The precise timing and synchronization of IO network activity has been attributed to the dendro-dendritic gap junctions mediating electrical coupling within the IO nucleus. Thus, the dendritic morphology and spatial arrangement of IO neurons governs how synchronized activity emerges in this nucleus. To date, IO neuron structural properties have been characterized in few studies and with small numbers of neurons; these investigations have described IO neurons as belonging to two morphologically distinct types, “curly” and “straight”. In this work we collect a large number of individual IO neuron morphologies visualized using different labeling techniques and present a thorough examination of their morphological properties and spatial arrangement within the olivary neuropil. Our results show that the extensive heterogeneity in IO neuron dendritic morphologies occupies a continuous range between the classically described “curly” and “straight” types, and that this continuum is well represented by a relatively simple measure of “straightness”. Furthermore, we find that IO neuron dendritic trees are often directionally oriented. Combined with an examination of cell body density distributions and dendritic orientation of adjacent IO neurons, our results suggest that the IO network may be organized into groups of densely coupled neurons interspersed with areas of weaker coupling.
Collapse
Affiliation(s)
- Nora Vrieler
- Department of Neurobiology, Institute of Life Sciences and Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel
| | - Sebastian Loyola
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Yasmin Yarden-Rabinowitz
- Department of Neurobiology, Institute of Life Sciences and Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel
| | - Jesse Hoogendorp
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Nikolay Medvedev
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Tycho M Hoogland
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Yosef Yarom
- Department of Neurobiology, Institute of Life Sciences and Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel
| | - Mario Negrello
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| |
Collapse
|