1
|
Bailly C. Anticancer activities and mechanism of action of the labdane diterpene coronarin D. Pathol Res Pract 2020; 216:152946. [DOI: 10.1016/j.prp.2020.152946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
|
2
|
The beneficial roles of exercise training via autophagy in neurological diseases and possible mechanisms. Life Sci 2019; 221:130-134. [PMID: 30769113 DOI: 10.1016/j.lfs.2019.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 02/06/2023]
Abstract
Autophagy is a conservative catabolism process, participating in delivering the cytosol and cytosolic components to the lysosome. Abnormal autophagy is related to human pathologies, for instance diabetes, neurodegeneration, cardiovascular, macular degeneration, pulmonary, and cancer. Enormous evidences indicate that autophagy may mediate the cellular pathological condition in the process of neurological diseases. Exercise as a form of physiological stress may cause an adaptation, and autophagy is a necessary process for adaptational response to exercise. Autophagy during exercise may improve neurological function, control tissue maintain tissue integrity, and activate different signals pathway for adaptation. In this review, we summarize the possible mechanisms of exercise training via autophagy in neurological diseases.
Collapse
|
3
|
Lv Q, Wang G, Zhang Y, Han X, Li H, Le W, Zhang M, Ma C, Wang P, Ding Q. FABP5 regulates the proliferation of clear cell renal cell carcinoma cells via the PI3K/AKT signaling pathway. Int J Oncol 2019; 54:1221-1232. [PMID: 30968158 PMCID: PMC6411348 DOI: 10.3892/ijo.2019.4721] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/30/2019] [Indexed: 01/15/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) has been associated with one of the highest mortality rates among all cancers. Fatty acid binding proteins (FABPs) are 14‑15 kDa proteins that are highly abundant in the cytosol of most tissues. FABP5, a member of the FABP family, has been observed to promote tumor cell growth in numerous cancer types. In order to investigate the function of FABP5 in ccRCC cells in the present study, RNA sequencing data from The Cancer Genome Atlas were analyzed to determine the expression levels of FABP5 in ccRCC patient samples. Survival and Cox regression analyses were performed to measure the association between FABP5 expression and clinicopathological features of patients with ccRCC. Subsequent in vitro experiments downregulated or overexpressed FABP5 in Caki‑1 and 786O ccRCC cells using lentiviral vectors to evaluate cell proliferation ability, and a xenograft transplantation model was established to examine the effect of FABP5 on tumorigenesis in vivo. The results demonstrated that FABP5 expression was significantly upregulated in samples from patients with ccRCC when compared with normal tissue samples. High FABP5 expression was also significantly correlated with tumor and metastasis classifications and predicted poor survival in patients with ccRCC. In ccRCC cells, silencing of FABP5 significantly inhibited cell proliferation, while overexpression of FABP5 promoted cell proliferation when compared to the respective controls. In addition, treatment with the phosphatidylinositol‑4,5‑bisphosphate 3‑kinase (PI3K)/AKT inhibitor, LY294002, attenuated the pro‑proliferative effects of exogenous FABP5 expression in Caki‑1 and 786O cells. This indicated that the PI3K/AKT signaling pathway may be partially involved in the FABP5‑mediated increase in ccRCC cell proliferation. Furthermore, FABP5 was observed to regulate tumor growth in nude mice in vivo. In conclusion, the results of the present study suggest that FABP5 may exert a pro‑proliferative role in ccRCC and may be associated with malignant progression and tumorigenesis.
Collapse
Affiliation(s)
- Qi Lv
- Imaging Department of Tongji Hospital, Medical School of Tongji University, Shanghai 200065, P.R. China
| | - Gangmin Wang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yinan Zhang
- Department of Urology, Shandong Province affiliated Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiao Han
- Department of Human Anatomy, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Haoming Li
- Department of Human Anatomy, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wei Le
- Imaging Department of Tongji Hospital, Medical School of Tongji University, Shanghai 200065, P.R. China
| | - Minguang Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Chunhui Ma
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Peijun Wang
- Imaging Department of Tongji Hospital, Medical School of Tongji University, Shanghai 200065, P.R. China
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|